metallothionein has been researched along with Renal-Insufficiency--Chronic* in 3 studies
3 other study(ies) available for metallothionein and Renal-Insufficiency--Chronic
Article | Year |
---|---|
Reduced Expression of Metallothionein-I/II in Renal Proximal Tubules Is Associated with Advanced Chronic Kidney Disease.
Chronic kidney disease (CKD) is a commonly occurring complex renal syndrome that causes overall mortality in many diseases. The clinical manifestations of CKD include renal tubulointerstitial fibrosis and loss of renal function. Metallothionein-I/II (MT-I/II) is potentially expressed in the liver and kidney, and possesses antioxidant and metal detoxification properties. However, whether MT-I/II expression is associated with the prognosis of nephropathy remains unknown. In this study, we investigated the MT-I/II level in human CKD, using immunohistochemistry. MT-I/II is located on the proximal tubules and is notably reduced in patients with CKD. MT-I/II expression was significantly correlated with the functional and histological grades of CKD. In an aristolochic acid (AAI)-induced nephropathy mouse model, MT-I/II was abundantly increased after AAI injection for 7 days, but decreased subsequently compared to that induced in the acute phase when injected with AAI for 28 days. Furthermore, we found that ammonium pyrrolidinedithiocarbamate (PDTC) restored AAI-induced MT-I/II reduction in HK2 cells. The injection of PDTC ameliorated AAI-induced renal tubulointerstitial fibrosis and reduced the concentrations of blood urea nitrogen and creatinine in mouse sera. Taken together, our results indicate that MT-I/II reduction is associated with advanced CKD, and the retention of renal MT-I/II is a potential therapeutic strategy for CKD. Topics: Adult; Aged; Aged, 80 and over; Female; Humans; Kidney Tubules, Proximal; Male; Metallothionein; Middle Aged; Renal Insufficiency, Chronic; Young Adult | 2021 |
Levels of heavy metals and their binding protein metallothionein in type 2 diabetics with kidney disease.
Hyperglycemia, a major metabolic disturbance present in diabetes, promotes oxidative stress. Activation of antioxidant defense is an important mechanism to prevent cell damage. Levels of heavy metals and their binding proteins can contribute to oxidative stress. Antiradical capacity and levels of metallothionein (MT), metals (zinc and copper), and selected antioxidants (bilirubin, cysteine, and glutathione) were determined in 70 type 2 diabetes mellitus (T2DM) subjects and 80 healthy subjects of Caucasian origin. Single nucleotide polymorphism (rs28366003) in MT gene was detected. Antiradical capacity, conjugated bilirubin, and copper were significantly increased in diabetics, whereas MT and glutathione were decreased. Genotype AA of rs28366003 was associated with higher zinc levels in the diabetic group. The studied parameters were not influenced by renal function. This is the first study comprehensively investigating differences in MT and metals relevant to oxidative stress in T2DM. Ascertained differences indicate increased oxidative stress in T2DM accompanied by abnormalities in non-enzymatic antioxidant defense systems. Topics: Aged; Aged, 80 and over; Biomarkers; Case-Control Studies; Copper; Czech Republic; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Genetic Association Studies; Humans; Kidney; Male; Metallothionein; Middle Aged; Oxidative Stress; Polymorphism, Single Nucleotide; Renal Insufficiency, Chronic; Severity of Illness Index; Zinc | 2017 |
Metallothionein MT2A A-5G Polymorphism as a Risk Factor for Chronic Kidney Disease and Diabetes: Cross-Sectional and Cohort Studies.
Metallothioneins (MTs) are proteins that protect cells from toxic agents such as heavy metal ions or reactive oxygen species. MT2A A-5G is a single nucleotide polymorphism in the promoter region of the MT2A gene, and the minor G allele results in lower transcription efficiency. We aimed to elucidate associations between MT2A A-5G and risks of 2 diseases potentially related to lowered MT expression, chronic kidney disease (CKD), and diabetes mellitus (DM), in a community-dwelling population. Study subjects were Nagoya city residents participating in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC) Daiko Study, comprised 749 men and 2,025 women, aged 39-75 years. CKD (>stage 3) and DM were defined by standard guidelines. Associations were evaluated using logistic regression models with adjustments for age, sex and potential confounders in a cross-sectional study, and verified in a 5-year longitudinal study. Odds ratios (OR [95% confidence interval]) were calculated relative to the AA genotype. Serum MT (I + II), Cd and zinc levels were also determined by genotype. The OR of the GG genotype for CKD risk was 3.98 (1.50, 10.58) in the cross-sectional study and 5.17 (1.39, 19.28) in the longitudinal study. The OR of the GA genotype for DM was 1.86 (1.26, 2.75) in the cross-sectional study and 2.03 (1.19, 3.46) in the longitudinal study. MT2A A-5G may be associated with CKD and DM risks. This polymorphism is a promising target for evaluations of CKD and DM risks with possible involvement of low-dose chronic exposure to environmental pollutants. Topics: Adult; Aged; Chi-Square Distribution; Cross-Sectional Studies; Diabetes Mellitus; Female; Gene Frequency; Genetic Association Studies; Genetic Predisposition to Disease; Heterozygote; Homozygote; Humans; Logistic Models; Longitudinal Studies; Male; Metallothionein; Middle Aged; Odds Ratio; Phenotype; Polymorphism, Genetic; Renal Insufficiency, Chronic; Risk Factors; Zinc | 2016 |