metastat and Respiratory-Distress-Syndrome

metastat has been researched along with Respiratory-Distress-Syndrome* in 7 studies

Reviews

1 review(s) available for metastat and Respiratory-Distress-Syndrome

ArticleYear
Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS).
    Pharmacological research, 2011, Volume: 64, Issue:6

    Sepsis is a disease process that has humbled the medical profession for centuries with its resistance to therapy, relentless mortality, and pathophysiologic complexity. Despite 30 years of aggressive, concerted, well-resourced efforts the biomedical community has been unable to reduce the mortality of sepsis from 30%, nor the mortality of septic shock from greater than 50%. In the last decade only one new drug for sepsis has been brought to the market, drotrecogin alfa-activated (Xigris™), and the success of this drug has been limited by patient safety issues. Clearly a new agent is desperately needed. The advent of recombinant human immune modulators held promise but the outcomes of clinical trials using biologics that target single immune mediators have been disappointing. The complex pathophysiology of the systemic inflammatory response syndrome (SIRS) is self-amplifying and redundant at multiple levels. In this review we argue that perhaps pharmacologic therapy for sepsis will only be successful if it addresses this pathophysiologic complexity; the drug would have to be pleiotropic, working on many components of the inflammatory cascade at once. In this context, therapy that targets any single inflammatory mediator will not adequately address the complexity of SIRS. We propose that chemically modified tetracycline-3, CMT-3 (or COL-3), a non-antimicrobial modified tetracycline with pleiotropic anti-inflammatory properties, is an excellent agent for the management of sepsis and its associated complication of the acute respiratory distress syndrome (ARDS). The purpose of this review is threefold: (1) to examine the shortcomings of current approaches to treatment of sepsis and ARDS in light of their pathophysiology, (2) to explore the application of COL-3 in ARDS and sepsis, and finally (3) to elucidate the mechanisms of COL-3 that may have potential therapeutic benefit in ARDS and sepsis.

    Topics: Animals; Anti-Inflammatory Agents; Cytokines; Humans; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Protease Inhibitors; Respiratory Distress Syndrome; Sepsis; Tetracyclines

2011

Other Studies

6 other study(ies) available for metastat and Respiratory-Distress-Syndrome

ArticleYear
Chemically modified tetracycline 3 prevents acute respiratory distress syndrome in a porcine model of sepsis + ischemia/reperfusion-induced lung injury.
    Shock (Augusta, Ga.), 2012, Volume: 37, Issue:4

    Experimental pharmacotherapies for the acute respiratory distress syndrome (ARDS) have not met with success in the clinical realm. We hypothesized that chemically modified tetracycline 3 (CMT-3), an anti-inflammatory agent that blocks multiple proteases and cytokines, would prevent ARDS and injury in other organs in a clinically applicable, porcine model of inflammation-induced lung injury. Pigs (n = 15) were anesthetized and instrumented for monitoring. A "2-hit" injury was induced: (a) peritoneal sepsis-by placement of a fecal clot in the peritoneum, and (b) ischemia/reperfusion-by clamping the superior mesenteric artery for 30 min. Animals were randomized into two groups: CMT-3 group (n = 7) received CMT-3 (200 mg/kg); placebo group (n = 9) received the same dose of a CMT-3 vehicle (carboxymethylcellulose). Experiment duration was 48 h or until early mortality. Animals in both groups developed polymicrobial bacteremia. Chemically modified tetracycline 3 treatment prevented ARDS as indicated by PaO(2)/FIO(2) ratio, static compliance, and plateau airway pressure (P < 0.05 vs. placebo). It improved all histological lesions of ARDS (P < 0.05 vs. placebo). The placebo group developed severe ARDS, coagulopathy, and histological injury to the bowel. Chemically modified tetracycline 3 treatment prevented coagulopathy and protected against bowel injury. It significantly lowered plasma concentrations of interleukin 1β (IL-1β), tumor necrosis factor α, IL-6, IL-8, and IL-10. This study presents a clinically relevant model of lung injury in which CMT-3 treatment prevented the development of ARDS due in part to reduction of multiple plasma cytokines. Treatment of sepsis patients with CMT-3 could significantly reduce progression from sepsis into ARDS.

    Topics: Animals; Lung Injury; Reperfusion Injury; Respiratory Distress Syndrome; Sepsis; Tetracyclines

2012
A tetracycline analog improves acute respiratory distress syndrome survival in an ovine model.
    The Annals of thoracic surgery, 2010, Volume: 90, Issue:2

    Acute respiratory distress syndrome (ARDS) mortality remains high with no effective pharmacotherapy available. A chemically modified tetracycline (COL-3) is a potent inhibitor of matrix metalloproteinases. Prophylactic COL-3 administration has been shown to be effective in ARDS treatment. In the present study, the therapeutic effect of COL-3, given shortly after injury, was investigated in an ovine ARDS model.. The ovine ARDS model was induced by combined 40% body area third-degree burn, smoke inhalation, and barotrauma injuries. The sheep were randomly assigned into two groups: control (10% Solutol, n = 5) or COL-3 (200 mg/m(2), n = 5). Intravenous administration of COL-3 or vehicle was performed 1 hour after the smoke and burn injury. When ARDS criteria were met (arterial partial pressure of oxygen to fraction of inspired oxygen ratio < 200) or no later than 24 hours after injury (if criteria not met), animals underwent the ARDS Network ventilation protocol. At 96 hours after injury or at animal death, lung pathologic processes were assessed.. Administration of COL-3 improved hemodynamics and reduced carbon dioxide levels. Administration of COL-3 also significantly delayed ARDS development and prolonged survival time compared with the control group (20.4 + or - 3.8 hours versus 12.9 + or - 3.3 hours; 94.2 + or - 4.0 hours versus 58.6 + or - 26.4 hours; p < 0.05, respectively). Survival analysis showed a higher 96-hour survival from ARDS with COL-3 administration as compared with control (80% versus 20%; p < 0.05). Lung pathologic processes were also improved by COL-3. Plasma matrix metalloproteinase-2 level increased in control but not in COL-3-treated animals.. Our present study suggests that COL-3 may be an effective pharmacotherapy for ARDS treatment.

    Topics: Animals; Disease Models, Animal; Respiratory Distress Syndrome; Sheep; Survival Rate; Tetracyclines

2010
Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model.
    Shock (Augusta, Ga.), 2005, Volume: 24, Issue:4

    Sepsis causes more than with 215,000 deaths per year in the United States alone. Death can be caused by multiple system organ failure, with the lung, in the form of the acute respiratory distress syndrome (ARDS), often being the first organ to fail. We developed a chronic porcine model of septic shock and ARDS and hypothesized that blocking the proteases neutrophil elastase (NE) and matrix metalloproteinases (MMP-2 and MMP-9) with the modified tetracycline, COL-3, would significantly improve morbidity in this model. Pigs were anesthetized and instrumented for hemodynamic monitoring and were then randomized to one of three groups: control (n = 3), laparotomy only; superior mesenteric artery occlusion (SMA) + fecal blood clot (FC; n = 7), with intraperitoneal placement of a FC; and SMA + FC + COL (n = 5), ingestion of COL-3 12 h before injury. Animals emerged from anesthesia and were monitored and treated with fluids and antibiotics in an animal intensive care unit continuously for 48 h. Serum and bronchoalveolar lavage fluid (BALF) were sampled and bacterial cultures, MMP-2, MMP-9, NE, and multiple cytokine concentrations were measured. Pigs were reanesthetized and placed on a ventilator when significant lung impairment occurred (PaO2/FiO2 < 250). At necropsy, lung water and histology were assessed. All animals in the SMA + FC group developed septic shock evidenced by a significant fall in arterial blood pressure that was not responsive to fluids. Lung injury typical of ARDS (i.e., a fall in lung compliance and PaO2/FiO2 ratio and a significant increase in lung water) developed in this group. Additionally, there was a significant increase in plasma IL-1 and IL-6 and in BALF IL-6, IL-8, IL-10, NE, and protein concentration in the SMA + FC group. COL-3 treatment prevented septic shock and ARDS and significantly decreased cytokine levels in plasma and BALF. COL-3 treatment also significantly reduced NE activity (P < 0.05) and reduced MMP-2 and MMP-9 activity in BALF by 64% and 34%, respectively, compared with the SMA + FC group. We conclude that prophylactic COL-3 prevented the development of ARDS and unexpectedly also prevented septic shock in a chronic insidious onset animal model of sepsis-induced ARDS. The mechanism of this protection is unclear, as COL-3 inhibited numerous inflammatory mediators. Nevertheless, COL-3 significantly reduced the morbidity in a clinically applicable animal model, demonstrating the possibility that COL-3 may be useful in reduc

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Disease Models, Animal; Female; Inflammation; Interleukin-1; Interleukin-10; Interleukin-6; Interleukin-8; Leukocyte Elastase; Lung; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mesenteric Artery, Superior; Models, Chemical; Oxygen; Peptide Hydrolases; Pulmonary Edema; Respiratory Distress Syndrome; Sepsis; Swine; Tetracycline; Tetracyclines; Time Factors

2005
Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats.
    The Journal of surgical research, 2003, May-15, Volume: 111, Issue:2

    Neutrophil activation with concomitant matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) release has been implicated in the development of sepsis-induced acute lung injury. We hypothesized that COL-3, a chemically modified tetracycline known to inhibit MMP-2 and MMP-9, would reduce lung injury and improve survival in rats following cecal ligation and puncture (CLP).. Sprague-Dawley rats were separated into five groups: 1) sham CLP+ carboxymethylcellulose (CMC; vehicle for COL-3, n = 6); 2) sham CLP + COL-3 (n = 6); 3) CLP + CMC (n = 10); 4) CLP + single-dose (SD) COL-3 administered concomitant with CLP (n = 9); and 5) CLP + multiple-dose (MD) COL-3 administered concomitant with CLP and at 24 h after CLP (n = 15). Rats were sacrificed at 168 h (7 days) or immediately after death, with survival defined as hours after CLP. Histological lung assessment was made based on neutrophil infiltration, alveolar wall thickening, and intraalveolar edema fluid. Lung MMP-2 and MMP-9 levels were assessed by immunohistochemistry. MMP-2 and MMP-9 levels were correlated with survival by simple regression analysis.. The mortality of rats in the cecal ligation and puncture without treatment group (CLP + CMC) was 70% at 168 h. A single dose of COL-3 in the CLP + COL-3 (SD) group significantly reduced mortality to 54%. Furthermore, with a repeat dose of COL-3 at 24 h after CLP, mortality was significantly reduced to 33%. Pathologic lung changes seen histologically in the CLP + CMC group were significantly reduced by COL-3. A significant reduction in lung tissue levels of MMP-2 and MMP-9 was noted in both groups treated with COL-3. Reduction of MMP-2 and MMP-9 levels correlated with improved survival.. Inhibition of MMP-2 and MMP-9 by COL-3 in a clinically relevant model of sepsis-induced acute lung injury reduces pulmonary injury and improves survival in a dose-dependent fashion. Our results suggest that prophylactic treatment with COL-3 in high-risk patients may reduce the morbidity and mortality associated with sepsis-induced acute respiratory distress syndrome.

    Topics: Animals; Cecum; Chromatography, High Pressure Liquid; Disease Models, Animal; Enzyme Inhibitors; Ligation; Lung; Lung Diseases; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Metalloendopeptidases; Punctures; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome; Sepsis; Tetracycline; Tetracyclines

2003
Metalloproteinase inhibition prevents acute respiratory distress syndrome.
    The Journal of surgical research, 2001, Volume: 99, Issue:2

    The acute respiratory distress syndrome (ARDS) occurs in patients with clearly identifiable risk factors, and its treatment remains merely supportive. We postulated that patients at risk for ARDS can be protected against lung injury by a prophylactic treatment strategy that targets neutrophil-derived proteases. We hypothesized that a chemically modified tetracycline 3 (COL-3), a potent inhibitor of neutrophil matrix metalloproteinases (MMPs) and neutrophil elastase (NE) with minimal toxicity, would prevent ARDS in our porcine endotoxin-induced ARDS model.. Yorkshire pigs were anesthetized, intubated, surgically instrumented for hemodynamic monitoring, and randomized into three groups: (1) control (n = 4), surgical instrumentation only; (2) lipopolysaccharide (LPS) (n = 4), infusion of Escherichia coli lipopolysaccharide at 100 microg/kg; and (3) COL-3 + LPS (n = 5), ingestion of COL-3 (100 mg/kg) 12 h before LPS infusion. All animals were monitored for 6 h following LPS or sham LPS infusion. Serial bronchoalveolar lavage (BAL) samples were analyzed for MMP concentration by gelatin zymography. Lung tissue was fixed for morphometric assessment at necropsy.. LPS infusion was marked by significant (P < 0.05) physiological deterioration as compared with the control group, including increased plateau airway pressure (P(plat)) (control = 15.7 +/- 0.4 mm Hg, LPS = 23.0 +/- 1.5 mm Hg) and a decrement in arterial oxygen partial pressure (P(a)O(2)) (LPS = 66 +/- 15 mm Hg, Control = 263 +/- 25 mm Hg) 6 h following LPS or sham LPS infusion, respectively. Pretreatment with COL-3 reduced the above pathophysiological changes 6 h following LPS infusion (P(plat) = 18.5 +/- 1.7 mm Hg, P(a)O(2) = 199 +/- 35 mm Hg; P = NS vs control). MMP-9 and MMP-2 concentration in BAL fluid was significantly increased between 2 and 4 h post-LPS infusion; COL-3 reduced the increase in MMP-9 and MMP-2 concentration at all time periods. Morphometrically LPS caused a significant sequestration of neutrophils and monocytes into pulmonary tissue. Pretreatment with COL-3 ameliorated this response. The wet/dry lung weight ratio was significantly greater (P < 0.05) in the LPS group (10.1 +/- 1.0 ratio) than in either the control (6.4 +/- 0.5 ratio) or LPS+COL-3 (7.4 +/- 0.6 ratio) group.. A single prophylactic treatment with COL-3 prevented lung injury in our model of endotoxin-induced ARDS. The proposed mechanism of COL-3 is a synergistic inhibition of the terminal neutrophil effectors MMPs and NE. Similar to the universal practice of prophylaxis against gastric stress ulceration and deep venous thromboses in trauma patients, chemically modified tetracyclines may likewise be administered to prevent acute lung injury in critically injured patients at risk of developing ARDS.

    Topics: Animals; Antibiotics, Antineoplastic; Bronchoalveolar Lavage Fluid; Cardiac Output; Gelatin; Lipopolysaccharides; Metalloendopeptidases; Neutrophils; Pancreatic Elastase; Pulmonary Alveoli; Pulmonary Edema; Respiratory Distress Syndrome; Swine; Tetracycline; Tetracyclines

2001
Matrix metalloproteinase inhibitor: differential effects on pulmonary neutrophil and monocyte sequestration following cardiopulmonary bypass.
    The journal of extra-corporeal technology, 1999, Volume: 31, Issue:2

    Acute respiratory distress syndrome (ARDS) following cardiopulmonary bypass (CPB), also known as "post-pump" or "post-perfusion syndrome" (PPS), results from sequential priming and activation of neutrophils. We hypothesized that chemically modified tetracycline (CMT-3) an inhibitor of neutrophil matrix metalloproteinase (MMP) and elastase, would prevent PPS. We performed histometric analysis of lung tissue from our porcine PPS model to correlate cellular sequestration and histologic injury with CMT-3 treatment.. Yorkshire pigs were randomized into five groups: Control (n = 3); CPB (n = 5); femoral-femoral bypass 1 hour; LPS (n = 7), Escherichia coli lipopolysaccharide (1 microgram/kg); CPB + LPS (n = 6); and CPB + LPS + CMT (n = 5), sequential insults and CMT-3. Protocol histometric analysis defined cellular and tissue components of lung injury.. CMT-3 decreased neutrophil sequestration in the CPB + LPS + CMT-3 group (p < 0.0001 vs. CPB + LPS). There were no differences in monocytes between CPB + LPS and CPB + LPS + CMT treatment groups.. CMT-3 attenuates neutrophil sequestration but has no effect on mononuclear sequestration in our PPS model. This finding supports current research on leukocyte chemokines and has important implications regarding mechanisms of CMT-3. Despite lack of monocyte response to CMT-3, PPS was prevented by inhibiting neutrophils alone; confirming the primary role of neutrophils in PPS.

    Topics: Animals; Cardiopulmonary Bypass; Disease Models, Animal; Drug Evaluation, Preclinical; Matrix Metalloproteinase Inhibitors; Monocytes; Neutrophils; Protease Inhibitors; Random Allocation; Respiratory Distress Syndrome; Swine; Tetracyclines

1999