Page last updated: 2024-10-30

metformin and Astrocytoma, Grade IV

metformin has been researched along with Astrocytoma, Grade IV in 39 studies

Metformin: A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
metformin : A member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1.

Research Excerpts

ExcerptRelevanceReference
"Memantine, mefloquine, and metformin can be combined safely with TMZ in patients with newly diagnosed glioblastoma."9.30Phase 1 lead-in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma. ( Aldape, KD; Alfred Yung, WK; Conrad, CA; de Groot, JF; Gilbert, MR; Groves, MD; Hess, KR; Loghin, ME; Mammoser, AG; Maraka, S; Melguizo-Gavilanes, I; O'Brien, BJ; Penas-Prado, M; Puduvalli, VK; Sulman, EP; Tremont-Lukats, IW, 2019)
"An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin."8.31Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. ( Blanco-Acevedo, C; Castaño, JP; Doval-Rosa, C; Fuentes-Fayos, AC; G-García, ME; Gahete, MD; Jiménez-Vacas, JM; López, M; Luque, RM; Martín-Colom, J; Montero-Hidalgo, AJ; Ortega-Salas, RM; Peralbo-Santaella, E; Pérez-Gómez, JM; Sánchez-Sánchez, R; Solivera, J; Tena-Sempere, M; Toledano-Delgado, Á; Torres, E, 2023)
"New treatments are needed to improve the overall survival of patients with glioblastoma Metformin is known for anti-tumorigenic effects in cancers, including breast and pancreas cancers."8.31Metformin use is associated with longer survival in glioblastoma patients with MGMT gene silencing. ( Al-Saadi, T; Diaz, RJ; Jatana, S; Khalaf, R; Mohammad, AH; Ruiz-Barerra, MA, 2023)
"To investigate the effects of metformin, dichloroacetate (DCA), and memantine on T98G and U87-MG human glioblastoma (GBM) cells to target tumor cell metabolism in a multi-directional manner."8.02Targeting Cancer Cell Metabolism with Metformin, Dichloroacetate and Memantine in Glioblastoma (GBM). ( Albayrak, G; Dere, UA; Emmez, H; Konac, E, 2021)
"The purpose of the study is to investigate the efficacy of combined treatment with temozolomide (TMZ) and metformin for glioblastoma (GBM) in vitro and in vivo."7.88High-Dose Metformin Plus Temozolomide Shows Increased Anti-tumor Effects in Glioblastoma In Vitro and In Vivo Compared with Monotherapy. ( Hong, YK; Lee, JE; Lim, JH; Yang, SH, 2018)
"The present study was designed to evaluate the effects of irinotecan hydrochloride (IRI)- or metformin hydrochloride (MET)-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for the treatment of glioblastoma multiforme using in vitro neuron and U-87 MG glioblastoma cell cultures and in vivo animal model."7.88Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. ( Abd El-Aty, AM; Cetin, M; Galateanu, B; Gundogdu, B; Hacimuftuoglu, A; Jeong, JH; Jung, TW; Mezhuev, Y; Mohammadzadeh, M; Nalci, KA; Okkay, U; Stivaktakis, P; Taghizadehghalehjoughi, A; Taspinar, M; Taspinar, N; Tsatsakis, A; Ugur, AB; Uyanik, A, 2018)
"It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM)."7.83Metformin treatment reduces temozolomide resistance of glioblastoma cells. ( Kim, DH; Li, S; Liu, Y; Lu, G; Xue, H; Yang, SH; Zhu, JJ, 2016)
"High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy."7.81Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. ( Brem, H; Cohen-Jonathan Moyal, E; Dahan, P; Dang, VT; Lemarié, A; Saland, E; Sarry, JE; Scotland, SJ; Sesen, J; Skuli, N; Toulas, C; Tyler, BM, 2015)
" Interestingly, our findings showed an association of metformin therapy and prolonged progression-free survival in glioblastoma patients with diabetes and therefore serve as a foundation for further preclinical and clinical investigations."7.81Metformin influences progression in diabetic glioblastoma patients. ( Adeberg, S; Ben Harrabi, S; Bernhardt, D; Bostel, T; Debus, J; Diehl, C; Koelsche, C; Mohr, A; Rieken, S, 2015)
"Metformin (MET) has been shown to suppress the proliferative capacity and invasion ability of GBM cells by activating AMPK and inhibiting mTOR, but the effective dose exceeded the maximum tolerated dose."5.91Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. ( Ding, W; Liao, L; Liao, Y; Liu, J; Tang, Q; Zhao, J, 2023)
"Metformin is a biguanide drug utilized as the first-line medication in treating type 2 diabetes."5.72Exploring the Mechanism of Adjuvant Treatment of Glioblastoma Using Temozolomide and Metformin. ( Chang, PC; Chen, HY; Feng, SW; Huang, SM; Hueng, DY; Li, YF, 2022)
"Metformin has long been an attractive therapeutic option for EwS, but hypoxia limits its efficacy."5.56Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways. ( Cheng, H; Lau, CC; Nan, X; Qiu, B; Sheng, J; Wang, J; Wong, STC; Yin, Z; Yustein, JT; Zhao, H, 2020)
"Metformin has been linked to improve survival of patients with various cancers."5.56Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis. ( Chinot, O; Genbrugge, E; Gorlia, T; Hau, P; Nabors, B; Seliger, C; Stupp, R; Weller, M, 2020)
"Memantine, mefloquine, and metformin can be combined safely with TMZ in patients with newly diagnosed glioblastoma."5.30Phase 1 lead-in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma. ( Aldape, KD; Alfred Yung, WK; Conrad, CA; de Groot, JF; Gilbert, MR; Groves, MD; Hess, KR; Loghin, ME; Mammoser, AG; Maraka, S; Melguizo-Gavilanes, I; O'Brien, BJ; Penas-Prado, M; Puduvalli, VK; Sulman, EP; Tremont-Lukats, IW, 2019)
"An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin."4.31Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. ( Blanco-Acevedo, C; Castaño, JP; Doval-Rosa, C; Fuentes-Fayos, AC; G-García, ME; Gahete, MD; Jiménez-Vacas, JM; López, M; Luque, RM; Martín-Colom, J; Montero-Hidalgo, AJ; Ortega-Salas, RM; Peralbo-Santaella, E; Pérez-Gómez, JM; Sánchez-Sánchez, R; Solivera, J; Tena-Sempere, M; Toledano-Delgado, Á; Torres, E, 2023)
"New treatments are needed to improve the overall survival of patients with glioblastoma Metformin is known for anti-tumorigenic effects in cancers, including breast and pancreas cancers."4.31Metformin use is associated with longer survival in glioblastoma patients with MGMT gene silencing. ( Al-Saadi, T; Diaz, RJ; Jatana, S; Khalaf, R; Mohammad, AH; Ruiz-Barerra, MA, 2023)
"To investigate the effects of metformin, dichloroacetate (DCA), and memantine on T98G and U87-MG human glioblastoma (GBM) cells to target tumor cell metabolism in a multi-directional manner."4.02Targeting Cancer Cell Metabolism with Metformin, Dichloroacetate and Memantine in Glioblastoma (GBM). ( Albayrak, G; Dere, UA; Emmez, H; Konac, E, 2021)
" Thus, in the current study, we aimed to investigate the effects of metformin on the development of morphine and/or methadone-induced tolerance in human glioblastoma (T98G) cell line."3.91In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway. ( Dehpour, AR; Esmaeili, J; Sahebgharani, M; Shirooie, S, 2019)
"The purpose of the study is to investigate the efficacy of combined treatment with temozolomide (TMZ) and metformin for glioblastoma (GBM) in vitro and in vivo."3.88High-Dose Metformin Plus Temozolomide Shows Increased Anti-tumor Effects in Glioblastoma In Vitro and In Vivo Compared with Monotherapy. ( Hong, YK; Lee, JE; Lim, JH; Yang, SH, 2018)
"The present study was designed to evaluate the effects of irinotecan hydrochloride (IRI)- or metformin hydrochloride (MET)-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for the treatment of glioblastoma multiforme using in vitro neuron and U-87 MG glioblastoma cell cultures and in vivo animal model."3.88Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. ( Abd El-Aty, AM; Cetin, M; Galateanu, B; Gundogdu, B; Hacimuftuoglu, A; Jeong, JH; Jung, TW; Mezhuev, Y; Mohammadzadeh, M; Nalci, KA; Okkay, U; Stivaktakis, P; Taghizadehghalehjoughi, A; Taspinar, M; Taspinar, N; Tsatsakis, A; Ugur, AB; Uyanik, A, 2018)
"It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM)."3.83Metformin treatment reduces temozolomide resistance of glioblastoma cells. ( Kim, DH; Li, S; Liu, Y; Lu, G; Xue, H; Yang, SH; Zhu, JJ, 2016)
"High-grade gliomas, glioblastomas (GB), are refractory to conventional treatment combining surgery, chemotherapy, mainly temozolomide, and radiotherapy."3.81Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. ( Brem, H; Cohen-Jonathan Moyal, E; Dahan, P; Dang, VT; Lemarié, A; Saland, E; Sarry, JE; Scotland, SJ; Sesen, J; Skuli, N; Toulas, C; Tyler, BM, 2015)
" Interestingly, our findings showed an association of metformin therapy and prolonged progression-free survival in glioblastoma patients with diabetes and therefore serve as a foundation for further preclinical and clinical investigations."3.81Metformin influences progression in diabetic glioblastoma patients. ( Adeberg, S; Ben Harrabi, S; Bernhardt, D; Bostel, T; Debus, J; Diehl, C; Koelsche, C; Mohr, A; Rieken, S, 2015)
"Metformin treatment led to increased autophagy and strong inhibition of carbon flux from glucose to amino acids in all subtypes."1.91Heterogeneity of Amino Acid Profiles of Proneural and Mesenchymal Brain-Tumor Initiating Cells. ( Ammer, LM; Dettmer, K; Hau, P; Heckscher, S; Jachnik, B; Leidgens, V; Moeckel, S; Oefner, PJ; Proescholdt, M; Rauer, L; Riemenschneider, MJ; Seliger, C; Vollmann-Zwerenz, A; Wüster, AL, 2023)
"Metformin (MET) has been shown to suppress the proliferative capacity and invasion ability of GBM cells by activating AMPK and inhibiting mTOR, but the effective dose exceeded the maximum tolerated dose."1.91Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. ( Ding, W; Liao, L; Liao, Y; Liu, J; Tang, Q; Zhao, J, 2023)
"Metformin is a biguanide drug utilized as the first-line medication in treating type 2 diabetes."1.72Exploring the Mechanism of Adjuvant Treatment of Glioblastoma Using Temozolomide and Metformin. ( Chang, PC; Chen, HY; Feng, SW; Huang, SM; Hueng, DY; Li, YF, 2022)
"Metformin has long been an attractive therapeutic option for EwS, but hypoxia limits its efficacy."1.56Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways. ( Cheng, H; Lau, CC; Nan, X; Qiu, B; Sheng, J; Wang, J; Wong, STC; Yin, Z; Yustein, JT; Zhao, H, 2020)
"Metformin has been linked to improve survival of patients with various cancers."1.56Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis. ( Chinot, O; Genbrugge, E; Gorlia, T; Hau, P; Nabors, B; Seliger, C; Stupp, R; Weller, M, 2020)
"Treatment with metformin reduced STAT3-phosphorylation in all investigated BTICs and TCs."1.46Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation. ( Bogdahn, U; Hau, P; Leidgens, V; Moeckel, S; Proescholdt, M; Proske, J; Rauer, L; Renner, K; Riemenschneider, MJ; Seliger, C; Vollmann-Zwerenz, A, 2017)
"Metformin or olanzapine have been shown independently to enhance AMPK activation."1.37Can the therapeutic effects of temozolomide be potentiated by stimulating AMP-activated protein kinase with olanzepine and metformin? ( Halatsch, ME; Karpel-Massler, G; Kast, RE, 2011)

Research

Studies (39)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's22 (56.41)24.3611
2020's17 (43.59)2.80

Authors

AuthorsStudies
Zhan, Q1
Yi, K1
Cui, X1
Li, X11
Yang, S2
Wang, Q3
Fang, C1
Tan, Y1
Li, L1
Xu, C3
Yuan, X1
Kang, C1
Sanati, M1
Aminyavari, S1
Mollazadeh, H1
Motamed-Sanaye, A1
Bibak, B1
Mohtashami, E1
Teng, Y1
Afshari, AR1
Sahebkar, A2
Feng, SW1
Chang, PC1
Chen, HY1
Hueng, DY1
Li, YF1
Huang, SM1
Zhu, L1
Liu, J2
Qiu, M1
Chen, J2
Liang, Q1
Peng, G1
Zou, Z1
Felker, J1
Agnihotri, S1
Seliger, C5
Meyer, AL2
Leidgens, V4
Rauer, L4
Moeckel, S4
Jachnik, B3
Proske, J2
Dettmer, K3
Rothhammer-Hampl, T1
Kaulen, LD1
Riemenschneider, MJ4
Oefner, PJ3
Kreutz, M2
Schmidt, NO1
Merrill, M1
Uhl, M2
Renner, K3
Vollmann-Zwerenz, A4
Proescholdt, M4
Hau, P5
Wüster, AL1
Ammer, LM1
Heckscher, S1
Fuentes-Fayos, AC1
G-García, ME1
Pérez-Gómez, JM1
Montero-Hidalgo, AJ1
Martín-Colom, J1
Doval-Rosa, C1
Blanco-Acevedo, C1
Torres, E1
Toledano-Delgado, Á1
Sánchez-Sánchez, R1
Peralbo-Santaella, E1
Ortega-Salas, RM1
Jiménez-Vacas, JM1
Tena-Sempere, M1
López, M1
Castaño, JP1
Gahete, MD1
Solivera, J1
Luque, RM1
Ailuno, G1
Baldassari, S1
Balboni, A1
Drava, G1
Spalletti, C1
Tantillo, E1
Mazzanti, M2
Barbieri, F3
Thellung, S1
Florio, T3
Caviglioli, G1
Ding, W1
Liao, L1
Zhao, J2
Tang, Q1
Liao, Y2
Mohammad, AH1
Jatana, S1
Ruiz-Barerra, MA1
Khalaf, R1
Al-Saadi, T1
Diaz, RJ1
Nan, X1
Wang, J5
Cheng, H1
Yin, Z1
Sheng, J1
Qiu, B1
Lau, CC1
Yustein, JT1
Zhao, H3
Wong, STC1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y2
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y4
Chen, L3
Shan, A1
Wu, M2
Ma, Q1
Zhang, E1
Zhang, J3
Li, Y6
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Wang, Y2
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X2
Ren, Y1
Li, J7
Li, P1
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C3
Zhou, X3
Wang, W1
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L1
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X5
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Zhang, Y4
Wu, X1
Lu, J2
Li, M1
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Cheng, J1
Kong, X1
Li, S2
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z2
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H2
Liu, Y5
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C2
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H1
He, Z1
Chen, B1
Wu, J1
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X1
Duong, F1
Kong, W1
Chang, JH2
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X1
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Soraya, H1
Sani, NA1
Jabbari, N1
Rezaie, J1
Albayrak, G1
Konac, E1
Dere, UA1
Emmez, H1
Caja, L1
Dadras, MS1
Mezheyeuski, A1
Rodrigues-Junior, DM1
Liu, S1
Webb, AT1
Gomez-Puerto, MC1
Ten Dijke, P1
Heldin, CH1
Moustakas, A1
Ward, NP1
Poff, AM1
Koutnik, AP1
D'Agostino, DP1
Lee, JE1
Lim, JH1
Hong, YK1
Yang, SH2
Taghizadehghalehjoughi, A1
Hacimuftuoglu, A1
Cetin, M1
Ugur, AB1
Galateanu, B1
Mezhuev, Y1
Okkay, U1
Taspinar, N1
Taspinar, M1
Uyanik, A1
Gundogdu, B1
Mohammadzadeh, M1
Nalci, KA1
Stivaktakis, P1
Tsatsakis, A1
Jung, TW1
Jeong, JH1
Abd El-Aty, AM1
Al Hassan, M1
Fakhoury, I1
El Masri, Z1
Ghazale, N1
Dennaoui, R1
El Atat, O1
Kanaan, A1
El-Sibai, M1
Shirooie, S1
Sahebgharani, M1
Esmaeili, J1
Dehpour, AR1
Maraka, S2
Groves, MD2
Mammoser, AG1
Melguizo-Gavilanes, I1
Conrad, CA1
Tremont-Lukats, IW1
Loghin, ME1
O'Brien, BJ1
Puduvalli, VK1
Sulman, EP1
Hess, KR1
Aldape, KD1
Gilbert, MR1
de Groot, JF1
Alfred Yung, WK1
Penas-Prado, M2
Nevin, RL1
Genbrugge, E1
Gorlia, T1
Chinot, O1
Stupp, R1
Nabors, B1
Weller, M1
Chhipa, RR1
Pooya, S1
Wortman, M1
Yachyshin, S1
Chow, LM1
Kumar, A1
Quinn, B1
McPherson, C1
Warnick, RE1
Kendler, A1
Giri, S1
Poels, J1
Norga, K1
Viollet, B1
Grabowski, GA1
Dasgupta, B1
Welch, MR1
Grommes, C1
Gritti, M1
Würth, R2
Angelini, M1
Peretti, M1
Pizzi, E1
Pattarozzi, A2
Carra, E1
Sirito, R2
Daga, A2
Curmi, PM1
Sesen, J1
Dahan, P1
Scotland, SJ1
Saland, E1
Dang, VT1
Lemarié, A1
Tyler, BM1
Brem, H1
Toulas, C1
Cohen-Jonathan Moyal, E1
Sarry, JE1
Skuli, N1
Adeberg, S1
Bernhardt, D1
Ben Harrabi, S1
Bostel, T1
Mohr, A1
Koelsche, C1
Diehl, C1
Rieken, S1
Debus, J1
Yu, Z1
Zhao, G1
Xie, G1
Zhao, L1
Yu, H1
Zhang, Z1
Tischler, U1
Gerthofer, V1
Bogdahn, U2
Elmaci, İ1
Altinoz, MA1
Kim, EH1
Lee, JH1
Oh, Y1
Koh, I1
Shim, JK1
Park, J1
Choi, J1
Yun, M1
Jeon, JY1
Huh, YM1
Kim, SH1
Kim, KS1
Cheong, JH1
Kim, P1
Kang, SG1
Lu, G1
Xue, H1
Kim, DH1
Zhu, JJ1
Kast, RE1
Karpel-Massler, G1
Halatsch, ME1
Sato, A1
Sunayama, J1
Okada, M1
Watanabe, E1
Seino, S1
Shibuya, K1
Suzuki, K1
Narita, Y1
Shibui, S1
Kayama, T1
Kitanaka, C1
Gatti, M1
Bajetto, A1
Corsaro, A1
Parodi, A1
Massollo, M1
Marini, C1
Zona, G1
Fenoglio, D1
Sambuceti, G1
Filaci, G1

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Metformin and Neo-adjuvant Temozolomide and Hypofractionated Accelerated Limited-margin Radiotherapy Followed by Adjuvant Temozolomide in Patients With Glioblastoma Multiforme (M-HARTT STUDY)[NCT02780024]Phase 250 participants (Anticipated)Interventional2015-03-31Active, not recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

3 reviews available for metformin and Astrocytoma, Grade IV

ArticleYear
The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme.
    Current medicinal chemistry, 2023, Volume: 30, Issue:7

    Topics: Animals; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Diabetes Mellitus, Type 2; Glioblast

2023
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme.
    Biochemical genetics, 2016, Volume: 54, Issue:5

    Topics: Brain Neoplasms; Cell Proliferation; Drug Therapy, Combination; Gene Expression Regulation, Neoplast

2016

Trials

2 trials available for metformin and Astrocytoma, Grade IV

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Phase 1 lead-in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma.
    Cancer, 2019, 02-01, Volume: 125, Issue:3

    Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Chemotherapy, Adjuvant

2019

Other Studies

35 other studies available for metformin and Astrocytoma, Grade IV

ArticleYear
Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy.
    Neuro-oncology, 2022, 11-02, Volume: 24, Issue:11

    Topics: Animals; Cell Line, Tumor; Energy Metabolism; Exosomes; Glioblastoma; Humans; Metformin; Phospholipa

2022
Exploring the Mechanism of Adjuvant Treatment of Glioblastoma Using Temozolomide and Metformin.
    International journal of molecular sciences, 2022, Jul-25, Volume: 23, Issue:15

    Topics: Antineoplastic Agents, Alkylating; Brain Neoplasms; Cell Line, Tumor; Diabetes Mellitus, Type 2; DNA

2022
Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma.
    Biomaterials, 2022, Volume: 288

    Topics: Bacteria; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Hydrogels; Metformin; Peptides; T

2022
Hurdling over the blood-brain barrier with exosome technology.
    Neuro-oncology, 2022, 11-02, Volume: 24, Issue:11

    Topics: Blood-Brain Barrier; Energy Metabolism; Exosomes; Glioblastoma; Humans; Metformin; Phospholipases A2

2022
Metabolic Heterogeneity of Brain Tumor Cells of Proneural and Mesenchymal Origin.
    International journal of molecular sciences, 2022, Oct-01, Volume: 23, Issue:19

    Topics: Brain; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Glucose; Humans; Metformin; Neoplastic Stem

2022
Heterogeneity of Amino Acid Profiles of Proneural and Mesenchymal Brain-Tumor Initiating Cells.
    International journal of molecular sciences, 2023, Feb-06, Volume: 24, Issue:4

    Topics: Amino Acids; Brain; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Glioblastoma; Humans; Met

2023
Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence.
    EBioMedicine, 2023, Volume: 90

    Topics: Animals; Cell Line, Tumor; Cell Proliferation; Glioblastoma; Humans; Hydroxymethylglutaryl-CoA Reduc

2023
Development and validation of a GC-MS method for determination of metformin in normal brain and in glioblastoma tissues.
    Journal of pharmaceutical and biomedical analysis, 2023, Sep-20, Volume: 234

    Topics: Animals; Brain; Gas Chromatography-Mass Spectrometry; Glioblastoma; Metformin; Mice; Tissue Distribu

2023
Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis.
    Experimental cell research, 2023, 09-01, Volume: 430, Issue:1

    Topics: AMP-Activated Protein Kinases; Apoptosis; Artesunate; Autophagy; Glioblastoma; Humans; Metformin; Re

2023
Metformin use is associated with longer survival in glioblastoma patients with MGMT gene silencing.
    Journal of neuro-oncology, 2023, Volume: 165, Issue:1

    Topics: Brain Neoplasms; Diabetes Mellitus, Type 2; DNA Methylation; DNA Modification Methylases; DNA Repair

2023
Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways.
    Cancer letters, 2020, 01-28, Volume: 469

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Bone Neoplasms; Breast Neoplasms

2020
Metformin Increases Exosome Biogenesis and Secretion in U87 MG Human Glioblastoma Cells: A Possible Mechanism of Therapeutic Resistance.
    Archives of medical research, 2021, Volume: 52, Issue:2

    Topics: Exosomes; Glioblastoma; Humans; Hypoglycemic Agents; Metformin

2021
Targeting Cancer Cell Metabolism with Metformin, Dichloroacetate and Memantine in Glioblastoma (GBM).
    Turkish neurosurgery, 2021, Volume: 31, Issue:2

    Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Dichloroacetic A

2021
The protein kinase LKB1 promotes self-renewal and blocks invasiveness in glioblastoma.
    Journal of cellular physiology, 2022, Volume: 237, Issue:1

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation

2022
Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells.
    PloS one, 2017, Volume: 12, Issue:6

    Topics: AMP-Activated Protein Kinases; Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Ce

2017
High-Dose Metformin Plus Temozolomide Shows Increased Anti-tumor Effects in Glioblastoma In Vitro and In Vivo Compared with Monotherapy.
    Cancer research and treatment, 2018, Volume: 50, Issue:4

    Topics: AMP-Activated Protein Kinases; Animals; Antineoplastic Combined Chemotherapy Protocols; Brain Neopla

2018
Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies.
    Nanomedicine (London, England), 2018, Volume: 13, Issue:13

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Proliferation; Cell

2018
Metformin Treatment Inhibits Motility and Invasion of Glioblastoma Cancer Cells.
    Analytical cellular pathology (Amsterdam), 2018, Volume: 2018

    Topics: Antineoplastic Agents; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Pro

2018
In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway.
    Journal of cellular physiology, 2019, Volume: 234, Issue:3

    Topics: AMP-Activated Protein Kinase Kinases; Analgesics, Opioid; Animals; Cell Line, Tumor; Cyclic AMP; Dru

2019
Unexpectedly low rates of neuropsychiatric adverse effects associated with mefloquine repurposed for the treatment of glioblastoma.
    Cancer, 2019, 04-15, Volume: 125, Issue:8

    Topics: Glioblastoma; Humans; Mefloquine; Memantine; Metformin; Temozolomide

2019
Reply to Unexpectedly low rates of neuropsychiatric adverse effects associated with mefloquine repurposed for the treatment of glioblastoma.
    Cancer, 2019, 04-15, Volume: 125, Issue:8

    Topics: Glioblastoma; Humans; Mefloquine; Memantine; Metformin; Temozolomide

2019
Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis.
    International journal of cancer, 2020, 02-01, Volume: 146, Issue:3

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Antineoplastic Agents, Alkylating; Antineoplastic Combin

2020
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK.
    Proceedings of the National Academy of Sciences of the United States of America, 2014, Jan-28, Volume: 111, Issue:4

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Brain Neoplasms; Cell Cycle; Cell Proliferation; Cell

2014
Retrospective analysis of the effects of steroid therapy and antidiabetic medication on survival in diabetic glioblastoma patients.
    CNS oncology, 2013, Volume: 2, Issue:3

    Topics: Adult; Age Factors; Aged; Aged, 80 and over; Antineoplastic Agents; Brain Neoplasms; Cohort Studies;

2013
Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current.
    Oncotarget, 2014, Nov-30, Volume: 5, Issue:22

    Topics: Aged; Animals; Antineoplastic Agents; Chloride Channels; CHO Cells; Cricetulus; Drug Repositioning;

2014
Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response.
    PloS one, 2015, Volume: 10, Issue:4

    Topics: Adenylate Kinase; Animals; Apoptosis; Autophagy; Brain Neoplasms; Cell Division; Cell Line, Tumor; D

2015
Metformin influences progression in diabetic glioblastoma patients.
    Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al], 2015, Volume: 191, Issue:12

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Antineoplastic Agents, Alkylating; Blood Glucose; Brain;

2015
Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo.
    Oncotarget, 2015, Oct-20, Volume: 6, Issue:32

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Cell Differentiation; Cell

2015
Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2.
    Cell cycle (Georgetown, Tex.), 2016, 07-02, Volume: 15, Issue:13

    Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; Glioblastoma; Humans; Metformin; Models, Biolog

2016
Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin.
    Neuro-oncology, 2017, 02-01, Volume: 19, Issue:2

    Topics: Animals; Antimetabolites; Apoptosis; Brain Neoplasms; Cell Proliferation; Deoxyglucose; Drug Synergi

2017
Metformin treatment reduces temozolomide resistance of glioblastoma cells.
    Oncotarget, 2016, Nov-29, Volume: 7, Issue:48

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Cell Line, Tumor; Cell Mov

2016
Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation.
    Oncotarget, 2017, Jan-31, Volume: 8, Issue:5

    Topics: Adult; Aged; AMP-Activated Protein Kinases; Animals; Antineoplastic Combined Chemotherapy Protocols;

2017
Can the therapeutic effects of temozolomide be potentiated by stimulating AMP-activated protein kinase with olanzepine and metformin?
    British journal of pharmacology, 2011, Volume: 164, Issue:5

    Topics: AMP-Activated Protein Kinases; Animals; Antineoplastic Agents, Alkylating; Apoptosis; Benzodiazepine

2011
Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK.
    Stem cells translational medicine, 2012, Volume: 1, Issue:11

    Topics: AMP-Activated Protein Kinases; Animals; Blood-Brain Barrier; Brain Neoplasms; Cell Differentiation;

2012
Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.
    Cell cycle (Georgetown, Tex.), 2013, Jan-01, Volume: 12, Issue:1

    Topics: AC133 Antigen; Aged; Animals; Antigens, CD; Antineoplastic Agents; Cell Differentiation; Cell Surviv

2013