Page last updated: 2024-10-30

metformin and Angiogenesis, Pathologic

metformin has been researched along with Angiogenesis, Pathologic in 55 studies

Metformin: A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
metformin : A member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1.

Research Excerpts

ExcerptRelevanceReference
"Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation."8.02Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway. ( Fan, Y; He, J; Hu, X; Li, N; Liu, C; Zhao, X, 2021)
" The antidiabetic agent metformin has shown its ability to inhibit tumor angiogenesis in metastatic breast cancer models."7.91Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. ( Feng, J; Han, SX; Jiang, YN; Li, GY; Liu, JL; Liu, PJ; Lu, SY; Shen, YW; Sun, X; Wang, B; Wang, JC; Wang, MD; Zhou, C, 2019)
" In this study, we investigated the molecular crosstalk between miR-34a, the protein product of SIRT1 (sirtuin1), and the antidiabetic drug, metformin, in hyperglycemia-mediated impaired angiogenesis in mouse microvascular endothelial cells (MMECs)."7.83Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin. ( Arunachalam, G; Ding, H; Lakshmanan, AP; Samuel, SM; Triggle, CR, 2016)
" Metformin has been introduced in the treatment of PCOS to manage insulin resistance and hyperglycemia."7.81Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. ( Abramovich, D; Bas, D; Bianchi, MS; Di Pietro, M; Irusta, G; Parborell, F; Pascuali, N; Tesone, M, 2015)
"Accumulated evidences indicate metformin is associated with reduced risk of hepatocellular carcinoma (HCC) in diabetic patients, which inspired researchers to explore its therapeutic potentials in HCC."7.81Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. ( Qu, H; Yang, X, 2015)
"Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers."7.75Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. ( Claffey, KP; Phoenix, KN; Vumbaca, F, 2009)
"Multiple cancers have been reported to be associated with angiogenesis and are sensitive to anti-angiogenic therapies."5.91Metformin and simvastatin synergistically suppress endothelin 1-induced hypoxia and angiogenesis in multiple cancer types. ( Chen, H; Gao, X; Li, J; Li, Y; Liu, J; Liu, P; Ren, Y; Song, S; Wang, B; Wang, H; Wang, R; Wang, Y; Zhang, M, 2023)
"Rosacea is a common chronic inflammatory disease that affects the middle of the face."5.62Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation. ( Deng, Z; Li, J; Li, Y; Wang, Y; Xie, H; Xu, S; Yang, L; Zhang, Y, 2021)
"Metformin is a well-known activator of AMP-activated protein kinase (AMPK)."5.40Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. ( Hammond, MD; Li, J; Mancini, NS; McCullough, LD; Venna, VR, 2014)
"Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation."4.02Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway. ( Fan, Y; He, J; Hu, X; Li, N; Liu, C; Zhao, X, 2021)
" The antidiabetic agent metformin has shown its ability to inhibit tumor angiogenesis in metastatic breast cancer models."3.91Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. ( Feng, J; Han, SX; Jiang, YN; Li, GY; Liu, JL; Liu, PJ; Lu, SY; Shen, YW; Sun, X; Wang, B; Wang, JC; Wang, MD; Zhou, C, 2019)
" In this study, we investigated the molecular crosstalk between miR-34a, the protein product of SIRT1 (sirtuin1), and the antidiabetic drug, metformin, in hyperglycemia-mediated impaired angiogenesis in mouse microvascular endothelial cells (MMECs)."3.83Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin. ( Arunachalam, G; Ding, H; Lakshmanan, AP; Samuel, SM; Triggle, CR, 2016)
" Metformin has been introduced in the treatment of PCOS to manage insulin resistance and hyperglycemia."3.81Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. ( Abramovich, D; Bas, D; Bianchi, MS; Di Pietro, M; Irusta, G; Parborell, F; Pascuali, N; Tesone, M, 2015)
"Accumulated evidences indicate metformin is associated with reduced risk of hepatocellular carcinoma (HCC) in diabetic patients, which inspired researchers to explore its therapeutic potentials in HCC."3.81Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. ( Qu, H; Yang, X, 2015)
"Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers."3.75Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. ( Claffey, KP; Phoenix, KN; Vumbaca, F, 2009)
"Since tumors are complex systems, in which cancer cells coexist and interact with several different types of non-malignant cells, it is not surprising that anti-cancer drugs affect not only cancer cells, but also the abundance and functions of cells of the tumor microenvironment."2.66The multifaceted effects of metformin on tumor microenvironment. ( Gasparre, G; Iorio, M; Kurelac, I; Porcelli, AM; Umesh Ganesh, N, 2020)
"Failure in ovarian cancer therapy, following cytoreduction and chemotherapy, is related to the presence of cancer stem cells - a small subpopulation of cells resistant to chemotherapy and irradiation - in the tumour which may cause cancer relapse and manifestation of metastases."2.55Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. ( Huczyński, A; Markowska, A; Markowska, J; Sajdak, S, 2017)
"Metformin has an interesting potential to treat vascular dysfunction and tumor angiogenesis in conditions beyond diabetes."2.53Metformin and Angiogenesis in Cancer - Revisited. ( Alkharabsheh, O; Dimitrov, NV; Kannarkatt, J; Tokala, H, 2016)
"Ovarian cancer is the most lethal gynecological malignancy."2.52[Novel strategies of ovarian cancer treatment]. ( Boratyn-Nowicka, A; Cholewa, H; Duda, K; Okopień, B; Łabuzek, K, 2015)
"Multiple cancers have been reported to be associated with angiogenesis and are sensitive to anti-angiogenic therapies."1.91Metformin and simvastatin synergistically suppress endothelin 1-induced hypoxia and angiogenesis in multiple cancer types. ( Chen, H; Gao, X; Li, J; Li, Y; Liu, J; Liu, P; Ren, Y; Song, S; Wang, B; Wang, H; Wang, R; Wang, Y; Zhang, M, 2023)
"Rosacea is a common chronic inflammatory disease that affects the middle of the face."1.62Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation. ( Deng, Z; Li, J; Li, Y; Wang, Y; Xie, H; Xu, S; Yang, L; Zhang, Y, 2021)
"Endometriosis is a benign gynecological disease that is manifested by the presence and growth of endometrial cells and glands outside the uterine."1.62Metformin attenuates expression of angiogenic and inflammatory genes in human endometriotic stromal cells. ( Esfandiari, F; Khoei, HH; Moini, A; Saber, M; Shahhoseini, M; Yari, S, 2021)
"Metformin is an anti-hypoglycemic drug that appears to have anticancer effects."1.56Metformin Inhibits Proliferation and Tumor Growth of QGP-1 Pancreatic Neuroendocrine Tumor Cells by Inducing Cell Cycle Arrest and Apoptosis. ( Fujihara, S; Fujita, K; Fujita, N; Iwama, H; Kamada, H; Kato, K; Kobara, H; Kobayashi, K; Masaki, T; Morishita, A; Namima, D; Tsutsui, K; Yamana, H, 2020)
"The treatment with metformin and LY294002 was able to reduce the cellular viability after 24 hours."1.51Evaluation of Angiogenesis Process after Metformin and LY294002 Treatment in Mammary Tumor. ( Borin, TF; Carvalho, LGS; de Campos Zuccari, DAP; Ferreira, LC; Gelaleti, GB; Hellmén, E; Jardim-Perassi, BV; Leonel, C; Maschio-Signorini, LB; Moschetta, MG; Sonehara, NM, 2019)
"Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization."1.48Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma. ( Akkan, J; Benitz, S; Bruns, P; Ceyhan, GO; Cheng, T; Friess, H; Hofmann, T; Huang, P; Jäger, C; Jastroch, M; Jian, Z; Kleeff, J; Kleigrewe, K; Kong, B; Lamp, D; Maeritz, N; Michalski, CW; Nie, S; Raulefs, S; Shen, S; Shi, K; Steiger, K; Zhang, Z; Zou, X, 2018)
"Metformin is an anti-diabetic agent and its potential antitumor impact has become the objective of numerous studies."1.46Metformin enhancing the antitumor efficacy of carboplatin against Ehrlich solid carcinoma grown in diabetic mice: Effect on IGF-1 and tumoral expression of IGF-1 receptors. ( Abo-Elmatty, DM; Ahmed, EA; Helmy, SA; Tawfik, MK, 2017)
"Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known."1.43PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity. ( Ancukiewicz, M; Babykutty, S; Batista, A; Carmeliet, P; Chin, SM; Duda, DG; Fukumura, D; Hato, T; Hoffmman, U; Incio, J; Jain, RK; Jung, K; Khachatryan, A; Krop, IE; Ligibel, JA; McManus, DT; Puchner, SB; Rahbari, NN; Schlett, CL; Shibuya, M; Soares, R; Suboj, P; Tam, J; Vardam, TD, 2016)
"Metformin pretreatment significantly suppressed tumor paracrine signaling-induced angiogenic promotion even in the presence of heregulin (HRG)-β1 (a co-activator of HER2) pretreatment of HER2+ tumor cells."1.42Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. ( Bao, G; Feng, X; Li, G; Li, P; Li, Y; Liu, P; Mao, X; Sun, X; Tang, S; Wang, J; Wang, M; Wang, Y, 2015)
"Metformin (200mg/kg) was given at the time of reperfusion daily until sacrifice."1.40Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. ( Liu, Y; Tang, G; Wang, Y; Yang, GY; Zhang, Z, 2014)
"Metformin is a well-known activator of AMP-activated protein kinase (AMPK)."1.40Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. ( Hammond, MD; Li, J; Mancini, NS; McCullough, LD; Venna, VR, 2014)
"Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s."1.40Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. ( Moustafa, YM; Zaafar, DK; Zaitone, SA, 2014)
"A2780 ovarian cancer cells were injected intraperitoneally in nude mice; A2780-induced tumors in nude mice, when treated with metformin in drinking water, resulted in a significant reduction of tumor growth, accompanied by inhibition of tumor cell proliferation (as assessed by immunohistochemical staining of Ki-67, Cyclin D1) as well as decreased live tumor size and mitotic cell count."1.37Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. ( Giri, S; Graham, RP; Maguire, JL; Rattan, R; Shridhar, V, 2011)
"Metformin treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of transforming growth factor (TGF-beta1) intraimplant."1.36Metformin inhibits inflammatory angiogenesis in a murine sponge model. ( Amaral, LS; Andrade, SP; Belo, AV; Campos, PR; Cota, BD; Gomes, MA; Paiva, AM; Rocha, MA; Silva, JH; Tafuri, LS; Xavier, DO, 2010)

Research

Studies (55)

TimeframeStudies, this research(%)All Research%
pre-19901 (1.82)18.7374
1990's0 (0.00)18.2507
2000's4 (7.27)29.6817
2010's35 (63.64)24.3611
2020's15 (27.27)2.80

Authors

AuthorsStudies
Wang, M2
Lin, Y1
Shi, W1
Chen, X2
Mi, Z1
Jia, Z1
Pan, Q1
Wang, Z2
Han, J2
Liu, H2
Li, Y10
Yang, L1
Wang, Y6
Deng, Z1
Xu, S1
Xie, H2
Zhang, Y7
Li, J11
Abdelhamid, AM1
Saber, S1
Youssef, ME1
Gaafar, AGA1
Eissa, H1
Abd-Eldayem, MA1
Alqarni, M1
Batiha, GE1
Obaidullah, AJ1
Shahien, MA1
El-Ahwany, E1
Amin, NA1
Etman, MA1
Kaddah, MMY1
Abd El-Fattah, EE1
Yan, J1
Feng, G2
Ma, L1
Chen, Z1
Jin, Q1
Liu, J1
Wang, H3
Zhang, M5
Wang, R1
Chen, H2
Wang, B2
Gao, X1
Song, S1
Ren, Y2
Liu, P2
Ni, HZ1
Liu, Z3
Sun, LL1
Zhou, M1
Liu, C5
Li, WD1
Li, XQ1
Karadeniz, Z1
Aynacıoğlu, AŞ1
Bilir, A1
Tuna, MY1
Bae, WJ1
Ahn, JM1
Byeon, HE1
Kim, S1
Lee, D1
Yamana, H1
Kato, K1
Kobara, H1
Fujihara, S1
Fujita, K1
Namima, D1
Fujita, N1
Kobayashi, K1
Kamada, H1
Morishita, A1
Tsutsui, K1
Iwama, H1
Masaki, T1
Kang, YT1
Hsu, WC1
Ou, CC1
Tai, HC1
Hsu, HT1
Yeh, KT1
Ko, JL1
Rana, U1
Callan, E1
Entringer, B1
Michalkiewicz, T1
Joshi, A1
Parchur, AK1
Teng, RJ1
Konduri, GG1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H5
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E1
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X10
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Li, XY1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W1
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G1
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S2
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L1
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y3
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q2
Wang, J5
Zhang, E1
Zhang, J3
Xue, F1
Deng, L1
Liu, L2
Yan, Z2
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X2
Li, P3
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C3
Zhou, X2
Wang, W2
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L1
Zhu, J3
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X5
Lee, DF1
Shen, J4
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W1
Wu, X1
Lu, J2
Li, M1
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X3
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C1
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Lee, HJ1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J2
Kong, X1
Li, S2
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J2
Zheng, Y1
Luo, Z1
Mei, Z1
Yao, Y1
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J3
Liu, Y5
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q3
Rathore, MG1
Reddy, K1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y1
Ying, S1
Tan, M1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Liu, Q1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z2
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C2
Chen, W3
Hu, X2
Zhang, F1
Wei, H1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J2
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J1
Fan, Y2
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R1
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y2
Gao, W1
Ma, S1
Lin, W1
Zhou, T2
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K2
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J2
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H3
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L2
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y2
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H2
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
He, Z1
Chen, B1
Wu, J2
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T2
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y1
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X2
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X3
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G2
Hou, G1
Cui, J1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J3
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H1
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J1
López-Santos, AL1
Medina-Campos, ON1
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Wang, G1
Lin, F1
Wan, Q1
Luo, M1
He, J1
Li, N1
Zhao, X1
Yari, S1
Khoei, HH1
Saber, M1
Esfandiari, F1
Moini, A1
Shahhoseini, M1
Nguyen, H1
Koh, JY1
Islas-Robles, A1
Meda Venkata, SP1
Wang, JM1
Monks, TJ1
Markowska, A1
Sajdak, S1
Markowska, J1
Huczyński, A1
Zhang, HH1
Cheng, YN1
Gong, FL1
Cao, ZQ1
Yu, LG1
Guo, XL1
Edwards, P1
Gao, H1
Yu, FS1
Qiao, X1
Soobryan, N1
Murugesan, S1
Pandiyan, A1
Moodley, J1
Mackraj, I1
Qian, W1
Jiang, Z1
Cheng, L1
Zhou, C2
Yan, B1
Duan, W1
Jian, Z1
Cheng, T1
Zhang, Z2
Raulefs, S1
Shi, K1
Steiger, K1
Maeritz, N1
Kleigrewe, K1
Hofmann, T1
Benitz, S1
Bruns, P1
Lamp, D1
Jastroch, M1
Akkan, J1
Jäger, C1
Huang, P1
Nie, S1
Shen, S1
Zou, X1
Ceyhan, GO1
Michalski, CW1
Friess, H1
Kleeff, J1
Kong, B1
Moschetta, MG1
Leonel, C1
Maschio-Signorini, LB1
Borin, TF1
Gelaleti, GB1
Jardim-Perassi, BV1
Ferreira, LC1
Sonehara, NM1
Carvalho, LGS1
Hellmén, E1
de Campos Zuccari, DAP1
Kurelac, I2
Iommarini, L1
Vatrinet, R1
Amato, LB1
De Luise, M1
Leone, G1
Girolimetti, G1
Umesh Ganesh, N2
Bridgeman, VL1
Ombrato, L1
Columbaro, M1
Ragazzi, M1
Gibellini, L1
Sollazzo, M1
Feichtinger, RG1
Vidali, S1
Baldassarre, M1
Foriel, S1
Vidone, M1
Cossarizza, A1
Grifoni, D1
Kofler, B1
Malanchi, I1
Porcelli, AM2
Gasparre, G2
Iorio, M1
Xu, J1
Liu, M1
Yu, M1
Zhou, J1
Zhou, Y1
Zhang, W1
Wang, JC1
Li, GY1
Han, SX1
Jiang, YN1
Shen, YW1
Lu, SY1
Liu, JL1
Wang, MD1
Liu, PJ1
Dallaglio, K2
Bruno, A1
Cantelmo, AR1
Esposito, AI1
Ruggiero, L1
Orecchioni, S2
Calleri, A2
Bertolini, F2
Pfeffer, U1
Noonan, DM2
Albini, A2
Venna, VR1
Hammond, MD1
Mancini, NS1
McCullough, LD1
Guo, Y1
Tan, X1
Cheng, W1
Yamamoto, T1
Jing, X1
Zaafar, DK1
Zaitone, SA1
Moustafa, YM1
Tang, G1
Yang, GY1
Reggiani, F1
Talarico, G1
Mancuso, P1
Gregato, G1
Labanca, V1
Qu, H1
Di Pietro, M1
Parborell, F1
Irusta, G1
Pascuali, N1
Bas, D1
Bianchi, MS1
Tesone, M1
Abramovich, D1
Gao, S1
Kong, D1
Arunachalam, G1
Lakshmanan, AP1
Samuel, SM1
Triggle, CR1
Ding, H1
Bao, G1
Mao, X1
Duda, K1
Cholewa, H1
Łabuzek, K1
Boratyn-Nowicka, A1
Okopień, B1
Fukumura, D2
Incio, J2
Shankaraiah, RC1
Jain, RK2
Tam, J1
Rahbari, NN1
Suboj, P1
McManus, DT1
Chin, SM1
Vardam, TD1
Batista, A1
Babykutty, S1
Jung, K1
Khachatryan, A1
Hato, T1
Ligibel, JA1
Krop, IE1
Puchner, SB1
Schlett, CL1
Hoffmman, U1
Ancukiewicz, M1
Shibuya, M1
Carmeliet, P1
Soares, R1
Duda, DG1
Lheureux, S1
Oza, AM1
Kannarkatt, J1
Alkharabsheh, O1
Tokala, H1
Dimitrov, NV1
Abo-Elmatty, DM1
Ahmed, EA1
Tawfik, MK1
Helmy, SA1
Erices, R1
Cubillos, S1
Aravena, R1
Santoro, F1
Marquez, M1
Orellana, R1
Ramírez, C1
González, P1
Fuenzalida, P1
Bravo, ML1
Oliva, B1
Kato, S1
Ibañez, C1
Brañes, J1
Bravo, E1
Alonso, C1
García, K1
Arab, C1
Torres, VA1
Godoy, AS1
Pereira, J1
Bustos, G1
Cardenas, JC1
Cuello, MA1
Owen, GI1
Xavier, DO1
Amaral, LS1
Gomes, MA1
Rocha, MA1
Campos, PR1
Cota, BD1
Tafuri, LS1
Paiva, AM1
Silva, JH1
Andrade, SP1
Belo, AV1
Rattan, R1
Graham, RP1
Maguire, JL1
Giri, S1
Shridhar, V1
Liao, H1
Zhou, Q1
Gu, Y1
Duan, T1
Feng, Y1
Wu, B1
Sheng, L1
Shen, H1
La, D1
Hambly, BD1
Bao, S1
Di, W1
Salem, AF1
Whitaker-Menezes, D1
Howell, A1
Sotgia, F1
Lisanti, MP1
Phoenix, KN1
Vumbaca, F1
Claffey, KP1
Hadad, SM1
Appleyard, V1
Thompson, AM1
Stambolic, V1
Woodgett, JR1
Fantus, IG1
Pritchard, KI1
Goodwin, PJ1
Wiernsperger, NF1
Isnard, F1
Wiernsperger, N1
André, P1

Clinical Trials (2)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Prevention of Pre-eclampsia Using Metformin: a Randomized Control Trial[NCT04855513]414 participants (Anticipated)Interventional2022-03-24Not yet recruiting
An Exploratory Study: Dendritic Cells for Immunotherapy of Metastatic Endometrial Cancer Patients[NCT04212377]Phase 28 participants (Actual)Interventional2019-04-08Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

12 reviews available for metformin and Angiogenesis, Pathologic

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis.
    Pharmacological research, 2021, Volume: 164

    Topics: Animals; Drug Repositioning; Humans; Hypoglycemic Agents; Metformin; MicroRNAs; Neovascularization,

2021
Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer.
    European journal of medicinal chemistry, 2017, Dec-15, Volume: 142

    Topics: Angiogenesis Inhibitors; Animals; Anti-Bacterial Agents; Bevacizumab; Female; Humans; Hypoglycemic A

2017
Angiogenic Dysregulation in Pregnancy-Related Hypertension-A Role for Metformin.
    Reproductive sciences (Thousand Oaks, Calif.), 2018, Volume: 25, Issue:11

    Topics: Angiogenesis Inducing Agents; Animals; Endothelial Cells; Female; Humans; Hypertension, Pregnancy-In

2018
The multifaceted effects of metformin on tumor microenvironment.
    Seminars in cell & developmental biology, 2020, Volume: 98

    Topics: Animals; Antineoplastic Agents; Fibroblasts; Humans; Hypoglycemic Agents; Macrophages; Metformin; Ne

2020
[Novel strategies of ovarian cancer treatment].
    Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 2015, Volume: 39, Issue:233

    Topics: Female; Humans; Metformin; Neovascularization, Pathologic; Ovarian Neoplasms; Poly(ADP-ribose) Polym

2015
Obesity and Cancer: An Angiogenic and Inflammatory Link.
    Microcirculation (New York, N.Y. : 1994), 2016, Volume: 23, Issue:3

    Topics: Animals; Drug Resistance, Neoplasm; Humans; Inflammation; Metformin; Neoplasms; Neovascularization,

2016
Endometrial cancer-targeted therapies myth or reality? Review of current targeted treatments.
    European journal of cancer (Oxford, England : 1990), 2016, Volume: 59

    Topics: Angiogenesis Inhibitors; Antineoplastic Agents, Hormonal; Clinical Trials as Topic; Endometrial Neop

2016
Metformin and Angiogenesis in Cancer - Revisited.
    Oncology, 2016, Volume: 91, Issue:4

    Topics: Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Humans; Metformin; Neoplasm

2016
Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor?
    Breast cancer research and treatment, 2009, Volume: 114, Issue:2

    Topics: Breast Neoplasms; Female; Humans; Hypoglycemic Agents; Metformin; Neovascularization, Pathologic; Ri

2009
Metformin: intrinsic vasculoprotective properties.
    Diabetes technology & therapeutics, 2000,Summer, Volume: 2, Issue:2

    Topics: Animals; Cardiovascular Agents; Diabetes Mellitus, Type 2; Glycosylation; Hemodynamics; Humans; Hypo

2000
[New approach to the vascular action of metformin].
    Journees annuelles de diabetologie de l'Hotel-Dieu, 1989

    Topics: Animals; Fibrinolysis; Hemodynamics; Humans; Hyperinsulinism; Lipid Metabolism; Metformin; Microcirc

1989

Trials

1 trial available for metformin and Angiogenesis, Pathologic

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021

Other Studies

43 other studies available for metformin and Angiogenesis, Pathologic

ArticleYear
Topical metformin suppresses angiogenesis pathways induced by pulsed dye laser irradiation in animal models.
    Experimental dermatology, 2022, Volume: 31, Issue:3

    Topics: Administration, Cutaneous; Animals; Lasers, Dye; Metformin; Models, Animal; Neovascularization, Path

2022
Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation.
    Pharmacological research, 2021, Volume: 174

    Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents; Cell Line; Female; Humans; Metformin; Mi

2021
Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 145

    Topics: Animals; Apoptosis; Autophagy; Benzhydryl Compounds; Carcinoma, Hepatocellular; Disease Progression;

2022
Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis.
    Journal of orthopaedic surgery and research, 2022, Jun-28, Volume: 17, Issue:1

    Topics: Animals; Chondrocytes; Diabetes Mellitus, Type 2; Disease Models, Animal; Ferroptosis; Metformin; Mi

2022
Metformin and simvastatin synergistically suppress endothelin 1-induced hypoxia and angiogenesis in multiple cancer types.
    Cancer science, 2023, Volume: 114, Issue:2

    Topics: Animals; Cell Line, Tumor; Endothelin-1; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Metform

2023
Metformin inhibits angiogenesis of endothelial progenitor cells via miR-221-mediated p27 expression and autophagy.
    Future medicinal chemistry, 2019, Volume: 11, Issue:17

    Topics: AMP-Activated Protein Kinases; Angiogenesis Inducing Agents; Angiogenesis Inhibitors; Autophagy; End

2019
Inhibition of midkine by metformin can contribute to its anticancer effects in malignancies: A proposal mechanism of action of metformin in context of endometrial cancer prevention and therapy.
    Medical hypotheses, 2020, Volume: 134

    Topics: Antineoplastic Agents; Cell Division; Cell Physiological Phenomena; Drug Repositioning; Endometrial

2020
PTPRD-inactivation-induced CXCL8 promotes angiogenesis and metastasis in gastric cancer and is inhibited by metformin.
    Journal of experimental & clinical cancer research : CR, 2019, Dec-05, Volume: 38, Issue:1

    Topics: Cell Line, Tumor; Down-Regulation; Gene Silencing; Humans; Hypoglycemic Agents; Interleukin-8; Metfo

2019
Metformin Inhibits Proliferation and Tumor Growth of QGP-1 Pancreatic Neuroendocrine Tumor Cells by Inducing Cell Cycle Arrest and Apoptosis.
    Anticancer research, 2020, Volume: 40, Issue:1

    Topics: Apoptosis; Biomarkers; Carcinoma, Neuroendocrine; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Pro

2020
Metformin Mitigates Nickel-Elicited Angiopoietin-Like Protein 4 Expression via HIF-1α for Lung Tumorigenesis.
    International journal of molecular sciences, 2020, Jan-17, Volume: 21, Issue:2

    Topics: Angiopoietin-Like Protein 4; Apoptosis; Biomarkers, Tumor; Cell Proliferation; Cell Transformation,

2020
AMP-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension.
    American journal of respiratory cell and molecular biology, 2020, Volume: 62, Issue:6

    Topics: AMP-Activated Protein Kinase Kinases; Animals; Animals, Newborn; Biphenyl Compounds; Ductus Arterios

2020
Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway.
    Journal of vascular research, 2021, Volume: 58, Issue:3

    Topics: AMP-Activated Protein Kinases; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Dilatation, Pa

2021
Metformin attenuates expression of angiogenic and inflammatory genes in human endometriotic stromal cells.
    Experimental cell research, 2021, 07-15, Volume: 404, Issue:2

    Topics: Cell Movement; Cell Proliferation; Cells, Cultured; Endometriosis; Endometrium; Epithelial Cells; Fe

2021
A novel imidazolinone metformin-methylglyoxal metabolite promotes endothelial cell angiogenesis via the eNOS/HIF-1α pathway.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2021, Volume: 35, Issue:7

    Topics: Animals; Hindlimb; Hyperglycemia; Hypoglycemic Agents; Hypoxia-Inducible Factor 1, alpha Subunit; Im

2021
Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo.
    Molecular carcinogenesis, 2018, Volume: 57, Issue:1

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Hepatocellular; Cell Line; Cell

2018
Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo.
    PloS one, 2018, Volume: 13, Issue:3

    Topics: Animals; Apoptosis; Cell Movement; Cell Proliferation; Cells, Cultured; Endothelial Cells; Humans; H

2018
Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer.
    Life sciences, 2018, Sep-01, Volume: 208

    Topics: Animals; Antimetabolites, Antineoplastic; Carcinoma, Pancreatic Ductal; Cell Proliferation; Deoxycyt

2018
Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma.
    Cellular and molecular gastroenterology and hepatology, 2018, Volume: 6, Issue:4

    Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Collagen Type VI; Core

2018
Evaluation of Angiogenesis Process after Metformin and LY294002 Treatment in Mammary Tumor.
    Anti-cancer agents in medicinal chemistry, 2019, Volume: 19, Issue:5

    Topics: Animals; Cell Line, Tumor; Chromones; Cobalt; Dog Diseases; Dogs; Female; Hypoxia-Inducible Factor 1

2019
Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses.
    Nature communications, 2019, 02-22, Volume: 10, Issue:1

    Topics: Adenoma, Oxyphilic; Aminopyridines; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Prolifera

2019
RasGRP1 is a target for VEGF to induce angiogenesis and involved in the endothelial-protective effects of metformin under high glucose in HUVECs.
    IUBMB life, 2019, Volume: 71, Issue:9

    Topics: Cell Movement; Diabetes Complications; DNA-Binding Proteins; Endothelial Cells; Gene Expression Regu

2019
Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation.
    Journal of experimental & clinical cancer research : CR, 2019, Jun-04, Volume: 38, Issue:1

    Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Disease Models, A

2019
Paradoxic effects of metformin on endothelial cells and angiogenesis.
    Carcinogenesis, 2014, Volume: 35, Issue:5

    Topics: Adipose Tissue; AMP-Activated Protein Kinases; Angiogenesis Inhibitors; Animals; Antineoplastic Agen

2014
Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke.
    The European journal of neuroscience, 2014, Volume: 39, Issue:12

    Topics: AMP-Activated Protein Kinases; Animals; Apomorphine; Brain; Disease Models, Animal; Dopamine Agonist

2014
AMP-activated protein kinase suppresses the in vitro and in vivo proliferation of hepatocellular carcinoma.
    PloS one, 2014, Volume: 9, Issue:4

    Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Carcinoma, Hepatocellular; Cell

2014
Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation.
    PloS one, 2014, Volume: 9, Issue:6

    Topics: 1,2-Dimethylhydrazine; Animals; Antigens, CD34; Antineoplastic Agents; Cell Proliferation; Colon; Co

2014
Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion.
    Neuroscience letters, 2014, Sep-05, Volume: 579

    Topics: Animals; Atrophy; Brain; Cyclic AMP-Dependent Protein Kinases; Doublecortin Protein; Hypoglycemic Ag

2014
The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells.
    International journal of cancer, 2015, Mar-15, Volume: 136, Issue:6

    Topics: AMP-Activated Protein Kinases; Animals; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Electron Tran

2015
Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells.
    Cell biochemistry and biophysics, 2015, Volume: 71, Issue:2

    Topics: AMP-Activated Protein Kinases; Angiogenesis Inhibitors; Carcinoma, Hepatocellular; Hep G2 Cells; Hep

2015
Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model.
    Endocrinology, 2015, Volume: 156, Issue:4

    Topics: Angiogenesis Modulating Agents; Angiopoietin-1; Angiopoietin-2; Animals; Dehydroepiandrosterone; Fem

2015
Attenuating tumour angiogenesis: a preventive role of metformin against breast cancer.
    BioMed research international, 2015, Volume: 2015

    Topics: Animals; Breast Neoplasms; Female; HeLa Cells; Humans; Hypoglycemic Agents; Mammary Neoplasms, Exper

2015
Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin.
    The Journal of pharmacology and experimental therapeutics, 2016, Volume: 356, Issue:2

    Topics: Animals; Cells, Cultured; Endothelial Cells; Hyperglycemia; Hypoglycemic Agents; Metformin; Mice; Mi

2016
Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis.
    Oncotarget, 2015, Dec-29, Volume: 6, Issue:42

    Topics: Angiogenesis Inhibitors; Animals; Breast Neoplasms; Capillaries; Coculture Techniques; Female; Gene

2015
PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2016, 06-15, Volume: 22, Issue:12

    Topics: Animals; Breast Neoplasms; Diet, High-Fat; Female; Glucose; Humans; Hypoglycemic Agents; Macrophages

2016
Metformin enhancing the antitumor efficacy of carboplatin against Ehrlich solid carcinoma grown in diabetic mice: Effect on IGF-1 and tumoral expression of IGF-1 receptors.
    International immunopharmacology, 2017, Volume: 44

    Topics: Animals; Antineoplastic Agents; Apoptosis; Carboplatin; Carcinoma, Ehrlich Tumor; Caspase 3; Cell Li

2017
Diabetic concentrations of metformin inhibit platelet-mediated ovarian cancer cell progression.
    Oncotarget, 2017, Mar-28, Volume: 8, Issue:13

    Topics: Apoptosis; Blood Platelets; Cell Movement; Cell Proliferation; Diabetes Mellitus, Type 2; Disease Pr

2017
Metformin inhibits inflammatory angiogenesis in a murine sponge model.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2010, Volume: 64, Issue:3

    Topics: Angiogenesis Inhibitors; Animals; Anti-Inflammatory Agents; Chemokine CCL2; Chemotaxis, Leukocyte; C

2010
Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo.
    Neoplasia (New York, N.Y.), 2011, Volume: 13, Issue:5

    Topics: AMP-Activated Protein Kinases; Angiogenesis Inhibitors; Animals; Cell Line, Tumor; Cell Proliferatio

2011
Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway.
    Oncology reports, 2012, Volume: 27, Issue:6

    Topics: Cell Line, Tumor; Female; Humans; Intercellular Signaling Peptides and Proteins; Luteinizing Hormone

2012
Metformin inhibits the development and metastasis of ovarian cancer.
    Oncology reports, 2012, Volume: 28, Issue:3

    Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell

2012
Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance.
    Cell cycle (Georgetown, Tex.), 2012, Nov-15, Volume: 11, Issue:22

    Topics: Animals; Autophagy; Breast Neoplasms; Carrier Proteins; Cell Line, Tumor; DNA-Directed RNA Polymeras

2012
Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model.
    Breast cancer research and treatment, 2009, Volume: 113, Issue:1

    Topics: Adenylate Kinase; Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Enzyme Activat

2009
Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model.
    Breast cancer research and treatment, 2009, Volume: 114, Issue:2

    Topics: AMP-Activated Protein Kinases; Animals; Breast Neoplasms; Cell Line, Tumor; Disease Models, Animal;

2009