Page last updated: 2024-10-30

metformin and Malignant Melanoma

metformin has been researched along with Malignant Melanoma in 43 studies

Metformin: A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
metformin : A member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1.

Research Excerpts

ExcerptRelevanceReference
"Phenformin's recently demonstrated efficacy in melanoma and Gleevec's demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs' significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein."8.95Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma. ( Boros, LG; Collins, TQ; D'Agostino, DP; Hitendra, P; Meuillet, EJ; Somlyai, G, 2017)
"Metformin use has been associated with improved survival in patients with different types of cancer, but research regarding the effect of metformin on cutaneous melanoma (CM) survival is sparse and inconclusive."8.31Association of metformin use and survival in patients with cutaneous melanoma and diabetes. ( Andersson, TML; Eriksson, H; Girnita, A; Häbel, H; Ingvar, C; Krakowski, I; Nielsen, K; Smedby, KE, 2023)
" The improved cytotoxic effect of the selected formulation against melanoma mice B16 cell line compared with metformin solution was determined using MTT assay."8.12Enhancement of antiproliferative potential of metformin against melanoma mice B16 cells using an optimized liposomal drug delivery system. ( Abdel-Aziz, RTA; Alaaeldin, E; Fathalla, Z; Magdy, S; Mansour, HF, 2022)
"Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN."8.12Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. ( Chai, P; Fan, X; Ge, S; Jia, R; Jia, S; Ruan, J; Shi, W; Wang, S; Xu, X; Yu, J; Zhou, Y; Zhuang, A; Zuo, S, 2022)
"The role of proline dehydrogenase/proline oxidase (PRODH/POX) in the mechanism of antineoplastic activity of metformin (MET) was studied in C32 melanoma cells."8.12Proline Dehydrogenase/Proline Oxidase (PRODH/POX) Is Involved in the Mechanism of Metformin-Induced Apoptosis in C32 Melanoma Cell Line. ( Baszanowska, W; Bielawska, K; Huynh, TYL; Lewoniewska, S; Miltyk, W; Nizioł, M; Oscilowska, I; Palka, J; Rolkowski, K; Sawicka, M; Szoka, P, 2022)
"The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing."8.12Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation. ( Abdel-Aziz, RT; Alaaeldin, E; Alaaeldin, R; Elrehany, M; Fathalla, Z; Magdy, S; Mansour, HF; Saber, EA, 2022)
"Despite clinical benefit from treatment with dabrafenib and trametinib in melanoma patients with BRAF mutations, half relapse within months and one-third are unresponsive to treatment."8.02Effect of Metformin in Combination With Trametinib and Paclitaxel on Cell Survival and Metastasis in Melanoma Cells. ( Lee, Y; Park, D, 2021)
"Melanoma patients with T2DM treated with metformin had lower risk of melanoma-specific mortality; however, prospective controlled studies are mandatory to confirm this finding."7.96The impact of metformin on survival in patients with melanoma-national cohort study. ( Burokiene, N; Dulskas, A; Patasius, A; Rutenberge, J; Smailyte, G; Urbonas, V, 2020)
"This is a retrospective cohort study that includes patients diagnosed with metastatic malignant melanoma and treated with ipilimumab, nivolumab, and/or pembrolizumab (Cohort A); or ipilimumab, nivolumab, and/or pembrolizumab plus metformin (Cohort B) between January 1st 2011 through December 15th 2017."7.88Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. ( Afzal, MZ; Mercado, RR; Shirai, K, 2018)
"Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy."7.85Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. ( Baldea, I; Cenariu, M; Filip, GA; Gligor, L; Ion, RM; Nenu, I; Olteanu, D; Tabaran, F; Tudor, D, 2017)
"Metformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells."7.79Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. ( Abbe, P; Allegra, M; Bahadoran, P; Ballotti, R; Bertolotto, C; Cerezo, M; Giacchero, D; Lehraiki, A; Ohanna, M; Rocchi, S; Rouaud, F; Tartare-Deckert, S; Tichet, M, 2013)
"Metformin inhibits the growth of most tumor cells, but BRAF-mutant melanoma cells are resistant to metformin in vitro, and metformin accelerates their growth in vivo."7.78Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. ( Hayward, R; Marais, R; Martin, MJ; Viros, A, 2012)
"The combination of the BRAF inhibitor vemurafenib (formerly PLX4032) and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis."7.77Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. ( Attar, N; Comin-Anduix, B; Glaspy, JA; Guo, D; Lo, RS; Matsunaga, D; Mischel, PS; Ng, C; Niehr, F; Recio, JA; Ribas, A; Sazegar, H; von Euw, E, 2011)
"Melanoma is the most lethal skin cancer characterized by its high metastatic potential."5.72Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. ( Jianping, K; Jianqiang, W; Suwei, D; Xiang, M; Yanbin, X; Yunqing, W; Zhen, L; Zhuohui, P, 2022)
"The metformin cells treatment reduces the migration potential in vitro and reduced the development of pulmonary metastases and the expressions of N-cadherin, vimentin, ZEB1, and ZEB2 at the metastases site, in vivo."5.72Epithelial-mesenchymal transition inhibition by metformin reduces melanoma lung metastasis in a murine model. ( Almeida, CP; da Silva, VHSR; de Araújo Campos, MR; de Carvalho, BA; de Souza Silva, FH; Del Puerto, HL; Ferreira, E; Lima, BM; Ribeiro, TS; Rocha, SA; Veloso, ES, 2022)
"Metformin intake was associated with a favorable outcome in HNM patients, providing possible therapeutic implications for future adjuvant treatment regimes."5.72Prognostic Relevance of Type 2 Diabetes and Metformin Treatment in Head and Neck Melanoma: Results from a Population-Based Cohort Study. ( Ettl, T; Fischer, R; Gerken, M; Lindner, SR; Ludwig, N; Reichert, TE; Schimnitz, S; Spanier, G; Spoerl, S; Taxis, J, 2022)
"Malignant melanoma is a life-threatening form of skin cancer with a low response rate to single-agent chemotherapy."5.62Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. ( Chen, S; Liu, C; Song, M; Tao, Z; Xia, W; Zhang, W; Zhu, B, 2021)
"Melanoma is one of the most aggressive and treatment-resistant tumors that responsible for majority of skin-cancer related deaths."5.51Metformin increases antitumor activity of MEK inhibitor binimetinib in 2D and 3D models of human metastatic melanoma cells. ( Akasov, R; Burov, S; Emelyanova, M; Inshakov, A; Khochenkov, D; Markvicheva, E; Prokofieva, A; Ryabaya, O; Stepanova, E, 2019)
"Metformin has beneficial effects of preventing and treating cancers on type 2 diabetic patients."5.48Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression. ( Cui, B; Hu, ZW; Hua, F; Huang, B; Li, K; Li, X; Lv, XX; Wang, F; Yang, ZN; Yu, JJ; Zhang, TT; Zhang, XW; Zhao, CX, 2018)
"Melanoma is the most dangerous and treatment-resistant skin cancer."5.46Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. ( Albini, A; Argenziano, G; Ciarrocchi, A; Dallaglio, K; Dominici, M; Grisendi, G; Longo, C; Petrachi, T; Romagnani, A, 2017)
"Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis."5.43Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. ( Bianchini, F; Calorini, L; Del Rosso, M; Giannoni, E; Margheri, F; Peppicelli, S; Toti, A, 2016)
"Phenformin's recently demonstrated efficacy in melanoma and Gleevec's demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs' significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein."4.95Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma. ( Boros, LG; Collins, TQ; D'Agostino, DP; Hitendra, P; Meuillet, EJ; Somlyai, G, 2017)
"Metformin use has been associated with improved survival in patients with different types of cancer, but research regarding the effect of metformin on cutaneous melanoma (CM) survival is sparse and inconclusive."4.31Association of metformin use and survival in patients with cutaneous melanoma and diabetes. ( Andersson, TML; Eriksson, H; Girnita, A; Häbel, H; Ingvar, C; Krakowski, I; Nielsen, K; Smedby, KE, 2023)
"Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN."4.12Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. ( Chai, P; Fan, X; Ge, S; Jia, R; Jia, S; Ruan, J; Shi, W; Wang, S; Xu, X; Yu, J; Zhou, Y; Zhuang, A; Zuo, S, 2022)
"The role of proline dehydrogenase/proline oxidase (PRODH/POX) in the mechanism of antineoplastic activity of metformin (MET) was studied in C32 melanoma cells."4.12Proline Dehydrogenase/Proline Oxidase (PRODH/POX) Is Involved in the Mechanism of Metformin-Induced Apoptosis in C32 Melanoma Cell Line. ( Baszanowska, W; Bielawska, K; Huynh, TYL; Lewoniewska, S; Miltyk, W; Nizioł, M; Oscilowska, I; Palka, J; Rolkowski, K; Sawicka, M; Szoka, P, 2022)
" The improved cytotoxic effect of the selected formulation against melanoma mice B16 cell line compared with metformin solution was determined using MTT assay."4.12Enhancement of antiproliferative potential of metformin against melanoma mice B16 cells using an optimized liposomal drug delivery system. ( Abdel-Aziz, RTA; Alaaeldin, E; Fathalla, Z; Magdy, S; Mansour, HF, 2022)
"The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing."4.12Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation. ( Abdel-Aziz, RT; Alaaeldin, E; Alaaeldin, R; Elrehany, M; Fathalla, Z; Magdy, S; Mansour, HF; Saber, EA, 2022)
" Here, by employing syngeneic mouse colon cancer model and melanoma model, we studied the effects of 6 common antidiabetic drugs on anti-PD1 immune checkpoint inhibitor in tumor treatment, including acarbose, sitagliptin, metformin, glimepiride, pioglitazone, and insulin."4.12The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. ( Cheng, MZ; Gao, Y; Liu, L; Zhan, ZT; Zhou, WJ, 2022)
"Despite clinical benefit from treatment with dabrafenib and trametinib in melanoma patients with BRAF mutations, half relapse within months and one-third are unresponsive to treatment."4.02Effect of Metformin in Combination With Trametinib and Paclitaxel on Cell Survival and Metastasis in Melanoma Cells. ( Lee, Y; Park, D, 2021)
"Melanoma patients with T2DM treated with metformin had lower risk of melanoma-specific mortality; however, prospective controlled studies are mandatory to confirm this finding."3.96The impact of metformin on survival in patients with melanoma-national cohort study. ( Burokiene, N; Dulskas, A; Patasius, A; Rutenberge, J; Smailyte, G; Urbonas, V, 2020)
"This is a retrospective cohort study that includes patients diagnosed with metastatic malignant melanoma and treated with ipilimumab, nivolumab, and/or pembrolizumab (Cohort A); or ipilimumab, nivolumab, and/or pembrolizumab plus metformin (Cohort B) between January 1st 2011 through December 15th 2017."3.88Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. ( Afzal, MZ; Mercado, RR; Shirai, K, 2018)
"Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy."3.85Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. ( Baldea, I; Cenariu, M; Filip, GA; Gligor, L; Ion, RM; Nenu, I; Olteanu, D; Tabaran, F; Tudor, D, 2017)
"Several reports have demonstrated the inhibitory effect of metformin, a widely used drug in the treatment of type 2 diabetes, on the proliferation of many cancers including melanoma."3.80Inhibition of melanogenesis by the antidiabetic metformin. ( Abbe, P; Ballotti, R; Bertolotto, C; Cerezo, M; Chignon-Sicard, B; Lehraiki, A; Passeron, T; Regazzetti, C; Rocchi, S; Rouaud, F, 2014)
"Metformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells."3.79Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. ( Abbe, P; Allegra, M; Bahadoran, P; Ballotti, R; Bertolotto, C; Cerezo, M; Giacchero, D; Lehraiki, A; Ohanna, M; Rocchi, S; Rouaud, F; Tartare-Deckert, S; Tichet, M, 2013)
"Metformin inhibits the growth of most tumor cells, but BRAF-mutant melanoma cells are resistant to metformin in vitro, and metformin accelerates their growth in vivo."3.78Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. ( Hayward, R; Marais, R; Martin, MJ; Viros, A, 2012)
"The combination of the BRAF inhibitor vemurafenib (formerly PLX4032) and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis."3.77Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. ( Attar, N; Comin-Anduix, B; Glaspy, JA; Guo, D; Lo, RS; Matsunaga, D; Mischel, PS; Ng, C; Niehr, F; Recio, JA; Ribas, A; Sazegar, H; von Euw, E, 2011)
"Metformin intake was associated with a favorable outcome in HNM patients, providing possible therapeutic implications for future adjuvant treatment regimes."1.72Prognostic Relevance of Type 2 Diabetes and Metformin Treatment in Head and Neck Melanoma: Results from a Population-Based Cohort Study. ( Ettl, T; Fischer, R; Gerken, M; Lindner, SR; Ludwig, N; Reichert, TE; Schimnitz, S; Spanier, G; Spoerl, S; Taxis, J, 2022)
"The metformin cells treatment reduces the migration potential in vitro and reduced the development of pulmonary metastases and the expressions of N-cadherin, vimentin, ZEB1, and ZEB2 at the metastases site, in vivo."1.72Epithelial-mesenchymal transition inhibition by metformin reduces melanoma lung metastasis in a murine model. ( Almeida, CP; da Silva, VHSR; de Araújo Campos, MR; de Carvalho, BA; de Souza Silva, FH; Del Puerto, HL; Ferreira, E; Lima, BM; Ribeiro, TS; Rocha, SA; Veloso, ES, 2022)
"Melanoma is the most lethal skin cancer characterized by its high metastatic potential."1.72Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. ( Jianping, K; Jianqiang, W; Suwei, D; Xiang, M; Yanbin, X; Yunqing, W; Zhen, L; Zhuohui, P, 2022)
"Metformin, a drug prescribed to treat type 2 diabetes, has been reported to possess antitumor activity via immunity activation."1.62Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner. ( Fan, X; Li, J; Li, M; Qi, X; Sun, L; Wu, Y; Xia, W; Yuan, Y, 2021)
"Malignant melanoma is a life-threatening form of skin cancer with a low response rate to single-agent chemotherapy."1.62Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. ( Chen, S; Liu, C; Song, M; Tao, Z; Xia, W; Zhang, W; Zhu, B, 2021)
"Melanoma is one of the most aggressive and treatment-resistant tumors that responsible for majority of skin-cancer related deaths."1.51Metformin increases antitumor activity of MEK inhibitor binimetinib in 2D and 3D models of human metastatic melanoma cells. ( Akasov, R; Burov, S; Emelyanova, M; Inshakov, A; Khochenkov, D; Markvicheva, E; Prokofieva, A; Ryabaya, O; Stepanova, E, 2019)
"Metformin has beneficial effects of preventing and treating cancers on type 2 diabetic patients."1.48Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression. ( Cui, B; Hu, ZW; Hua, F; Huang, B; Li, K; Li, X; Lv, XX; Wang, F; Yang, ZN; Yu, JJ; Zhang, TT; Zhang, XW; Zhao, CX, 2018)
"Melanoma is the most dangerous and treatment-resistant skin cancer."1.46Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. ( Albini, A; Argenziano, G; Ciarrocchi, A; Dallaglio, K; Dominici, M; Grisendi, G; Longo, C; Petrachi, T; Romagnani, A, 2017)
"Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis."1.43Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. ( Bianchini, F; Calorini, L; Del Rosso, M; Giannoni, E; Margheri, F; Peppicelli, S; Toti, A, 2016)
"Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance."1.42Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression. ( Bhat, MK; Chaube, B; Malvi, P; Meena, AS; Mohammad, N; Singh, SV, 2015)

Research

Studies (43)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (2.33)29.6817
2010's20 (46.51)24.3611
2020's22 (51.16)2.80

Authors

AuthorsStudies
Xia, W2
Qi, X1
Li, M2
Wu, Y2
Sun, L1
Fan, X2
Yuan, Y1
Li, J8
Zhuang, A1
Chai, P1
Wang, S3
Zuo, S1
Yu, J1
Jia, S1
Ge, S1
Jia, R1
Zhou, Y1
Shi, W1
Xu, X2
Ruan, J1
Oscilowska, I1
Rolkowski, K1
Baszanowska, W1
Huynh, TYL1
Lewoniewska, S1
Nizioł, M1
Sawicka, M1
Bielawska, K1
Szoka, P1
Miltyk, W1
Palka, J1
Magdy, S2
Fathalla, Z2
Alaaeldin, E2
Abdel-Aziz, RTA1
Mansour, HF2
Alaaeldin, R1
Elrehany, M1
Saber, EA1
Abdel-Aziz, RT1
Suwei, D1
Yanbin, X1
Jianqiang, W1
Xiang, M1
Zhuohui, P1
Jianping, K1
Yunqing, W1
Zhen, L1
De Sousa-Coelho, AL1
Aureliano, M1
Fraqueza, G1
Serrão, G1
Gonçalves, J1
Sánchez-Lombardo, I1
Link, W1
Ferreira, BI1
Zhan, ZT1
Liu, L3
Cheng, MZ1
Gao, Y3
Zhou, WJ1
Veloso, ES1
de Carvalho, BA1
de Souza Silva, FH1
Ribeiro, TS1
Lima, BM1
Almeida, CP1
da Silva, VHSR1
Rocha, SA1
de Araújo Campos, MR1
Del Puerto, HL1
Ferreira, E1
Spoerl, S2
Gerken, M1
Schimnitz, S1
Taxis, J1
Fischer, R1
Lindner, SR1
Ettl, T1
Ludwig, N1
Reichert, TE1
Spanier, G1
Krakowski, I1
Häbel, H1
Nielsen, K1
Ingvar, C1
Andersson, TML1
Girnita, A1
Smedby, KE1
Eriksson, H1
Li, H6
Zhang, L3
Yang, F1
Zhao, R1
Li, X13
Wang, DY1
McQuade, JL1
Rai, RR1
Park, JJ1
Zhao, S2
Ye, F1
Beckermann, KE1
Rubinstein, SM1
Johnpulle, R1
Long, GV1
Carlino, MS1
Menzies, AM1
Davies, MA1
Johnson, DB1
Hajimoradi Javarsiani, M1
Sajedianfard, J1
Haghjooy Javanmard, S1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y3
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y3
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Wang, J4
Zhang, E1
Zhang, J3
Li, Y5
Xue, F1
Deng, L1
Yan, Z2
Wang, Y3
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X1
Ren, Y1
Li, P1
Jiao, Q1
Meng, P1
Wang, F3
Wang, YS1
Wang, C3
Zhou, X2
Wang, W1
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L1
Zhu, J2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X5
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Zhang, Y4
Wu, X1
Lu, J2
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z2
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H2
Liu, Y4
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C4
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S3
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C1
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H1
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X1
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Urbonas, V1
Rutenberge, J1
Patasius, A1
Dulskas, A1
Burokiene, N1
Smailyte, G1
Souza-Neto, FP1
Marinello, PC1
Melo, GP1
Ramalho, LZN1
Cela, EM1
Campo, VE1
González-Maglio, DH1
Cecchini, R1
Cecchini, AL1
Song, M1
Tao, Z1
Zhu, B1
Zhang, W1
Novik, AV1
Protsenko, SA1
Baldueva, IA1
Berstein, LM1
Anisimov, VN1
Zhuk, IN1
Semenova, AI1
Latipova, DK1
Tkachenko, EV1
Semiglazova, TY1
Lee, Y1
Park, D1
Xu, A1
Lee, J1
Xu, P1
Somlyai, G1
Collins, TQ1
Meuillet, EJ1
Hitendra, P1
D'Agostino, DP1
Boros, LG1
Li, K2
Zhang, TT2
Cui, B1
Zhao, CX1
Yu, JJ1
Lv, XX1
Zhang, XW1
Yang, ZN1
Huang, B1
Hua, F2
Hu, ZW2
Afzal, MZ1
Mercado, RR1
Shirai, K1
Ryabaya, O1
Prokofieva, A1
Akasov, R1
Khochenkov, D1
Emelyanova, M1
Burov, S1
Markvicheva, E1
Inshakov, A1
Stepanova, E1
Cerezo, M5
Tichet, M1
Abbe, P2
Ohanna, M1
Lehraiki, A2
Rouaud, F2
Allegra, M2
Giacchero, D2
Bahadoran, P3
Bertolotto, C3
Tartare-Deckert, S2
Ballotti, R5
Rocchi, S5
Reddi, A1
Powers, MA1
Dellavalle, RP1
Regazzetti, C1
Chignon-Sicard, B1
Passeron, T2
Tomic, T2
Livingstone, E1
Swann, S1
Lilla, C1
Schadendorf, D1
Roesch, A1
Verduzco, D1
Flaherty, KT1
Smalley, KS1
Chaube, B1
Malvi, P1
Singh, SV1
Mohammad, N1
Meena, AS1
Bhat, MK1
Peppicelli, S1
Toti, A1
Giannoni, E1
Bianchini, F1
Margheri, F1
Del Rosso, M1
Calorini, L1
Su, YJ1
Lin, HY1
Weng, SW1
Lu, CH1
Lin, CY1
Chiu, WC1
Wang, PW1
Petrachi, T1
Romagnani, A1
Albini, A1
Longo, C1
Argenziano, G1
Grisendi, G1
Dominici, M1
Ciarrocchi, A1
Dallaglio, K1
Montaudié, H1
Roger, C1
Machet, L1
Arnault, JP1
Verneuil, L1
Maubec, E1
Aubin, F1
Granel, F1
Hofman, V1
Lacour, JP1
Maryline, A1
Tudor, D1
Nenu, I1
Filip, GA1
Olteanu, D1
Cenariu, M1
Tabaran, F1
Ion, RM1
Gligor, L1
Baldea, I1
Niehr, F1
von Euw, E1
Attar, N1
Guo, D1
Matsunaga, D1
Sazegar, H1
Ng, C1
Glaspy, JA1
Recio, JA1
Lo, RS1
Mischel, PS1
Comin-Anduix, B1
Ribas, A1
Botton, T1
Robert, G1
Luciano, F1
Puissant, A1
Gounon, P1
Bereder, JM1
Auberger, P1
Martin, MJ1
Hayward, R1
Viros, A1
Marais, R1
Hadad, SM1
Appleyard, V1
Thompson, AM1

Clinical Trials (4)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Phase II Multicenter Randomized Study to Compare Dacarbazine With Melatonin or Metformin Versus Dacarbazine in the First Line Therapy of Disseminated Melanoma[NCT02190838]Phase 257 participants (Actual)Interventional2014-04-30Terminated (stopped due to Preliminary terminated due to inefficacy)
An Open-Label Single-Arm Phase Ⅱ Study to Evaluate Efficacy and Safety of Sintilimab Combined With Metformin Hydrochloride in Patients With Advanced Non-small Cell Lung Cancer Refractory to First-Line Treatment[NCT03874000]Phase 243 participants (Anticipated)Interventional2019-03-08Recruiting
THE METFORMIN AND TRICHLOROACETIC ACID IN TREATMENT OF MELASMA[NCT03475524]Phase 460 participants (Anticipated)Interventional2019-04-01Recruiting
A Phase I/II Trial of Vemurafenib and Metformin to Unresectable Stage IIIC and Stage IV BRAF.V600E+ Melanoma Patients[NCT01638676]Phase 1/Phase 255 participants (Anticipated)Interventional2012-07-31Recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

4 reviews available for metformin and Malignant Melanoma

ArticleYear
Impact of concomitant medications on the efficacy of immune checkpoint inhibitors: an umbrella review.
    Frontiers in immunology, 2023, Volume: 14

    Topics: Analgesics, Opioid; Anti-Bacterial Agents; Anti-Inflammatory Agents, Non-Steroidal; Aspirin; Esophag

2023
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma.
    Oncotarget, 2017, Jul-25, Volume: 8, Issue:30

    Topics: Atorvastatin; Humans; Imatinib Mesylate; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Melanoma;

2017
Is it time to test biguanide metformin in the treatment of melanoma?
    Pigment cell & melanoma research, 2015, Volume: 28, Issue:1

    Topics: Antineoplastic Agents; Humans; Melanoma; Metformin; Models, Biological; Signal Transduction; Skin Ne

2015

Trials

2 trials available for metformin and Malignant Melanoma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Metformin monotherapy in melanoma: a pilot, open-label, prospective, and multicentric study indicates no benefit.
    Pigment cell & melanoma research, 2017, Volume: 30, Issue:3

    Topics: Aged; Aged, 80 and over; Female; Humans; Male; Melanoma; Metformin; Middle Aged; Pilot Projects

2017

Other Studies

38 other studies available for metformin and Malignant Melanoma

ArticleYear
Metformin promotes anticancer activity of NK cells in a p38 MAPK dependent manner.
    Oncoimmunology, 2021, Volume: 10, Issue:1

    Topics: Animals; Diabetes Mellitus, Type 2; Killer Cells, Natural; Melanoma; Metformin; Mice; p38 Mitogen-Ac

2021
Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma.
    Clinical and translational medicine, 2022, Volume: 12, Issue:1

    Topics: Animals; Autophagy; Cell Cycle Proteins; Disease Models, Animal; Eye; Histone Demethylases; Melanoma

2022
Proline Dehydrogenase/Proline Oxidase (PRODH/POX) Is Involved in the Mechanism of Metformin-Induced Apoptosis in C32 Melanoma Cell Line.
    International journal of molecular sciences, 2022, Feb-21, Volume: 23, Issue:4

    Topics: AMP-Activated Protein Kinases; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Humans; Melanoma;

2022
Enhancement of antiproliferative potential of metformin against melanoma mice B16 cells using an optimized liposomal drug delivery system.
    The Journal of pharmacy and pharmacology, 2022, Jul-15, Volume: 74, Issue:7

    Topics: Animals; Antineoplastic Agents; Drug Carriers; Drug Delivery Systems; Lipids; Liposomes; Melanoma; M

2022
Metformin-loaded ethosomes with promoted anti-proliferative activity in melanoma cell line B16, and wound healing aptitude: Development, characterization and in vivo evaluation.
    International journal of pharmaceutics, 2022, Jun-10, Volume: 621

    Topics: Administration, Cutaneous; Animals; Aptitude; Cell Line; Ethanol; Liposomes; Melanoma; Metformin; Mi

2022
Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis.
    Cellular & molecular biology letters, 2022, Jun-15, Volume: 27, Issue:1

    Topics: Animals; Cell Line, Tumor; Cell Movement; Cell Proliferation; Epithelial-Mesenchymal Transition; Gen

2022
Decavanadate and metformin-decavanadate effects in human melanoma cells.
    Journal of inorganic biochemistry, 2022, Volume: 235

    Topics: Adenosine Triphosphatases; Animals; Anions; Humans; Hypoglycemic Agents; Melanoma; Metformin; Polyel

2022
The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment.
    Journal of immunology research, 2022, Volume: 2022

    Topics: Acarbose; Animals; Hypoglycemic Agents; Immune Checkpoint Inhibitors; Insulin; Melanoma; Metformin;

2022
Epithelial-mesenchymal transition inhibition by metformin reduces melanoma lung metastasis in a murine model.
    Scientific reports, 2022, 10-22, Volume: 12, Issue:1

    Topics: Animals; Cadherins; Cell Line, Tumor; Cell Movement; Disease Models, Animal; Epithelial-Mesenchymal

2022
Prognostic Relevance of Type 2 Diabetes and Metformin Treatment in Head and Neck Melanoma: Results from a Population-Based Cohort Study.
    Current oncology (Toronto, Ont.), 2022, 12-07, Volume: 29, Issue:12

    Topics: Cohort Studies; Diabetes Mellitus, Type 2; Head and Neck Neoplasms; Humans; Melanoma; Metformin; Neo

2022
Association of metformin use and survival in patients with cutaneous melanoma and diabetes.
    The British journal of dermatology, 2023, 01-23, Volume: 188, Issue:1

    Topics: Adult; Cohort Studies; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Melanoma; Melanoma, C

2023
Patients with melanoma and diabetes benefit from metformin treatment.
    The British journal of dermatology, 2023, 01-23, Volume: 188, Issue:1

    Topics: Diabetes Mellitus; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Melanoma; Metformin

2023
The Impact of Nonsteroidal Anti-Inflammatory Drugs, Beta Blockers, and Metformin on the Efficacy of Anti-PD-1 Therapy in Advanced Melanoma.
    The oncologist, 2020, Volume: 25, Issue:3

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Humans; Melanoma; Metformin; Pharmaceutical Preparations; R

2020
The effects of metformin on the hippo pathway in the proliferation of melanoma cancer cells: a preclinical study.
    Archives of physiology and biochemistry, 2022, Volume: 128, Issue:5

    Topics: Adaptor Proteins, Signal Transducing; Antineoplastic Agents; Cell Proliferation; Dacarbazine; Hippo

2022
The impact of metformin on survival in patients with melanoma-national cohort study.
    Annals of epidemiology, 2020, Volume: 52

    Topics: Adult; Aged; Aged, 80 and over; Cohort Studies; Diabetes Mellitus, Type 2; Female; Humans; Hypoglyce

2020
Metformin inhibits the inflammatory and oxidative stress response induced by skin UVB-irradiation and provides 4-hydroxy-2-nonenal and nitrotyrosine formation and p53 protein activation.
    Journal of dermatological science, 2020, Volume: 100, Issue:2

    Topics: Aldehydes; Animals; Carcinogenesis; DNA Damage; Female; Humans; Melanoma; Metformin; Mice; Oxidative

2020
Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy.
    Drug delivery, 2021, Volume: 28, Issue:1

    Topics: Animals; Apoptosis; Cell Survival; Chemistry, Pharmaceutical; Cholesterol; Doxorubicin; Drug Carrier

2021
Melatonin and Metformin Failed to Modify the Effect of Dacarbazine in Melanoma.
    The oncologist, 2021, Volume: 26, Issue:5

    Topics: Antineoplastic Combined Chemotherapy Protocols; Dacarbazine; Humans; Melanoma; Melatonin; Metformin;

2021
Effect of Metformin in Combination With Trametinib and Paclitaxel on Cell Survival and Metastasis in Melanoma Cells.
    Anticancer research, 2021, Volume: 41, Issue:3

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Drug Syne

2021
Potential effect of EGCG on the anti-tumor efficacy of metformin in melanoma cells.
    Journal of Zhejiang University. Science. B, 2021, Jul-15, Volume: 22, Issue:7

    Topics: Animals; Antineoplastic Agents; Apoptosis; Catechin; Cell Line, Tumor; Cell Movement; Cell Nucleus;

2021
Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression.
    Oncogene, 2018, Volume: 37, Issue:22

    Topics: Acetylation; Animals; Cell Cycle Proteins; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dise

2018
Metformin reduces TRIB3 expression and restores autophagy flux: an alternative antitumor action.
    Autophagy, 2018, Volume: 14, Issue:7

    Topics: Animals; Antineoplastic Agents; Autophagy; Disease Progression; Melanoma; Metformin; Mice, Inbred C5

2018
Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma.
    Journal for immunotherapy of cancer, 2018, 07-02, Volume: 6, Issue:1

    Topics: Aged; Antineoplastic Agents, Immunological; Biomarkers, Tumor; CTLA-4 Antigen; Disease Progression;

2018
Metformin increases antitumor activity of MEK inhibitor binimetinib in 2D and 3D models of human metastatic melanoma cells.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 109

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Cell Line, Tumor; Dose-Response Rela

2019
Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner.
    Molecular cancer therapeutics, 2013, Volume: 12, Issue:8

    Topics: AMP-Activated Protein Kinases; Animals; Cell Line, Tumor; Cell Movement; Disease Models, Animal; Enz

2013
Therapeutic potential of the anti-diabetic agent metformin in targeting the skin cancer stem cell diaspora.
    Experimental dermatology, 2014, Volume: 23, Issue:5

    Topics: Chemoprevention; Diabetes Complications; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Mel

2014
Inhibition of melanogenesis by the antidiabetic metformin.
    The Journal of investigative dermatology, 2014, Volume: 134, Issue:10

    Topics: Animals; Biopsy; Cell Line, Tumor; Cell Proliferation; Cells, Cultured; Cyclic AMP; Dose-Response Re

2014
Combining BRAF(V) (600E) inhibition with modulators of the mitochondrial bioenergy metabolism to overcome drug resistance in metastatic melanoma.
    Experimental dermatology, 2015, Volume: 24, Issue:9

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzodiazepines; Drug Resistance, Multiple; Drug Res

2015
Feeling energetic? New strategies to prevent metabolic reprogramming in melanoma.
    Experimental dermatology, 2015, Volume: 24, Issue:9

    Topics: Adaptation, Physiological; Antineoplastic Agents; Drug Resistance, Neoplasm; Humans; Hypoglycemic Ag

2015
Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.
    Oncotarget, 2015, Nov-10, Volume: 6, Issue:35

    Topics: Adenosine Triphosphate; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Lin

2015
Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation.
    Cell cycle (Georgetown, Tex.), 2016, 07-17, Volume: 15, Issue:14

    Topics: Acidosis, Lactic; Adaptation, Physiological; Cell Death; Cell Line, Tumor; Cell Movement; Cell Proli

2016
Metformin Represses Interferonopathy Through Suppression of Melanoma Differentiation-Associated Protein 5 and Mitochondrial Antiviral Signaling Protein Activation: Comment on the Article by Wang et al.
    Arthritis & rheumatology (Hoboken, N.J.), 2016, Volume: 68, Issue:12

    Topics: Antiviral Agents; Cell Differentiation; Humans; Interferon-Induced Helicase, IFIH1; Melanoma; Metfor

2016
Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.
    Oncotarget, 2017, Jan-24, Volume: 8, Issue:4

    Topics: Aldehyde Dehydrogenase; Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Cell Proliferation;

2017
Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy.
    PloS one, 2017, Volume: 12, Issue:3

    Topics: Antineoplastic Agents; Apoptosis; Drug Combinations; Humans; Hypoglycemic Agents; Indoles; Melanoma;

2017
Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations.
    Journal of translational medicine, 2011, May-24, Volume: 9

    Topics: Apoptosis; Blotting, Western; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cultu

2011
Metformin inhibits melanoma development through autophagy and apoptosis mechanisms.
    Cell death & disease, 2011, Sep-01, Volume: 2

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Relat

2011
Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A.
    Cancer discovery, 2012, Volume: 2, Issue:4

    Topics: AMP-Activated Protein Kinases; Animals; Axitinib; Cell Line, Tumor; Cell Proliferation; Disease Mode

2012
Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model.
    Breast cancer research and treatment, 2009, Volume: 114, Issue:2

    Topics: AMP-Activated Protein Kinases; Animals; Breast Neoplasms; Cell Line, Tumor; Disease Models, Animal;

2009