metallothionein and Epilepsy--Temporal-Lobe

metallothionein has been researched along with Epilepsy--Temporal-Lobe* in 3 studies

Other Studies

3 other study(ies) available for metallothionein and Epilepsy--Temporal-Lobe

ArticleYear
Immunohistochemical study of Metallothionein in patients with temporal lobe epilepsy.
    Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2017, Volume: 39

    Epilepsy is characterized by spontaneous recurrent seizures and temporal lobe epilepsy (TLE) is the most common serious neurological example of acquired and frequent epilepsy. Oxidative stress is recognized as playing a contributing role in several neurological disorders, and most recently have been implicated in acquired epilepsies. The MTs occur in several brain regions and may serve as neuroprotective proteins against reactive oxygen species causing oxidative damage and stress. The main aim of this work was to describe the immunohistochemical localization of MT in the specimens derived from the patients affected by TLE. Histopathological examination showed NeuN, GFAP and MT immunopositive cells that were analyzed for determinate in hippocampal and parietal cortex samples. An increase in the reactive gliosis associated with increased MT expression was observed in patients with TLE.

    Topics: Adult; Epilepsy, Temporal Lobe; Female; Hippocampus; Humans; Male; Metallothionein; Oxidative Stress; Parietal Lobe; Temporal Lobe

2017
Increased metallothionein I/II expression in patients with temporal lobe epilepsy.
    PloS one, 2012, Volume: 7, Issue:9

    In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.

    Topics: Adult; Epilepsy, Temporal Lobe; Female; Fluorescent Antibody Technique; Hippocampus; Humans; Immunohistochemistry; In Vitro Techniques; Male; Metallothionein; Middle Aged

2012
A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity.
    Journal of neuroscience research, 2010, Volume: 88, Issue:5

    Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)-induced neurotoxicity. We show that EmtinB passes the blood-brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg/kg) and high (30 mg/kg) KA doses and tends to decrease mortality induced by the high KA dose. Histopathological evaluation of hippocampal (CA3 and CA1) and cortical areas of mice treated with 20 mg/kg KA shows that EmtinB treatment reduces KA-induced neurodegeneration in the CA1 region. These findings establish EmtinB as a promising target for therapeutic development.

    Topics: Animals; Blood-Brain Barrier; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy, Temporal Lobe; Hippocampus; Intercellular Signaling Peptides and Proteins; Kainic Acid; Male; Metallothionein; Mice; Mice, Inbred C57BL; Nerve Degeneration; Neuroprotective Agents; Neurotoxins; Peptides; Rats; Rats, Wistar; Seizures

2010