metallothionein and Epilepsy

metallothionein has been researched along with Epilepsy* in 7 studies

Other Studies

7 other study(ies) available for metallothionein and Epilepsy

ArticleYear
Metallothionein expression in the rat brain following KA and PTZ treatment.
    Environmental toxicology and pharmacology, 2015, Volume: 40, Issue:2

    Epilepsy is a neurological disorder that has been associated with oxidative stress therefore epilepsy models have been develop such as kainic acid and pentylenetetrazol are usually used to understanding of the molecular mechanisms of this disease. We examined the metallothionein expression in rat brains of treated with kainic acid and pentylenetetrazol. Increase in metallothionein and nitrotirosyne immunoreactivity of both seizures epilepsy models was observed. Moreover, we show a significant increase on levels of MT expression. These results suggest that the increase of metallothionein expression is related with kainic acid and pentylenetetrazol treatments as response to damage mediated by oxidative stress.

    Topics: Animals; Brain; Disease Models, Animal; Epilepsy; Kainic Acid; Male; Metallothionein; Oxidative Stress; Pentylenetetrazole; Rats; Rats, Wistar; Tyrosine

2015
Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures.
    Journal of neuroscience research, 2005, Feb-15, Volume: 79, Issue:4

    We examined metallothionein (MT)-induced neuroprotection during kainic acid (KA)-induced excitotoxicity by studying transgenic mice with MT-I overexpression (TgMT mice). KA induces epileptic seizures and hippocampal excitotoxicity, followed by inflammation and delayed brain damage. We show for the first time that even though TgMT mice were more susceptible to KA, the cerebral MT-I overexpression decreases the hippocampal inflammation and delayed neuronal degeneration and cell death as measured 3 days after KA administration. Hence, the proinflammatory responses of microglia/macrophages and lymphocytes and their expression of interleukin (IL)-1, IL-6, IL-12, tumor necrosis factor-alpha and matrix metalloproteinases (MMP-3, MMP-9) were significantly reduced in hippocampi of TgMT mice relative to wild-type mice. Also by 3 days after KA, the TgMT mice showed significantly less delayed damage, such as oxidative stress (formation of nitrotyrosine, malondialdehyde, and 8-oxoguanine), neurodegeneration (neuronal accumulation of abnormal proteins), and apoptotic cell death (judged by TUNEL and activated caspase-3). This reduced bystander damage in TgMT mice could be due to antiinflammatory and antioxidant actions of MT-I but also to direct MT-I effects on the neurons, in that significant extracellular MT presence was detected. Furthermore, MT-I overexpression stimulated astroglia and increased immunostaining of antiinflammatory IL-10, growth factors, and neurotrophins (basic fibroblastic growth factor, transforming growth factor-beta, nerve growth factor, brain-derived neurotrophic factor, glial-derived neurotrophic factor) in hippocampus. Accordingly, MT-I has different functions that likely contribute to the increased neuron survival and improved CNS condition of TgMT mice. The data presented here add new insight into MT-induced neuroprotection and indicate that MT-I therapy could be used against neurological disorders.

    Topics: Amyloid beta-Peptides; Analysis of Variance; Animals; Astrocytes; Cell Count; Cell Death; Central Nervous System Diseases; Epilepsy; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Growth Substances; Guanine; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Interleukins; Kainic Acid; Matrix Metalloproteinase 3; Matrix Metalloproteinase 9; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Neurofibrillary Tangles; Staining and Labeling; Tyrosine

2005
Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures.
    Neuroscience, 2001, Volume: 102, Issue:4

    The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus, the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death in the interleukin-6 null mice. The present results demonstrate that interleukin-6 deficiency increases neuronal injury and impairs the inflammatory response after kainic acid-induced seizures.

    Topics: Animals; Apoptosis; Blood-Brain Barrier; Encephalitis; Epilepsy; Excitatory Amino Acid Agonists; Gene Expression; Gliosis; Hippocampus; In Situ Nick-End Labeling; Interleukin-6; Kainic Acid; Macrophages; Metallothionein; Mice; Mice, Knockout; Microglia; Nerve Degeneration; Oxidative Stress; Seizures; Superoxide Dismutase

2001
Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice.
    The European journal of neuroscience, 2000, Volume: 12, Issue:7

    Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury in the hippocampus. MT-I + II deficiency decreased both astrogliosis and microgliosis and potentiated neuronal injury and apoptosis as shown by terminal deoxynucleotidyl transferase-mediated in situ end labelling (TUNEL), detection of single stranded DNA (ssDNA) and by increased interleukin-1beta-converting enzyme (ICE) and caspase-3 levels. Histochemically reactive zinc in the hippocampus was increased by KA to a greater extent in MT-I + II-deficient compared with control mice. KA-induced seizures also caused increased oxidative stress, as suggested by the malondialdehyde (MDA) and protein tyrosine nitration (NITT) levels and by the expression of MT-I + II, nuclear factor-kappaB (NF-kappaB), and Cu/Zn-superoxide dismutase (Cu/Zn-SOD). MT-I + II deficiency potentiated the oxidative stress caused by KA. Both KA and MT-I + II deficiency significantly affected the expression of MT-III, granulocyte-macrophage colony stimulating factor (GM-CSF) and its receptor (GM-CSFr). The present results indicate MT-I + II as important for neuron survival during KA-induced seizures, and suggest that both impaired zinc regulation and compromised antioxidant activity contribute to the observed neuropathology of the MT-I + II-deficient mice.

    Topics: Animals; Apoptosis; Astrocytes; Caspase 1; Caspase 3; Caspases; DNA, Single-Stranded; Epilepsy; Excitatory Amino Acid Agonists; Female; Gene Expression Regulation, Enzymologic; Glial Fibrillary Acidic Protein; Granulocyte-Macrophage Colony-Stimulating Factor; Hippocampus; In Situ Nick-End Labeling; Kainic Acid; Male; Malondialdehyde; Metallothionein; Metallothionein 3; Mice; Mice, Inbred Strains; Mice, Knockout; Microglia; Nerve Degeneration; Nerve Tissue Proteins; NF-kappa B; Nitrogen; Oxidative Stress; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor; Seizures; Superoxide Dismutase; Tyrosine; Zinc

2000
Metallothionein mediates gene expression of 3.1 mRNA (PTZ17) related to epileptic seizure.
    FEBS letters, 2000, Aug-18, Volume: 479, Issue:3

    Genes differentially expressed in association with disruption of the metallothionein gene were screened using two hepatic stellate cell lines isolated and established from the livers of normal 129/Sv (IMS/N cells) and transgenic mice deficient in the genes for metallothionein-I and -II (IMS/MT (-) cells). We found one cDNA (tentatively named NM31) that was expressed only in IMS/IN cells. Transfecting IMS/MT (-) cells with the genes for both metallothionein-I and -II resulted in NM31 expression. These results suggest that metallothionein is essential for NM31 gene expression. The nucleotide sequence of NM31 (294 bp) was identical to the 3' region of 3.1 mRNA (PTZ 17), which is abundant in the embryonic mouse brain and is related to chemically induced seizures. The present study indicates that metallothionein mediates the expression of specific genes. This is a novel explanation for some of the functions of metallothionein.

    Topics: Animals; Blotting, Northern; Cell Line; Cell Line, Transformed; DNA, Complementary; Epilepsy; Gene Expression Regulation; Gene Transfer Techniques; Liver; Metallothionein; Mice; Nerve Tissue Proteins; Oncogene Proteins; Plasmids; Reverse Transcriptase Polymerase Chain Reaction; Transfection

2000
Detection by HPLC-ICP of metallothionein in serum of an epileptic child with valproate-associated hepatotoxicity.
    Journal of trace elements and electrolytes in health and disease, 1992, Volume: 6, Issue:4

    A patient who developed valproate-associated hepatotoxicity had significantly lower serum levels of total protein, albumin and selenium than the controls. This study shows that with the beginning of the hepatic coma metallothionein (MT) appeared in the serum mainly in the form of Zn-thionein, which altered the Zn distribution pattern of the serum in a characteristic manner. HPLC-ICP3 was successfully applied to the simultaneous speciation of elements and characterization of MT by the use of one gel permeation column.

    Topics: Blood Proteins; Child; Chromatography, High Pressure Liquid; Copper; Epilepsy; Hepatic Encephalopathy; Humans; Metallothionein; Selenium; Serum Albumin; Valproic Acid; Zinc

1992
Zinc-binding proteins in the brain.
    Advances in experimental medicine and biology, 1986, Volume: 203

    As an essential substance, zinc is involved in maintaining the functions and/or the structures of at least 200 metalloenzymes that participate in numerous biochemical reactions, including the metabolism of proteins and nucleic acids. The steady-state concentration of zinc in the brain must be regulated firmly since both an excess and a deficiency of zinc have been implicated in neurological disorders including epilepsy. Zinc-binding proteins have been detected in the bovine hippocampus, cerebellum, and pineal gland. A metallothionein-like protein has been identified recently in the rat brain which resembles in some but not all aspects a hepatic metallothionein. The synthesis of this protein is stimulated following the administration of zinc and copper but not of cadmium. The zinc-stimulated protein incorporates 35S cysteine 24-fold higher than the native, unstimulated protein; is blocked by actinomycin D; produces two isoforms by ion exchange chromatography on DEAE Sephadex A 25 columns; and by high performance liquid chromatography, depicts a similar but not identical profile to zinc-stimulated hepatic metallothionein. Since the synthesis of this protein is stimulated following the administration of zinc and is depressed in the brains of zinc-deficient rats, it is postulated that the unbound pool of zinc may serve as one of the factors involved in regulating the synthesis of this protein. Since zinc in physiological concentrations stimulates a number of pyridoxal phosphate-dependent reactions and in pharmacological doses inhibits an extensive number of SH-containing enzymes and receptor sites for neurotransmitters, we postulate that the metallothionein-like protein in the brain may have function(s) associated with zinc homeostasis and perhaps events related to synaptic functions.

    Topics: Animals; Carrier Proteins; Epilepsy; Humans; Metalloproteins; Metallothionein; Nerve Tissue Proteins; Nervous System Diseases; Pyridoxine; Zinc

1986