Page last updated: 2024-10-30

metformin and Cardiac Remodeling, Ventricular

metformin has been researched along with Cardiac Remodeling, Ventricular in 23 studies

Metformin: A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
metformin : A member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1.

Research Excerpts

ExcerptRelevanceReference
"To explore the effects of metformin on left ventricular remodeling in patients with primary hypertension and type 2 diabetes mellitus, and to investigate the effects of hypertension duration and duration of drug administration on metformin's cardiac action."7.81[Effect of metformin on ventricular remodeling in patients with primary hypertension and type 2 diabetes mellitus]. ( Feng, X; Gao, W; Li, Z; Wu, Y; Zhang, Y; Zhao, W, 2015)
"Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice."5.62Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. ( Boal, F; Cussac, D; Korda, M; Kramar, S; Kunduzova, O; Laborde, C; Loi, H; Marsal, D; Oleshchuk, O; Pizzinat, N; Roncalli, J; Tronchere, H, 2021)
"Insulin resistance was induced by HFrHFD feeding for 16 weeks."5.62Propranolol and low-dose isoproterenol ameliorate insulin resistance, enhance β-arrestin2 signaling, and reduce cardiac remodeling in high-fructose, high-fat diet-fed mice: Comparative study with metformin. ( Ahmed, HMS; Ibrahim, IAAE; Ibrahim, WS; Mahmoud, AAA; Mahmoud, MF, 2021)
"Insulin resistance is a recently identified mechanism involved in the pathophysiology of chronic heart failure (CHF)."5.38Metformin prevents the development of chronic heart failure in the SHHF rat model. ( Aimaretti, G; Cittadini, A; Isgaard, J; Longobardi, S; Monti, MG; Napoli, R; Netti, PA; Rea, D; Saccà, L; Samà, M; Walser, M, 2012)
"In T2DM patients, pioglitazone was associated with improvement in some measures of left ventricular diastolic function, myocardial glucose uptake, and whole-body insulin sensitivity."5.14Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. ( Bax, JJ; de Jong, HW; de Roos, A; Diamant, M; Heine, RJ; Kamp, O; Lamb, HJ; Lammertsma, AA; Lubberink, M; Paulus, WJ; Rijzewijk, LJ; Romijn, JA; Smit, JW; van der Meer, RW, 2009)
"Metformin is a popular antidiabetic agent that is also used to treat heart failure patients with type 2 diabetes mellitus."3.91Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy. ( Kanamori, H; Kawaguchi, T; Kawasaki, M; Mikami, A; Minatoguchi, S; Naruse, G; Takemura, G; Watanabe, T; Yamada, Y; Yoshida, A, 2019)
"Previous studies have shown that metformin (MET) prevents experimental pulmonary arterial hypertension (PAH) and that activation of autophagy is involved in the development of pulmonary vascular remodeling."3.91Metformin Prevents Progression of Experimental Pulmonary Hypertension via Inhibition of Autophagy and Activation of Adenosine Monophosphate-Activated Protein Kinase. ( Li, H; Liu, Y; Sun, Z; Xu, Y; Yang, G; Zhang, J; Zhu, J, 2019)
"The objective of this study was to determine whether intravascular infusion of metformin at the time of reperfusion reduces myocardial IS in a porcine model of acute myocardial infarction."3.88Effect of Intracoronary Metformin on Myocardial Infarct Size in Swine. ( Canty, JM; Palka, BA; Techiryan, G; Weil, BR, 2018)
" What is the main finding and its importance? We demonstrated, for the first time, that DPP-4 inhibitor, but not metformin, exerted similar efficacy in improving cardiac function and attenuating cardiac fibrosis compared with enalapril in rats with chronic MI."3.81Dipeptidyl peptidase-4 inhibitor improves cardiac function by attenuating adverse cardiac remodelling in rats with chronic myocardial infarction. ( Apaijai, N; Chattipakorn, N; Chattipakorn, SC; Inthachai, T; Kumfu, S; Lekawanvijit, S; Pongkan, W, 2015)
"To explore the effects of metformin on left ventricular remodeling in patients with primary hypertension and type 2 diabetes mellitus, and to investigate the effects of hypertension duration and duration of drug administration on metformin's cardiac action."3.81[Effect of metformin on ventricular remodeling in patients with primary hypertension and type 2 diabetes mellitus]. ( Feng, X; Gao, W; Li, Z; Wu, Y; Zhang, Y; Zhao, W, 2015)
"Mycophenolic acid was detected in all cats."2.61 ( Abrams, G; Adolfsson, E; Agarwal, PK; Akkan, AG; Al Alhareth, NS; Alves, VGL; Armentano, R; Bahroos, E; Baig, M; Baldridge, KK; Barman, S; Bartolucci, C; Basit, A; Bertoli, SV; Bian, L; Bigatti, G; Bobenko, AI; Boix, PP; Bokulic, T; Bolink, HJ; Borowiec, J; Bulski, W; Burciaga, J; Butt, NS; Cai, AL; Campos, AM; Cao, G; Cao, Y; Čapo, I; Caruso, ML; Chao, CT; Cheatum, CM; Chelminski, K; Chen, AJW; Chen, C; Chen, CH; Chen, D; Chen, G; Chen, H; Chen, LH; Chen, R; Chen, RX; Chen, X; Cherdtrakulkiat, R; Chirvony, VS; Cho, JG; Chu, K; Ciurlino, D; Coletta, S; Contaldo, G; Crispi, F; Cui, JF; D'Esposito, M; de Biase, S; Demir, B; Deng, W; Deng, Z; Di Pinto, F; Domenech-Ximenos, B; Dong, G; Drácz, L; Du, XJ; Duan, LJ; Duan, Y; Ekendahl, D; Fan, W; Fang, L; Feng, C; Followill, DS; Foreman, SC; Fortunato, G; Frew, R; Fu, M; Gaál, V; Ganzevoort, W; Gao, DM; Gao, X; Gao, ZW; Garcia-Alvarez, A; Garza, MS; Gauthier, L; Gazzaz, ZJ; Ge, RS; Geng, Y; Genovesi, S; Geoffroy, V; Georg, D; Gigli, GL; Gong, J; Gong, Q; Groeneveld, J; Guerra, V; Guo, Q; Guo, X; Güttinger, R; Guyo, U; Haldar, J; Han, DS; Han, S; Hao, W; Hayman, A; He, D; Heidari, A; Heller, S; Ho, CT; Ho, SL; Hong, SN; Hou, YJ; Hu, D; Hu, X; Hu, ZY; Huang, JW; Huang, KC; Huang, Q; Huang, T; Hwang, JK; Izewska, J; Jablonski, CL; Jameel, T; Jeong, HK; Ji, J; Jia, Z; Jiang, W; Jiang, Y; Kalumpha, M; Kang, JH; Kazantsev, P; Kazemier, BM; Kebede, B; Khan, SA; Kiss, J; Kohen, A; Kolbenheyer, E; Konai, MM; Koniarova, I; Kornblith, E; Krawetz, RJ; Kreouzis, T; Kry, SF; Laepple, T; Lalošević, D; Lan, Y; Lawung, R; Lechner, W; Lee, KH; Lee, YH; Leonard, C; Li, C; Li, CF; Li, CM; Li, F; Li, J; Li, L; Li, S; Li, X; Li, Y; Li, YB; Li, Z; Liang, C; Lin, J; Lin, XH; Ling, M; Link, TM; Liu, HH; Liu, J; Liu, M; Liu, W; Liu, YP; Lou, H; Lu, G; Lu, M; Lun, SM; Ma, Z; Mackensen, A; Majumdar, S; Martineau, C; Martínez-Pastor, JP; McQuaid, JR; Mehrabian, H; Meng, Y; Miao, T; Miljković, D; Mo, J; Mohamed, HSH; Mohtadi, M; Mol, BWJ; Moosavi, L; Mosdósi, B; Nabu, S; Nava, E; Ni, L; Novakovic-Agopian, T; Nyamunda, BC; Nyul, Z; Önal, B; Özen, D; Özyazgan, S; Pajkrt, E; Palazon, F; Park, HW; Patai, Á; Patai, ÁV; Patzke, GR; Payette, G; Pedoia, V; Peelen, MJCS; Pellitteri, G; Peng, J; Perea, RJ; Pérez-Del-Rey, D; Popović, DJ; Popović, JK; Popović, KJ; Posecion, L; Povall, J; Prachayasittikul, S; Prachayasittikul, V; Prat-González, S; Qi, B; Qu, B; Rakshit, S; Ravelli, ACJ; Ren, ZG; Rivera, SM; Salo, P; Samaddar, S; Samper, JLA; Samy El Gendy, NM; Schmitt, N; Sekerbayev, KS; Sepúlveda-Martínez, Á; Sessolo, M; Severi, S; Sha, Y; Shen, FF; Shen, X; Shen, Y; Singh, P; Sinthupoom, N; Siri, S; Sitges, M; Slovak, JE; Solymosi, N; Song, H; Song, J; Song, M; Spingler, B; Stewart, I; Su, BL; Su, JF; Suming, L; Sun, JX; Tantimavanich, S; Tashkandi, JM; Taurbayev, TI; Tedgren, AC; Tenhunen, M; Thwaites, DI; Tibrewala, R; Tomsejm, M; Triana, CA; Vakira, FM; Valdez, M; Valente, M; Valentini, AM; Van de Winckel, A; van der Lee, R; Varga, F; Varga, M; Villarino, NF; Villemur, R; Vinatha, SP; Vincenti, A; Voskamp, BJ; Wang, B; Wang, C; Wang, H; Wang, HT; Wang, J; Wang, M; Wang, N; Wang, NC; Wang, Q; Wang, S; Wang, X; Wang, Y; Wang, Z; Wen, N; Wesolowska, P; Willis, M; Wu, C; Wu, D; Wu, L; Wu, X; Wu, Z; Xia, JM; Xia, X; Xia, Y; Xiao, J; Xiao, Y; Xie, CL; Xie, LM; Xie, S; Xing, Z; Xu, C; Xu, J; Yan, D; Yan, K; Yang, S; Yang, X; Yang, XW; Ye, M; Yin, Z; Yoon, N; Yoon, Y; Yu, H; Yu, K; Yu, ZY; Zhang, B; Zhang, GY; Zhang, H; Zhang, J; Zhang, M; Zhang, Q; Zhang, S; Zhang, W; Zhang, X; Zhang, Y; Zhang, YW; Zhang, Z; Zhao, D; Zhao, F; Zhao, P; Zhao, W; Zhao, Z; Zheng, C; Zhi, D; Zhou, C; Zhou, FY; Zhu, D; Zhu, J; Zhu, Q; Zinyama, NP; Zou, M; Zou, Z, 2019)
"In patients with type 2 diabetes mellitus, treatment with metformin is associated with a lower cardiovascular morbidity and mortality, compared with alternative glucose-lowering drugs."2.47The cardioprotective effects of metformin. ( de Boer, RA; El Messaoudi, S; Riksen, NP; Rongen, GA, 2011)
"Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice."1.62Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. ( Boal, F; Cussac, D; Korda, M; Kramar, S; Kunduzova, O; Laborde, C; Loi, H; Marsal, D; Oleshchuk, O; Pizzinat, N; Roncalli, J; Tronchere, H, 2021)
"Insulin resistance was induced by HFrHFD feeding for 16 weeks."1.62Propranolol and low-dose isoproterenol ameliorate insulin resistance, enhance β-arrestin2 signaling, and reduce cardiac remodeling in high-fructose, high-fat diet-fed mice: Comparative study with metformin. ( Ahmed, HMS; Ibrahim, IAAE; Ibrahim, WS; Mahmoud, AAA; Mahmoud, MF, 2021)
"Metformin treatment was able to reduce insulin resistance and attenuated this adverse cardiac and vascular remodeling."1.39Cardiac fibrosis and vascular remodeling are attenuated by metformin in obese rats. ( Burlá, AK; Fortes, ZB; Lobato, NS; Neves, MF; Oigman, W, 2013)
"Insulin resistance is a recently identified mechanism involved in the pathophysiology of chronic heart failure (CHF)."1.38Metformin prevents the development of chronic heart failure in the SHHF rat model. ( Aimaretti, G; Cittadini, A; Isgaard, J; Longobardi, S; Monti, MG; Napoli, R; Netti, PA; Rea, D; Saccà, L; Samà, M; Walser, M, 2012)

Research

Studies (23)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (4.35)29.6817
2010's17 (73.91)24.3611
2020's5 (21.74)2.80

Authors

AuthorsStudies
Loi, H1
Kramar, S1
Laborde, C1
Marsal, D1
Pizzinat, N1
Cussac, D1
Roncalli, J1
Boal, F1
Tronchere, H1
Oleshchuk, O1
Korda, M1
Kunduzova, O1
Ibrahim, WS1
Ahmed, HMS1
Mahmoud, AAA1
Mahmoud, MF1
Ibrahim, IAAE1
Peterson, VR1
Norton, GR1
Madziva, MT1
Makaula, S1
McNair, BD1
Polson, SM1
Shorthill, SK1
Yusifov, A1
Walker, LA1
Weiser-Evans, MCM1
Kovacs, EJ1
Bruns, DR1
Bobenko, AI1
Heller, S1
Schmitt, N1
Cherdtrakulkiat, R1
Lawung, R1
Nabu, S1
Tantimavanich, S1
Sinthupoom, N1
Prachayasittikul, S1
Prachayasittikul, V1
Zhang, B1
Wu, C1
Zhang, Z2
Yan, K1
Li, C2
Li, Y4
Li, L4
Zheng, C1
Xiao, Y2
He, D1
Zhao, F1
Su, JF1
Lun, SM1
Hou, YJ1
Duan, LJ1
Wang, NC1
Shen, FF1
Zhang, YW1
Gao, ZW1
Li, J7
Du, XJ1
Zhou, FY1
Yin, Z1
Zhu, J3
Yan, D1
Lou, H1
Yu, H1
Feng, C1
Wang, Z1
Wang, Y4
Hu, X1
Li, Z3
Shen, Y1
Hu, D1
Chen, H1
Wu, X1
Duan, Y1
Zhi, D1
Zou, M2
Zhao, Z1
Zhang, X2
Yang, X2
Zhang, J4
Wang, H1
Popović, KJ1
Popović, DJ1
Miljković, D1
Lalošević, D1
Čapo, I1
Popović, JK1
Liu, M1
Song, H2
Xing, Z1
Lu, G1
Chen, D1
Valentini, AM1
Di Pinto, F1
Coletta, S1
Guerra, V1
Armentano, R1
Caruso, ML1
Gong, J1
Wang, N1
Bian, L1
Wang, M1
Ye, M1
Wen, N1
Fu, M1
Fan, W1
Meng, Y1
Dong, G1
Lin, XH1
Liu, HH1
Gao, DM1
Cui, JF1
Ren, ZG1
Chen, RX1
Önal, B1
Özen, D1
Demir, B1
Akkan, AG1
Özyazgan, S1
Payette, G1
Geoffroy, V1
Martineau, C1
Villemur, R1
Jameel, T1
Baig, M1
Gazzaz, ZJ1
Tashkandi, JM1
Al Alhareth, NS1
Khan, SA1
Butt, NS1
Wang, J2
Geng, Y1
Zhang, Y4
Wang, X2
Liu, J2
Basit, A1
Miao, T1
Liu, W1
Jiang, W1
Yu, ZY1
Wu, L2
Qu, B1
Sun, JX1
Cai, AL1
Xie, LM1
Groeneveld, J1
Ho, SL1
Mackensen, A1
Mohtadi, M1
Laepple, T1
Genovesi, S1
Nava, E1
Bartolucci, C1
Severi, S1
Vincenti, A1
Contaldo, G1
Bigatti, G1
Ciurlino, D1
Bertoli, SV1
Slovak, JE1
Hwang, JK1
Rivera, SM1
Villarino, NF1
Li, S1
Cao, G1
Ling, M1
Ji, J1
Zhao, D1
Sha, Y1
Gao, X1
Liang, C2
Guo, Q1
Zhou, C1
Ma, Z1
Xu, J1
Wang, C1
Zhao, W3
Xia, X1
Jiang, Y1
Peng, J1
Jia, Z1
Li, F1
Chen, X3
Mo, J1
Zhang, S2
Li, X1
Huang, T1
Zhu, Q1
Wang, S1
Ge, RS1
Fortunato, G1
Lin, J2
Agarwal, PK1
Kohen, A1
Singh, P1
Cheatum, CM1
Zhu, D1
Hayman, A1
Kebede, B1
Stewart, I1
Chen, G1
Frew, R1
Guo, X1
Gong, Q1
Borowiec, J1
Han, S1
Zhang, M1
Willis, M1
Kreouzis, T1
Yu, K1
Chirvony, VS1
Sekerbayev, KS1
Pérez-Del-Rey, D1
Martínez-Pastor, JP1
Palazon, F1
Boix, PP1
Taurbayev, TI1
Sessolo, M1
Bolink, HJ1
Lu, M1
Lan, Y1
Xiao, J1
Song, M1
Chen, C1
Huang, Q1
Cao, Y1
Ho, CT1
Qi, B1
Wang, Q1
Zhang, W1
Fang, L1
Xie, CL1
Chen, R1
Yang, S1
Xia, JM1
Zhang, GY1
Chen, CH1
Yang, XW1
Domenech-Ximenos, B1
Garza, MS1
Prat-González, S1
Sepúlveda-Martínez, Á1
Crispi, F1
Perea, RJ1
Garcia-Alvarez, A1
Sitges, M1
Kalumpha, M1
Guyo, U1
Zinyama, NP1
Vakira, FM1
Nyamunda, BC1
Varga, M1
Drácz, L1
Kolbenheyer, E1
Varga, F1
Patai, ÁV1
Solymosi, N1
Patai, Á1
Kiss, J1
Gaál, V1
Nyul, Z1
Mosdósi, B1
Valdez, M1
Moosavi, L1
Heidari, A1
Novakovic-Agopian, T1
Kornblith, E1
Abrams, G1
McQuaid, JR1
Posecion, L1
Burciaga, J1
D'Esposito, M1
Chen, AJW1
Samy El Gendy, NM1
Wesolowska, P1
Georg, D1
Lechner, W1
Kazantsev, P1
Bokulic, T1
Tedgren, AC1
Adolfsson, E1
Campos, AM1
Alves, VGL1
Suming, L1
Hao, W1
Ekendahl, D1
Koniarova, I1
Bulski, W1
Chelminski, K1
Samper, JLA1
Vinatha, SP1
Rakshit, S1
Siri, S1
Tomsejm, M1
Tenhunen, M1
Povall, J1
Kry, SF1
Followill, DS1
Thwaites, DI1
Izewska, J1
Kang, JH1
Yoon, Y1
Song, J1
Van de Winckel, A1
Gauthier, L1
Chao, CT1
Lee, YH1
Li, CM1
Han, DS1
Huang, JW1
Huang, KC1
Ni, L1
Güttinger, R1
Triana, CA1
Spingler, B1
Baldridge, KK1
Patzke, GR1
Shen, X1
Wang, B2
Xie, S1
Deng, W1
Wu, D1
Zhang, Q1
Voskamp, BJ1
Peelen, MJCS1
Ravelli, ACJ1
van der Lee, R1
Mol, BWJ1
Pajkrt, E1
Ganzevoort, W1
Kazemier, BM1
Tibrewala, R1
Bahroos, E1
Mehrabian, H1
Foreman, SC1
Link, TM1
Pedoia, V1
Majumdar, S1
Jablonski, CL1
Leonard, C1
Salo, P1
Krawetz, RJ1
Yoon, N1
Hong, SN1
Cho, JG1
Jeong, HK1
Lee, KH1
Park, HW1
Barman, S1
Konai, MM1
Samaddar, S1
Haldar, J1
Mohamed, HSH1
Li, CF1
Hu, ZY1
Deng, Z1
Chen, LH1
Su, BL1
Chu, K1
Liu, YP1
Li, YB1
Zhang, H1
Xu, C1
Zou, Z1
Wu, Z1
Xia, Y1
Zhao, P1
Wang, HT1
de Biase, S1
Pellitteri, G1
Gigli, GL1
Valente, M1
Minćzuk, K1
Massey, JC1
Howell, NL1
Roy, RJ1
Paul, S1
Patrie, JT1
Kramer, CM1
Epstein, FH1
Carey, RM1
Taegtmeyer, H1
Keller, SR1
Kundu, BK1
Nesti, L1
Natali, A1
Asensio-Lopez, MDC1
Lax, A1
Fernandez Del Palacio, MJ1
Sassi, Y1
Hajjar, RJ1
Pascual-Figal, DA1
Techiryan, G1
Weil, BR1
Palka, BA1
Canty, JM1
Kanamori, H1
Naruse, G1
Yoshida, A1
Minatoguchi, S2
Watanabe, T1
Kawaguchi, T1
Yamada, Y1
Mikami, A1
Kawasaki, M1
Takemura, G1
Liu, Y1
Xu, Y1
Li, H1
Yang, G1
Sun, Z1
Shen, D1
Tang, J1
Cao, C1
Han, D1
Gao, E1
Chang, J1
Chen, WJ1
Greulich, S1
van der Meer, RW2
Rijzewijk, LJ2
Lamb, HJ2
de Roos, A2
Smit, JW2
Romijn, JA2
Ruige, JB1
Lammertsma, AA2
Lubberink, M2
Diamant, M2
Ouwens, DM1
Inthachai, T2
Lekawanvijit, S2
Kumfu, S1
Apaijai, N2
Pongkan, W1
Chattipakorn, SC2
Chattipakorn, N2
Paneni, F1
Costantino, S1
Cosentino, F1
Wu, Y1
Feng, X1
Gao, W1
de Jong, HW1
Bax, JJ1
Kamp, O1
Paulus, WJ1
Heine, RJ1
Wang, XF1
Zhang, JY1
Zhao, XY1
Tao, HL1
Zhang, L1
Yin, M1
van der Horst, IC1
van Melle, JP1
Qian, C1
van Gilst, WH1
Silljé, HH1
de Boer, RA2
El Messaoudi, S1
Rongen, GA1
Riksen, NP1
Burlá, AK1
Lobato, NS1
Fortes, ZB1
Oigman, W1
Neves, MF1
Cittadini, A1
Napoli, R1
Monti, MG1
Rea, D1
Longobardi, S1
Netti, PA1
Walser, M1
Samà, M1
Aimaretti, G1
Isgaard, J1
Saccà, L1

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Magnetic Resonance Assessment of Victoza Efficacy in the Regression of Cardiovascular Dysfunction In Type 2 Diabetes Mellitus[NCT01761318]Phase 450 participants (Actual)Interventional2013-11-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

4 reviews available for metformin and Cardiac Remodeling, Ventricular

ArticleYear
    Proceedings. Mathematical, physical, and engineering sciences, 2019, Volume: 475, Issue:2227

    Topics: Acetylcholine; Acinetobacter baumannii; Actinobacteria; Action Potentials; Adalimumab; Adaptation, P

2019
Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data.
    Nutrition, metabolism, and cardiovascular diseases : NMCD, 2017, Volume: 27, Issue:8

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Cardiovascular Diseases; Diabetes Mellitus; Disease

2017
[Metformin and left ventricular remodeling after acute myocardial infarction: molecular mechanisms and clinical implications].
    Giornale italiano di cardiologia (2006), 2015, Volume: 16, Issue:4

    Topics: Diabetes Mellitus; Humans; Hypoglycemic Agents; Metformin; Myocardial Infarction; Myocardial Reperfu

2015
The cardioprotective effects of metformin.
    Current opinion in lipidology, 2011, Volume: 22, Issue:6

    Topics: Animals; Cardiotonic Agents; Clinical Trials as Topic; Diabetes Mellitus, Type 2; Diabetic Cardiomyo

2011

Trials

2 trials available for metformin and Cardiac Remodeling, Ventricular

ArticleYear
Activin A is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes.
    Cardiovascular diabetology, 2013, Oct-17, Volume: 12

    Topics: Activins; Adipose Tissue; Aged; Case-Control Studies; Diabetes Mellitus, Type 2; Diabetic Cardiomyop

2013
Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus.
    Circulation, 2009, Apr-21, Volume: 119, Issue:15

    Topics: Adenosine Triphosphate; Aged; Diabetes Complications; Diabetes Mellitus, Type 2; Drug Therapy, Combi

2009

Other Studies

17 other studies available for metformin and Cardiac Remodeling, Ventricular

ArticleYear
Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice.
    International journal of molecular sciences, 2021, Aug-30, Volume: 22, Issue:17

    Topics: Animals; Fibrosis; Hypoglycemic Agents; Inflammation; Male; Metformin; Mice; Mice, Inbred C57BL; Myo

2021
Propranolol and low-dose isoproterenol ameliorate insulin resistance, enhance β-arrestin2 signaling, and reduce cardiac remodeling in high-fructose, high-fat diet-fed mice: Comparative study with metformin.
    Life sciences, 2021, Dec-01, Volume: 286

    Topics: Animals; beta-Arrestin 2; Blood Glucose; Diet, High-Fat; Fructose; Glucose; Heart; Insulin; Insulin

2021
Metformin Prevents Low-dose Isoproterenol-induced Cardiac Dilatation and Systolic Dysfunction in Male Sprague Dawley Rats.
    Journal of cardiovascular pharmacology, 2022, 03-01, Volume: 79, Issue:3

    Topics: Animals; Dilatation; Isoproterenol; Male; Metformin; Rats; Rats, Sprague-Dawley; Ventricular Remodel

2022
Metformin protects against pulmonary hypertension-induced right ventricular dysfunction in an age- and sex-specific manner independent of cardiac AMPK.
    American journal of physiology. Heart and circulatory physiology, 2023, 08-01, Volume: 325, Issue:2

    Topics: AMP-Activated Protein Kinases; Animals; Disease Models, Animal; Female; Heart Failure; Hypertension,

2023
Metformin Improves Cardiac Metabolism and Function, and Prevents Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats.
    Journal of the American Heart Association, 2020, 04-07, Volume: 9, Issue:7

    Topics: AMP-Activated Protein Kinases; Animals; Arterial Pressure; Cardiovascular Agents; Disease Models, An

2020
Pharmacological inhibition of the mitochondrial NADPH oxidase 4/PKCα/Gal-3 pathway reduces left ventricular fibrosis following myocardial infarction.
    Translational research : the journal of laboratory and clinical medicine, 2018, Volume: 199

    Topics: Adenylate Kinase; Animals; Cells, Cultured; Culture Media, Conditioned; Enzyme Induction; Fibrosis;

2018
Effect of Intracoronary Metformin on Myocardial Infarct Size in Swine.
    Circulation research, 2018, 09-28, Volume: 123, Issue:8

    Topics: Animals; Cardiovascular Agents; Disease Models, Animal; Drug Administration Schedule; Echocardiograp

2018
Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy.
    Circulation. Heart failure, 2019, Volume: 12, Issue:4

    Topics: Animals; Autophagy; Cardiomegaly; Cardiomyopathies; Cardiomyopathy, Dilated; Diabetes Mellitus, Type

2019
Metformin Prevents Progression of Experimental Pulmonary Hypertension via Inhibition of Autophagy and Activation of Adenosine Monophosphate-Activated Protein Kinase.
    Journal of vascular research, 2019, Volume: 56, Issue:3

    Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Autophagy-Related Proteins; Cells, Cultured; Dise

2019
Sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate ameliorates pressure overload-induced cardiac hypertrophy and dysfunction through inhibiting autophagy.
    Journal of cellular and molecular medicine, 2019, Volume: 23, Issue:9

    Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Autophagy; Cardiomegaly; Cell Line; Heart Fa

2019
Dipeptidyl peptidase-4 inhibitor improves cardiac function by attenuating adverse cardiac remodelling in rats with chronic myocardial infarction.
    Experimental physiology, 2015, Volume: 100, Issue:6

    Topics: Adamantane; Angiotensin-Converting Enzyme Inhibitors; Animals; Dipeptidyl Peptidase 4; Dipeptidyl-Pe

2015
[Effect of metformin on ventricular remodeling in patients with primary hypertension and type 2 diabetes mellitus].
    Zhonghua yi xue za zhi, 2015, Nov-24, Volume: 95, Issue:44

    Topics: Diabetes Mellitus, Type 2; Echocardiography; Essential Hypertension; Heart; Humans; Hypertension; Me

2015
Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction.
    The Journal of endocrinology, 2016, Volume: 229, Issue:3

    Topics: Adamantane; Animals; Cardiotonic Agents; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors;

2016
Metformin improves cardiac function in rats via activation of AMP-activated protein kinase.
    Clinical and experimental pharmacology & physiology, 2011, Volume: 38, Issue:2

    Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Blood Glucose; Diabetes Mellitus

2011
Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:2

    Topics: AMP-Activated Protein Kinases; Animals; Atrial Natriuretic Factor; Blood Glucose; Cardiotonic Agents

2011
Cardiac fibrosis and vascular remodeling are attenuated by metformin in obese rats.
    International journal of cardiology, 2013, May-25, Volume: 165, Issue:3

    Topics: Animals; Endomyocardial Fibrosis; Hypoglycemic Agents; Male; Metformin; Obesity; Rats; Rats, Wistar;

2013
Metformin prevents the development of chronic heart failure in the SHHF rat model.
    Diabetes, 2012, Volume: 61, Issue:4

    Topics: Animals; Blood Glucose; Blood Pressure; Chronic Disease; Gene Expression Regulation; Heart Failure;

2012