metallothionein and Hyperaldosteronism

metallothionein has been researched along with Hyperaldosteronism* in 4 studies

Other Studies

4 other study(ies) available for metallothionein and Hyperaldosteronism

ArticleYear
Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism.
    Journal of cardiovascular pharmacology, 2009, Volume: 53, Issue:5

    A dyshomeostasis of extra- and intracellular Ca(2+) and Zn(2+) occurs in rats receiving chronic aldosterone/salt treatment (ALDOST). Herein, we hypothesized that the dyshomeostasis of intracellular Ca(2+) and Zn(2+) is intrinsically coupled that alters the redox state of cardiac myocytes and mitochondria, with Ca(2+) serving as a pro-oxidant and Zn(2+) as an antioxidant. Toward this end, we harvested hearts from rats receiving 4 weeks of ALDOST alone or cotreatment with either spironolactone (Spiro), an aldosterone receptor antagonist, or amlodipine (Amlod), an L-type Ca(2+) channel blocker, and from age/sex-matched untreated controls. In each group, we monitored cardiomyocyte [Ca(2+)]i and [Zn(2+)]i and mitochondrial [Ca(2+)]m and [Zn(2+)]m; biomarkers of oxidative stress and antioxidant defenses; expression of Zn transporters, Zip1 and ZnT-1; metallothionein-1, a Zn(2+)-binding protein; and metal response element transcription factor-1, a [Zn(2+)]i sensor and regulator of antioxidant defenses. Compared with controls, at 4-week ALDOST, we found the following: (a) increased [Ca(2+)]i and [Zn(2+)]i, together with increased [Ca(2+)]m and [Zn(2+)]m, each of which could be prevented by Spiro and attenuated with Amlod; (b) increased levels of 3-nitrotyrosine and 4-hydroxy-2-nonenal in cardiomyocytes, together with increased H(2)O(2) production, malondialdehyde, and oxidized glutathione in mitochondria that were coincident with increased activities of Cu/Zn superoxide dismutase and glutathione peroxidase; and (c) increased expression of metallothionein-1, Zip1 and ZnT-1, and metal response element transcription factor-1, attenuated by Spiro. Thus, an intrinsically coupled dyshomeostasis of intracellular Ca(2+) and Zn(2+) occurs in cardiac myocytes and mitochondria in rats receiving ALDOST, where it serves to alter their redox state through a respective induction of oxidative stress and generation of antioxidant defenses. The importance of therapeutic strategies that can uncouple these two divalent cations and modulate their ratio in favor of sustained antioxidant defenses is therefore suggested.

    Topics: Aldehydes; Aldosterone; Amlodipine; Animals; Calcium; Calcium Channel Blockers; Chronic Disease; Disease Models, Animal; Glutathione Peroxidase; Homeostasis; Hydrogen Peroxide; Hyperaldosteronism; Male; Metallothionein; Mineralocorticoid Receptor Antagonists; Mitochondria, Heart; Myocytes, Cardiac; Oxidative Stress; Rats; Rats, Sprague-Dawley; Spironolactone; Superoxide Dismutase; Tyrosine; Zinc

2009
Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism.
    Journal of cardiovascular pharmacology, 2008, Volume: 52, Issue:3

    Iterations in Ca2+ and Mg2+ balance accompany aldosteronism (inappropriate for dietary Na+ intake). Increased Zn excretion and Zn translocation to injured tissues, including the heart, also occurs. Several causes and consequences of Zn dyshomeostasis in rats receiving aldosterone/salt treatment (ALDOST) were examined. (1) To study the role of urinary acidification in promoting hyperzincuria, acetazolamide (75 mg/kg), a carbonic anhydrase inhibitor, was used as cotreatment to raise urinary HCO3 excretion. (2) To assess Zn levels in the heart, including cardiomyocyte cytosolic free [Zn2+]i and mitochondrial Zn, the expression of metallothionein (MT-I), a Zn binding protein, and biomarkers of oxidative stress were examined. (3) Oxidative stress and cardiac pathology in response to ZnSO4 supplement (40 mg/d) were also studied. Comparison of controls and rats receiving 4 weeks ALDOST revealed the following: (1) an acidification of urine and metabolic alkalosis associated with increased urinary Zn excretion and hypozincemia, each of which were prevented by acetazolamide; (2) a rise in cardiac Zn, including increased [Zn2+]i and mitochondrial Zn, associated with increased tissue MT-I, 8-isoprostane, malondialdehyde, and gp91(phox), coupled with oxidative stress in plasma and urine; (3) ZnSO4 prevented hypozincemia, but not ionized hypocalcemia, and attenuated oxidative stress and microscopic scarring without preventing the vasculitis and perivascular fibrosis of intramural coronary arteries. Thus, the hyperzincuria seen with ALDOST is due to urinary acidification. The oxidative stress that appears in the heart is accompanied by increased tissue Zn serving as an antioxidant. Cotreatment with ZnSO4 attenuated cardiomyocyte necrosis; however, polynutrient supplement may be required to counteract the dyshomeostasis of all 3 cations that accompanies aldosteronism and contributes to cardiac pathology.

    Topics: Acetazolamide; Aldosterone; Animals; Calcium; Chronic Disease; Disease Models, Animal; Homeostasis; Hydrogen-Ion Concentration; Hyperaldosteronism; Magnesium; Male; Metallothionein; Myocytes, Cardiac; Necrosis; Oxidative Stress; Rats; Rats, Sprague-Dawley; Urine; Zinc; Zinc Sulfate

2008
Tissue 65Zinc translocation in a rat model of chronic aldosteronism.
    Journal of cardiovascular pharmacology, 2008, Volume: 51, Issue:4

    Zinc, an essential micronutrient, is involved in wound healing. The hypozincemia seen with chronic aldosteronism is associated with enhanced fecal and urinary excretory Zn losses, and its tissue distribution is less certain. This study monitored tissue 65Zn distribution in uninephrectomized rats at weeks 1 and 4 of aldosterone/salt treatment (ALDOST). Plasma and tissue total radionucleotide uptake was determined by calculating its mean radioactivity at 1, 4, 8, 24, and 48 hours after intravenous 65Zn administration and where respective area under the concentration-time curves (AUC) were determined by the linear trapezoidal rule and expressed as a tissue:plasma AUC ratio. Examined tissues included: (1) injured heart and kidney in response to ALDOST and incised skin; (2) noninjured liver, skeletal muscle, and spleen sites of stress-linked Zn uptake; and (3) bone, a major storage and release site when Zn homeostasis is threatened. In comparison with age-matched and gender-matched controls, the following were found with week 1 and 4 ALDOST: (1) reduced plasma 65Zn; (2) an accumulation of 65Zn in heart and kidneys, where a well-known vasculopathy involves intramural vessels, and in incised skin at week 1; (3) an organ-specific increase in tissue 65Zn in liver, in keeping with upregulated metallothionein expression, skeletal muscle, and spleen; and (4) a fall in bone and healed skin Zn at week 4. Thus a wide-ranging disturbance in Zn homeostasis appears during ALDOST to include its translocation from plasma to injured heart, kidneys, and skin and noninjured liver, skeletal muscle, and spleen together with a resorption of stored Zn in bone at week 4. Zinc dyshomeostasis is an integral feature of chronic aldosteronism.

    Topics: Animals; Bone Resorption; Chronic Disease; Disease Models, Animal; Feces; Hyperaldosteronism; Kidney; Liver; Male; Metallothionein; Muscle, Skeletal; Nephrectomy; Organ Specificity; Rats; Rats, Sprague-Dawley; Zinc; Zinc Radioisotopes

2008
Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:4

    Zinc is a structural constituent of many proteins, including Cu/Zn superoxide dismutase (SOD), an endogenous antioxidant enzyme. Hypozincemia has been found in patients hospitalized with congestive heart failure, where neurohormonal activation, including the renin-angiotensin-aldosterone system (RAAS), is expected and oxidative stress is present. This study was undertaken to elucidate potential pathophysiological mechanisms involved in Zn dyshomeostasis in aldosteronism. In rats receiving aldosterone/salt treatment (ALDOST) alone for 1 and 4 wk or in combination with spironolactone (Spiro), an ALDO receptor antagonist, we monitored 24-h urinary and fecal Zn excretion and tissue Zn levels in heart, liver, and skeletal muscle, together with tissue metallothionein (MT)-I, a Zn(2+)-binding protein, and Cu/Zn-SOD activities in plasma and tissues. When compared with unoperated, untreated, age-/sex-matched controls, urinary and, in particular, fecal Zn losses were markedly increased (P < 0.05) at days 7 and 28 of ALDOST, leading to hypozincemia and a fall (P < 0.05) in plasma Cu/Zn-SOD activity. Microscopic scars and perivascular fibrosis of intramural coronary arteries first appeared in the right and left ventricles at week 4 of ALDOST and were accompanied by increased (P < 0.05) tissue Zn, MT-I, and Cu/Zn-SOD activity, which were not found in uninjured liver or skeletal muscle. Spiro cotreatment prevented cardiac injury and Zn redistribution to the heart. Thus increased urinary and fecal Zn losses, together with their preferential translocation to sites of cardiac injury, where MT-I overexpression and increased Cu/Zn-SOD activity appeared, contribute to Zn dyshomeostasis in rats with aldosteronism, which were each prevented by Spiro. These findings may shed light on Zn dyshomeostasis found in patients with decompensated heart failure.

    Topics: Aldosterone; Animals; Coronary Vessels; Disease Models, Animal; Feces; Fibrosis; Homeostasis; Hyperaldosteronism; Liver; Male; Metabolic Diseases; Metallothionein; Mineralocorticoid Receptor Antagonists; Muscle, Skeletal; Myocardium; Nephrectomy; Oxidative Stress; Rats; Rats, Sprague-Dawley; Spironolactone; Superoxide Dismutase; Time Factors; Zinc

2007