metallothionein has been researched along with Diabetes-Mellitus--Type-2* in 32 studies
8 review(s) available for metallothionein and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans.
Human metallothioneins are a superfamily of low molecular weight intracellular proteins, whose synthesis can be induced by essential elements (primarily Zn and Cu), toxic elements and chemical agents, and stress-producing conditions. Of the four known isoforms in the human body MT2 is the most common. The expression of metallothioneins is encoded by a multigene family of linked genes and can be influenced by single nucleotide polymorphisms (SNPs) in these genes. To date, 24 SNPs in the MT2A gene have been identified with the incidence of about 1 % in various population groups, and three of them were shown to affect physiological and pathophysiological processes. This review summarises current knowledge about these three SNPs in the MT2A gene and their associations with element concentrations in the body of healthy and diseased persons. The most investigated SNP is rs28366003 (MT2A -5 A/G). Reports associate it with longevity, cancer (breast, prostate, laryngeal, and in paranasal sinuses), and chronic renal disease. The second most investigated SNP, rs10636 (MT2A +838G/C), is associated with breast cancer, cardiovascular disease, and type 2 diabetes. Both are also associated with several metal/metalloid concentrations in the organism. The third SNP, rs1610216 (MT2A -209A/G), has been studied for association with type 2 diabetes, cardiomyopathy, hyperglycaemia, and Zn concentrations. Metallothionein concentrations and MT2A polymorphisms have a potential to be used as biomarkers of metal exposure and clinical markers of a number of chronic diseases. This potential needs to be studied and verified in a large number of well-defined groups of participants (several hundreds and thousands) with a focus on particular physiological or pathological condition and taking into consideration other contributing factors, such as environmental exposure and individual genetic and epigenetic makeup. Topics: Adult; Aged; Aged, 80 and over; Biomarkers; Breast Neoplasms; Diabetes Mellitus, Type 2; Female; Genetic Predisposition to Disease; Humans; Male; Metallothionein; Middle Aged; Polymorphism, Single Nucleotide; Trace Elements | 2020 |
Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy.
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017. Topics: Animals; Biological Transport; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Diabetic Nephropathies; Dietary Supplements; Disease Models, Animal; Gene Expression Regulation; Homeostasis; Humans; Insulin; Insulin-Secreting Cells; Metallothionein; Zinc; Zinc Transporter 8 | 2017 |
Zinc and diabetes.
Zn Topics: Animals; Cation Transport Proteins; Cytoplasm; Diabetes Mellitus, Type 2; Genome-Wide Association Study; Glucose; Homeostasis; Humans; Insulin; Insulin-Secreting Cells; Metallothionein; Mice; Zinc; Zinc Transporter 8 | 2016 |
Metallothionein polymorphisms in pathological processes.
Metallothioneins (MTs) are a class of metal-binding proteins characterized by a high cysteine content and low molecular weight. MTs play an important role in metal metabolism and protect cells against the toxic effects of radiation, alkylating agents and oxygen free radicals. The evidence that individual genetic characteristics of MTs play an important role in physiological and pathological processes associated with antioxidant defense and detoxification inspired targeted studies of genetic polymorphisms in a clinical context. In recent years, common MT polymorphisms were identified and associated with, particularly, western lifestyle diseases such as cancer, complications of atherosclerosis, and type 2 diabetes mellitus along with related complications. This review summarizes all evidence regarding MT polymorphisms of major human MTs (MT1, MT2, MT3 and MT4), their relation to pathological processes, and outlines specific applications of MTs as a set of genetic markers for certain pathologies. Topics: Cardiomyopathies; Diabetes Mellitus, Type 2; Gene Expression Regulation; Humans; Inflammation; Metallothionein; Multigene Family; Neoplasms; Polymorphism, Single Nucleotide; Protein Isoforms | 2014 |
Zinc, pancreatic islet cell function and diabetes: new insights into an old story.
Zn is an essential trace element, involved in many different cellular processes. A relationship between Zn, pancreatic function and diabetes was suggested almost 70 years ago. To emphasise the importance of Zn in biology, the history of Zn research in the field of diabetes along with a general description of Zn transporter families will be reviewed. The paper will then focus on the effects of Zn on pancreatic β-cell function, including insulin synthesis and secretion, Zn signalling in the pancreatic islet, the redox functions of Zn and its target genes. The recent association of two 'Zn genes', i.e. metallothionein (MT) and Zn transporter 8 (SLC 30A8), with type 2 diabetes at the genetic level and with insulin secretion in clinical studies offers a potential new way to identify new drug targets to modulate Zn homeostasis directly in β-cells. The action of Zn for insulin action in its target organs, as Zn signalling in other pancreatic islet cells, will be addressed. Therapeutic Zn-insulin preparations and the influence of Zn and Zn transporters in type 1 diabetes will also be discussed. An extensive review of the literature on the clinical studies using Zn supplementation in the prevention and treatment of both types of diabetes, including complications of the disease, will evaluate the overall beneficial effects of Zn supplementation on blood glucose control, suggesting that Zn might be a candidate ion for diabetes prevention and therapy. Clearly, the story of the links between Zn, pancreatic islet cells and diabetes is only now unfolding, and we are presently only at the first chapter. Topics: Carrier Proteins; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Metallothionein; Signal Transduction; Zinc | 2013 |
[Endoplasmic reticulum stress and metallothionein].
Much attention has been paid to lifestyle-related diseases including type 2 diabetes mellitus, cardiovascular disease, hypertension, and hyperlipidemia because the incidence rates of these diseases are increasing in developed countries. Elucidation of factors contributing to the development of obesity and insulin resistance is needed. Metallothionein (MT), a ubiquitous metal-binding protein, is induced not only by heavy metals but also by various kinds of stresses. Endoplasmic reticulum (ER) stress is caused by accumulation of misfolded proteins in ER. Recently, increased ER stress by obesity and impairment of insulin action by ER stress have been reported. Exposure to ER stress increased induction of MT synthesis, and an enhanced response to ER stress evaluated as expression of Bip/GRP78mRNA was observed in the liver of MT-null mice, suggesting that MT attenuates expression of ER stress. MT may prevent ER stress and thereby modulate the development of obesity and insulin resistance. A possible role of metallothionein in response reaction for ER stress is discussed. Topics: Animals; Diabetes Mellitus, Type 2; Endoplasmic Reticulum; Humans; Insulin Resistance; Metallothionein; Mice; Obesity; Stress, Physiological; Zinc | 2007 |
Zinc and inflammatory/immune response in aging.
Life-long antigenic burden determines a condition of chronic inflammation, with increased lymphocyte activation and proinflammatory cytokine production. A large number of studies have documented changes in zinc metabolism in experimental animal models of acute and chronic inflammation and in human chronic inflammatory conditions. In particular, modification of zinc plasma concentration, as well as intracellular disturbance of antioxidant intracellular pathways, has been found in aging and in some age-related diseases. Zinc deficiency is diffused in aged individuals in order to avoid meat and other high zinc content foods due to fear of cholesterol. Rather, they increase the consumption of refined wheat products that lack zinc and other critical nutrients as a consequence of the refining process. On the other hand, plasma zinc concentration is influenced by proinflammatory cytokines (IL-6 and TNF-alpha) and by metallothioneins (MT) homeostasis, which is in turn affected by proinflammatory cytokines. MT increase in aging and chronic inflammation allowing a continuous sequestration of intracellular zinc with subsequent low zinc ion availability against stressor agents and inflammation. This phenomenon leads to an impaired inflammatory/immune response in the elderly. A major target of zinc is NF-kappaB, a transcription factor critical for the expression of proinflammatory cytokines whose production is regulated by extra- and intracellular activating and inhibiting factors interacting with the regulatory elements on cytokine genes. Effects of zinc on translocation of NF-kappaB have been attributed to the suppression of phosphorylation and degradation of the inhibitory proteins (A20) that normally sequester it in the cytoplasm. Moreover, this factor and A20 are regulated by specific genes involved in inflammation and by intracellular zinc ion availability. So, it is not so surprising that zinc deficiency is constantly observed in chronic inflammation, such as in old individuals. On the other hand, cytokine genes are highly polymorphic and some of these polymorphisms are associated with atherosclerosis and diabetes type 2. Therefore, zinc turnover, via MT homeostasis, in individuals genetically predisposed to a dysregulation of the inflammatory/immune response may play a crucial role in causing possible adverse events with the appearance of age-related diseases. Topics: Aging; Animals; Antioxidants; Atherosclerosis; Diabetes Mellitus, Type 2; Humans; Immune System; Inflammation; Interleukin-6; Metallothionein; Models, Biological; Models, Genetic; NF-kappa B; Tumor Necrosis Factor-alpha; Zinc | 2007 |
Zinc, the pancreas, and diabetes: insights from rodent studies and future directions.
Molecular and cellular studies have demonstrated several roles for zinc (Zn) in insulin production and the consequent actions of insulin on metabolism. Clinical and epidemiological studies suggest that reduced Zn status is associated with diabetes. Investigations of Zn in rodent models of diabetes have provided a valuable link for understanding the molecular, cellular, clinical and epidemiological observations in the context of inter-organ metabolism and the metabolic disturbances of diabetes. This review highlights some of the current knowledge and future research directions for the role of Zn in the pancreas and diabetes based on rodent studies and experimental manipulations of Zn. Overall, Zn supplementation is effective for preventing or ameliorating diabetes in several rodent models of Type 1 and Type 2 diabetes. Studies with chemically-induced Type 1 diabetes indicate that the protective effects of Zn involve antioxidant mechanisms whether it is Zn alone (as an antioxidant), Zn induction of metallothionein or Zn inhibition of redox-sensitive transcription factors. Further studies are needed to identify the mechanism(s) for Zn protection in Type 2 diabetes, including pancreatic and peripheral effects. Experimental manipulations of Zn status in rodent models of diabetes provide a valuable approach to explore mechanisms for the protective effects of Zn; however, long term clinical studies establishing safety (lack of toxicity) and efficacy are required before any recommendations can be made for people with diabetes. Topics: Animals; Antioxidants; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Humans; Insulin; Insulin-Secreting Cells; Metallothionein; Pancreas; Rats; Streptozocin; Zinc | 2005 |
4 trial(s) available for metallothionein and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus.
The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM. Topics: Aged; alpha-Linolenic Acid; Anti-Inflammatory Agents; Biomarkers; Body Mass Index; C-Reactive Protein; Carrier Proteins; Diabetes Mellitus, Type 2; Dietary Supplements; Double-Blind Method; Female; Gene Expression; Humans; Inflammation; Interleukin-1beta; Interleukin-6; Metallothionein; Middle Aged; Postmenopause; RNA, Messenger; Tumor Necrosis Factor-alpha; Zinc | 2013 |
Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc.
Disturbances of zinc homeostasis have been observed in several diseases, including diabetes mellitus. To further characterize the association between zinc and diabetes, we recruited 75 patients with type 1 or type 2 diabetes and 75 nondiabetic sex-/age-matched control subjects in order to analyze differences concerning human zinc transporter 8 (hZnT-8) expression, single nucleotide polymorphisms (SNPs) in the genes of hZnT-8 as well as metallothionein 1A and serum/intracellular zinc. Furthermore, we investigated the relation between insulin and zinc homeostasis in type 2 diabetic subjects and consolidated our results by in vitro analysis of the effect of insulin on cellular zinc status and by analysis of the modulation of insulin signal transduction by intracellular zinc homeostasis. Concerning the expression of hZnT-8 and the SNPs analyzed, we did not observe any differences between diabetic and control subjects. Serum zinc was significantly lower in diabetic patients compared to controls, and intracellular zinc showed the same tendency. Interestingly, type 2 diabetes patients treated with insulin displayed lower serum zinc compared to those not injecting insulin. In vitro analyses showed that insulin leads to an increase in intracellular zinc and that insulin signaling was enhanced by elevated intracellular zinc concentrations. In conclusion, we show that type 1 and type 2 diabetic patients suffer from zinc deficiency, and our results indicate that zinc supplementation may qualify as a potential treatment adjunct in type 2 diabetes by promoting insulin signaling, especially in zinc-deficient subjects. Topics: Adult; Aged; Aged, 80 and over; Case-Control Studies; Cation Transport Proteins; Cells, Cultured; Culture Media; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Female; Gene Expression Regulation; Homeostasis; Humans; Insulin; Leukocytes; Lymphocytes; Male; Metallothionein; Middle Aged; Polymorphism, Single Nucleotide; Proto-Oncogene Proteins c-akt; Signal Transduction; Young Adult; Zinc; Zinc Transporter 8 | 2012 |
Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes.
Oxidative stress is implicated in diabetes complications, during which endogenous antioxidant defenses have important pathophysiological consequences. To date, the significance of endogenous antioxidants such as metallothioneins I and II (MT-I+II) in type 2 diabetes remains unclear. To examine the MT-I+II-mediated antioxidant capacity and its response to exercise training in the skeletal muscle of patients with type 2 diabetes, biopsies and blood samples were taken from 13 matched subjects (type 2 diabetes n = 8, control subjects n = 5) both before and after 8 weeks of exercise training. Immunohistochemical analysis revealed reduced MT-I+II levels in the skeletal muscle of type 2 diabetic subjects compared with control subjects. Control subjects produced a robust increase of MT-I+II in response to training; however, in type 2 diabetes, MT-I+II levels remained essentially unchanged. Significantly lower levels of MT-I+II were also detected in the plasma of type 2 diabetic subjects compared with control subjects. These results suggest that, in control subjects, the MT-I+II defense system is active and inducible within skeletal muscle tissue and plasma. In type 2 diabetes, reduced levels of MT-I+II in muscle and plasma, as well as the deficient MT-I+II response to exercise, indicate that this antioxidant defense is impaired. This study presents a novel candidate in the pathogenesis of complications related to oxidative stress in type 2 diabetes. Topics: Antioxidants; Case-Control Studies; Diabetes Mellitus, Type 2; Exercise; Gene Expression Regulation; Humans; Male; Metallothionein; Middle Aged; Muscle, Skeletal; Oxidative Stress; RNA, Messenger | 2005 |
Novel -209A/G MT2A polymorphism in old patients with type 2 diabetes and atherosclerosis: relationship with inflammation (IL-6) and zinc.
Vascular complications, including ischaemic cardiomyopathy, are the major causes of death in old diabetic patients. Chronic inflammation due to high IL-6 production occurs in type 2 diabetes (NIDDM) and atherosclerosis. High levels of IL-6 are associated with hyperglycaemia, dyslipidemia and provoke insulin resistance. In ageing and inflammation, IL-6 affects Metallothionein (MT) homeostasis, which in turn is involved in zinc turnover. Zinc deficiency is an usual event in ageing, inflammation, type 2 diabetes and atherosclerosis. No genetic study exists on MT polymorphisms in NIDDM-atherosclerotic patients. The aim of the present study is to screen a single nucleotide polymorphism in the promoter region of the MT2A gene in relation to inflammation (IL-6) and plasma zinc in NIDDM-atherosclerotic patients. The -209 A/G MT2A polymorphism is associated with chronic inflammation (higher plasma levels of IL-6), hyperglycaemia, enhanced HbA1c and more marked zinc deficiency in AA than AG genotype carrying patients. Analysing patients and controls subdivided in AA and AG genotypes, significant interactions existed between disease status and genotypes for glucose and zinc. AA patients are more at risk of developing NIDDM in association with atherosclerosis (p=0.0015 odds ratio=2.617) and its complications, such as ischaemic cardiomyopathy (p=0.0050 odds ratio=12.6). In conclusion, high levels of IL-6 unmask the phenotypes (higher insulin resistance and zinc deficiency) in relation to the genotypes with subsequent risk of developing ischaemic cardiomyopathy in NIDDM-atherosclerotic patients carrying AA genotype. Hence, the novel -209A/G MT2A polymorphism may be a further useful tool for the prevention, diagnosis and therapy of these combined pathologies in the elderly. Topics: Aged; Atherosclerosis; Biomarkers; Comorbidity; Diabetes Mellitus, Type 2; Female; Genetic Predisposition to Disease; Humans; Incidence; Inflammation; Interleukin-6; Italy; Male; Metallothionein; Risk Assessment; Risk Factors; Statistics as Topic; Zinc | 2005 |
20 other study(ies) available for metallothionein and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Rare Variant in Metallothionein 1E Increases the Risk of Type 2 Diabetes in a Chinese Population.
To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease.. We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function.. Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism.. Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments. Topics: Animals; Diabetes Mellitus, Type 2; East Asian People; Glucose; Humans; Metallothionein; Mice; Prediabetic State | 2023 |
Zinc Supplementation Prevented Type 2 Diabetes-Induced Liver Injury Mediated by the Nrf2-MT Antioxidative Pathway.
Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice, nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to induce type 2 diabetes. This was followed by zinc treatment at 5 mg/kg body weight given every other day for 3 months. Global metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis, hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway. Topics: Animals; Diabetes Complications; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Supplements; Endoplasmic Reticulum Stress; Lipid Metabolism; Liver Diseases; Male; Metallothionein; Mice; NF-E2-Related Factor 2; Oxidative Stress; Streptozocin; Zinc | 2021 |
Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans.
The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice.. Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of diabetes (db/db mice) at 6 weeks old (prediabetes) and 16 weeks old (after diabetes onset) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and overnight fasting-1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca. Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10-30 mmol/l vs 2-5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca. These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes. Topics: Acrylates; Animals; Blood Glucose; Cell Line; Diabetes Mellitus, Type 2; Diet, High-Fat; Female; Gene Expression; Glucose; Glucose Tolerance Test; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Islets of Langerhans; Metallothionein; Mice; Obesity; Phenyl Ethers; Prediabetic State | 2019 |
Long non-coding RNA metallothionein 1 pseudogene 3 promotes p2y12 expression by sponging miR-126 to activate platelet in diabetic animal model.
Platelet hyperaggregation and hypercoagulation are associated with increase of thrombogenic risk, especially in patients with type 2 diabetes (T2D). High activity of P2Y12 receptor is found in T2D patients, exposing such patients to a prothrombotic condition. P2Y12 is a promising target for antiplatelet, but due to P2Y12 receptor constitutive activation, the clinical practical phenomena such as "clopidogrel resistance" are commonly occurring. In this study, we investigate the role of lncRNA on platelet activation. By lncRNA array, we screened thousands of differentially expressed lncRNA in megakaryocytes from T2D patients and confirmed that lncRNA metallothionein 1 pseudogene 3 (MT1P3) was significantly upregulated in megakaryocytes from T2D patients than in healthy controls. And we further investigate the biofunction of MT1P3 on platelet activation and the regulatory mechanism on p2y12. MT1P3 was positively correlated with p2y12 mRNA levels and promoted p2y12 expression by sponging miR-126. Knockdown of MT1P3 by siRNA reduced p2y12 expression, inhibiting platelet activation and aggregation in diabetes animal model. In conclusion, our findings identify MT1P3 as a key regulator in platelet activation by increasing p2y12 expression through sponging miR-126 under T2D condition. These findings may provide a new insight for managing platelet hyperactivity-related diseases. Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Female; Humans; Male; Metallothionein; Mice; MicroRNAs; Middle Aged; Pseudogenes; Rats; Rats, Wistar; Receptors, Purinergic P2Y12; RNA, Long Noncoding; Transfection | 2019 |
Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy.
We have reported that sulforaphane (SFN) prevented diabetic cardiomyopathy in both type 1 and type 2 diabetes (T2DM) animal models via the upregulation of nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT). In this study, we tested whether SFN protects the heart from T2DM directly through Nrf2, MT, or both. Using Nrf2-knockout (KO), MT-KO, and wild-type (WT) mice, T2DM was induced by feeding a high-fat diet for 3 months followed by a small dose of streptozotocin. Age-matched controls were given a normal diet. Both T2DM and control mice were then treated with or without SFN for 4 months by continually feeding a high-fat or normal diet. SFN prevented diabetes-induced cardiac dysfunction as well as diabetes-associated cardiac oxidative damage, inflammation, fibrosis, and hypertrophy, with increases in Nrf2 and MT expressions in the WT mice. Both Nrf2-KO and MT-KO diabetic mice exhibited greater cardiac damage than WT diabetic mice. SFN did not provide cardiac protection in Nrf2-KO mice, but partially or completely protected the heart from diabetes in MT-KO mice. SFN did not induce MT expression in Nrf2-KO mice, but stimulated Nrf2 function in MT-KO mice. These results suggest that Nrf2 plays the indispensable role for SFN cardiac protection from T2DM with significant induction of MT and other antioxidants. MT expression induced by SFN is Nrf2 dependent, but is not indispensable for SFN-induced cardiac protection from T2DM. Topics: Animals; Anticarcinogenic Agents; Blotting, Western; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Diet, High-Fat; Echocardiography; Heart; Isothiocyanates; Lipid Peroxidation; Male; Metallothionein; Mice; Mice, Knockout; Myocardium; NF-E2-Related Factor 2; Real-Time Polymerase Chain Reaction; Sulfoxides; Up-Regulation | 2017 |
Interrelationships among mediators of cellular zinc homeostasis in healthy and type 2 diabetes mellitus populations.
The involvement of zinc in multiple physiological systems requires tight control of cellular zinc concentration. This study aims to explore the relationships among selected mediators of cellular zinc homeostasis in an apparently healthy (AH) population and a cohort with type 2 diabetes mellitus (T2DM).. Baseline data of three trials forming two cohorts, AH (n = 70) and T2DM (n = 42), were used for multivariate analyses to identify groupings within ten zinc transporter and metallothionein (MT) gene expressions, stratified by health status. Multiple regression models were used to explore relationships among zinc transporter/MT groupings and plasma zinc. Gene expression of zinc transporters and MTs, with the exception of ZnT6, were significantly lower in the T2DM cohort (p < 0.01). Cluster analysis showed that the groupings of zinc transporters and MTs were largely similar between the two cohorts, with the exception for ZnT1 and ZIP7. Zinc transporters and MTs were significant determinants of plasma zinc (r. The current study suggests altered cellular zinc homeostasis in T2DM and supports the use of multiple zinc transporters and MTs groupings to further understand zinc homeostasis in health and T2DM. Topics: Carrier Proteins; Cation Transport Proteins; Diabetes Mellitus, Type 2; Gene Expression; Homeostasis; Humans; Metallothionein; Zinc | 2017 |
Levels of heavy metals and their binding protein metallothionein in type 2 diabetics with kidney disease.
Hyperglycemia, a major metabolic disturbance present in diabetes, promotes oxidative stress. Activation of antioxidant defense is an important mechanism to prevent cell damage. Levels of heavy metals and their binding proteins can contribute to oxidative stress. Antiradical capacity and levels of metallothionein (MT), metals (zinc and copper), and selected antioxidants (bilirubin, cysteine, and glutathione) were determined in 70 type 2 diabetes mellitus (T2DM) subjects and 80 healthy subjects of Caucasian origin. Single nucleotide polymorphism (rs28366003) in MT gene was detected. Antiradical capacity, conjugated bilirubin, and copper were significantly increased in diabetics, whereas MT and glutathione were decreased. Genotype AA of rs28366003 was associated with higher zinc levels in the diabetic group. The studied parameters were not influenced by renal function. This is the first study comprehensively investigating differences in MT and metals relevant to oxidative stress in T2DM. Ascertained differences indicate increased oxidative stress in T2DM accompanied by abnormalities in non-enzymatic antioxidant defense systems. Topics: Aged; Aged, 80 and over; Biomarkers; Case-Control Studies; Copper; Czech Republic; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Genetic Association Studies; Humans; Kidney; Male; Metallothionein; Middle Aged; Oxidative Stress; Polymorphism, Single Nucleotide; Renal Insufficiency, Chronic; Severity of Illness Index; Zinc | 2017 |
Effect and mechanisms of zinc supplementation in protecting against diabetic cardiomyopathy in a rat model of type 2 diabetes.
Diabetic cardiomyopathy is a prominent cause of heart failure in patients with diabetes mellitus. Currently, there is no specific treatment for diabetic cardiomyopathy. This study aimed to investigate the effect and underlying mechanisms of Zinc (Zn) supplementation in the protection against diabetic cardiomyopathy in a rat model of type 2 diabetes mellitus (T2DM). T2DM-like lesions in male Wistar rats were induced by introducing the high-fat diet and by administration of streptozocin (STZ). After STZ induction, animals with fasting plasma glucose level ≥16.7 mM were considered as diabetic, and randomly assigned to the group receiving physiological saline (control) or ZnSO4 for 56 days. On days 0, 7, 28 and 56 of treatment, animals were weighed, and their blood samples were analyzed. On day 56, hemodynamic assessment was performed right before the sacrifice of animals. Cardiac tissue specimens were collected and subjected to pathologic assessment, metallothionein (MT) concentration measurement and Western blot analysis of microtubule-associated protein light chain 3 (LC3), the marker of autophagy, and glucose-regulated protein-78 (GRP78), an oxidative stress marker. High-fat diet feeding followed by STZ administration resulted in weight loss, hyperglycemia, polydipsia, polyphagia, hemodynamic anomalies and a significant increase in the myocardial content of LC3 and GRP78 proteins, but not in MT protein. Zn supplementation effectively attenuated all these aberrations induced by high-fat diet and STZ. These findings suggest that Zn might be a protective factor in diabetic cardiomyopathy, acting in two ways: at least partially, through inhibiting autophagy and by endoplasmic reticulum stress. Topics: Animals; Autophagy; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Endoplasmic Reticulum Stress; Heat-Shock Proteins; Male; Metallothionein; Microtubule-Associated Proteins; Rats; Rats, Wistar; Streptozocin; Treatment Outcome; Zinc | 2015 |
Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2.
Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes. Topics: Animals; Anticarcinogenic Agents; Blotting, Western; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Immunoenzyme Techniques; Isothiocyanates; Male; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-E2-Related Factor 2; Oxidative Stress; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sulfoxides | 2015 |
Antidiabetic and pancreas-protective effects of zinc threoninate chelate in diabetic rats may be associated with its antioxidative stress ability.
Zinc exerts a wide range of important biological roles. The present study was carried out to investigate the effects of zinc threoninate chelate in blood glucose levels, lipid peroxidation, activities of antioxidant defense systems and nitrite concentration, and histology of the pancreas in diabetic rats. Wistar rats were intravenously injected with a single dose of streptozotocin to induce diabetes. Then, diabetic rats were administrated orally with zinc threoninate chelate (3, 6, and 9 mg/kg body weight) once daily for 7 weeks. Fasting blood glucose was monitored weekly. At the end of the experimental period, the diabetic rats were killed, and levels of serum insulin, malondialdehyde, and nitric oxide, activities of glutathione peroxidase, total superoxide dismutase, copper/zinc-superoxide dismutase, and nitric oxide synthase were determined; pancreas was examined histopathologically as well. Zinc threoninate chelate significantly reduced the blood glucose levels and significantly increased the serum insulin levels in diabetic rats. In addition, zinc threoninate chelate caused a significant increase in activities of antioxidant enzymes and significant decrease in nitrite concentration and malondialdehyde formation in the pancreas and serum of diabetic rats. These biochemical observations were supplemented by histopathological examination of the pancreas. These results suggested that the antidiabetic effect of zinc threoninate chelate may be related to its antioxidative stress ability in diabetic rats. Topics: Animals; Antioxidants; Diabetes Mellitus, Type 2; Male; Metallothionein; Oxidative Stress; Pancreas; Rats; Rats, Wistar; Streptozocin | 2013 |
Metallothionein 2a gene expression is increased in subcutaneous adipose tissue of type 2 diabetic patients.
Insulin resistance plays an important role in the pathogenesis of type 2 diabetes and the metabolic syndrome. Many of the genes and pathways involved have been identified but some remain to be defined. Metallothioneins (Mts) are a family of anti-oxidant proteins and metallothionein 2a (Mt2a) polymorphims have been recently associated with type 2 diabetes and related complications. Our objective was to determine the Mt2a gene expression levels in adipose tissues from diabetic patients and the effect of Mt treatment on adipocyte insulin sensitivity.. Samples of subcutaneous and visceral adipose tissues from lean, type 2 diabetic and non-diabetic obese patients were analysed using RT-qPCR for Mt2a mRNA abundance. The regulation of Mt2a expression was further studied in 3T3-L1 adipocytes treated or not with TNFα (10 ng/ml, 72 h) to induce insulin resistance. The effects of Mt on glucose uptake were investigated in cultured adipocytes treated with recombinant Mt protein.. We found that the Mt2a gene expression was significantly higher in adipose tissue of type 2 diabetic patients in comparison to that of lean (p=0.003) subjects. In 3T3-L1 adipocytes, insulin resistance induced by TNFα increased Mt2a mRNA levels (p=3×10(-4)) and insulin-stimulated glucose uptake was significantly inhibited by 53% (p=8×10(-4)) compared to vehicle, when 3T3-L1 adipocytes were treated with Mt protein.. These data suggest that Mt2a might be involved in insulin resistance through the up-regulation of Mt gene expression, which may lead to the modulation of insulin action in fat cells. These results suggest the concept of considering Mt proteins as markers and potential targets in type 2 diabetes. Topics: Adipose Tissue; Diabetes Mellitus, Type 2; Humans; Insulin Resistance; Metallothionein; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Subcutaneous Fat | 2013 |
Effect of zinc supplementation on type 2 diabetes parameters and liver metallothionein expressions in Wistar rats.
Zinc is a trace metal and acts as an active component of various enzymes. Zinc deficiency has been suggested to be associated with the development of diabetes. The present study investigated the role of zinc supplementation on prevention of diabetic conditions. A double-disease model mimicking hyperlipidemia and type 2 diabetes was created by applying high-fat diet and streptozotocin (STZ) to Wistar rats. We demonstrated that zinc supplementation improved symptoms of diabetes such as polydipsia and increased serum level of high-density lipoprotein cholesterol, indicating that zinc supplementation has a potential beneficial effect on diabetic conditions. The level of maldondialdehyde (MDA), an oxidative stress marker, was reduced in liver by zinc supplementation in high fat-fed rats with or without STZ injection. Meanwhile, we observed an increase in the expression of metallothioneins (MTs) in liver of rats treated with zinc. This suggests that the induction of MTs in liver, which has been shown to be important in scavenging free radicals, could be one of the underlying mechanisms of zinc supplementation on reducing MDA levels in liver. Finally, we found that zinc levels in liver were increased while there was no change in serum zinc levels, indicating that local zinc level might be a critical factor for the induction of MTs. Also, the level of MTs could potentially be an index of zinc bioavailability. Taken together, these results suggest that both zinc and MT could play an important role in balancing nutrition and metabolism to prevent diabetic development. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Supplements; Hypoglycemic Agents; Insulin; Lipids; Liver; Male; Malondialdehyde; Metallothionein; Oxidative Stress; Rats; Rats, Wistar; Zinc | 2012 |
Tat-enhanced delivery of metallothionein can partially prevent the development of diabetes.
Metallothioneins (MTs) are intracellular low-molecular-weight, cysteine-rich proteins with potent metal-binding and redox functions, but with limited membrane permeativity. The aim of this study was to investigate whether we could enhance delivery of MT-1 to pancreatic islets or β cells in vitro and in vivo. The second goal was to determine whether increased MT-1 could prevent cellular toxicity induced by high glucose and free fatty acids in vitro (glucolipotoxicity) and ameliorate the development of diabetes induced by streptozotocin in mice or delay the development of diabetes by improving insulin secretion and resistance in the OLETF rat model of type 2 diabetes. Expression of HIV-1 Tat-MT-1 enabled efficient delivery of MT into both INS-1 cells and rat islets. Intracellular MT activity increased in parallel with the amount of protein delivered to cells. The formation of reactive oxygen species, glucolipotoxicity, and DNA fragmentation due to streptozotocin decreased after treating pancreatic β cells with Tat-MT in vitro. Importantly, in vivo, intraperitoneal injection resulted in delivery of the Tat-MT protein to the pancreas as well as liver, muscle, and white adipose tissues. Multiple injections increased radical-scavenging activity, decreased apoptosis, and reduced endoplasmic reticulum stress in the pancreas. Treatment with Tat-MT fusion protein delayed the development of diabetes in streptozotocin-induced mice and improved insulin secretion and resistance in OLETF rats. These results suggest that in vivo transduction of Tat-MT may offer a new strategy to protect pancreatic β cells from glucolipotoxicity, may improve insulin resistance in type 2 diabetes, and may have a protective effect in preventing islet destruction in type 1 diabetes. Topics: Animals; Cells, Cultured; Diabetes Mellitus, Type 2; Disease Models, Animal; Gene Products, tat; Gene Transfer Techniques; HIV-1; Insulin; Insulin Resistance; Insulin Secretion; Male; Metallothionein; Mice; Mice, Inbred ICR; Rats; Rats, Inbred OLETF; Rats, Sprague-Dawley; Reactive Oxygen Species; Recombinant Fusion Proteins; Streptozocin | 2011 |
Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes.
A finely tuned subcellular distribution of zinc (Zn), through the coordinated action of Zn transporters (ZnTs) and metallothioneins (MTs), is crucial for optimal cell function. Dysfunctions of these proteins might act as key causative or promoting factors in several chronic pathologies. Evidence of their involvement in the pathogenesis of type 2 diabetes (DM2) is emerging. The association of single nucleotide polymorphisms in genes encoding ZnT-8 and MT with DM2 has drawn attention to the relevance of Zn homeostasis for insulin secretory capacity and responsiveness. Here, we propose that potential mechanisms leading to altered subcellular Zn distribution rather than deficiency might be important in DM2. Increasing knowledge of the mechanisms of Zn homeostasis and signalling should promote the development of targeted interventions with the potential to reduce the burden of disease. Topics: Cation Transport Proteins; Diabetes Mellitus, Type 2; Humans; Metallothionein; Models, Biological; Polymorphism, Single Nucleotide; Zinc; Zinc Transporter 8 | 2008 |
+647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications.
Diabetes mellitus is a chronic disease characterized by an overproduction of reactive oxygen species, which perturbs zinc metabolism and promotes the onset of cardiovascular disease (CVD) in diabetic patients. Metallothioneins (MT) are cysteine-rich metal-binding proteins which, by means of their antioxidant and zinc-buffering properties, might prevent the development of diabetic cardiovascular complications. A recent investigation shows that a polymorphism (+647 A/C) in the human MT-1A gene, affects the intracellular zinc ion release (iZnR) from the proteins and is associated with longevity in Italian population. The aim of the present study is to assess the involvement of +647 A/C and +1245 A/G MT1A polymorphisms with the susceptibility to type 2 diabetes (DM2) and cardiovascular complications. The study included 694 old individuals: 242 old healthy controls, 217 DM2 patients without clinical evidence of CVD (DNC) and 235 diabetic patients with diagnosis of CVD (DCVD). +647 A/C MT1A polymorphism, but not the second SNP, was associated with DM2. C allele carriers were more prevalent in DNC and DCVD patients than in control group (OR=1.37, p=0.034; OR=1.54, p=0.002, respectively). C+ carriers was associated with higher glycemia and glycosylated hemoglobin in DCVD patients, but not in DNC or control subjects. No differences in plasma zinc, but a modulation of MT levels and iZnR in PBMCs were observed in DCVD cohort when related to +647 A/C MT1A polymorphism. In summary, this work provides novel evidence on the association of the +647 A/C MT1A polymorphism with DM2. Moreover, C+ carriers in DCVD patients presented a worse glycemic control, a reduced iZnR and a higher MT levels, suggesting a possible role of MT in diabetic cardiovascular complications. Topics: Aged; Cardiovascular Diseases; Diabetes Complications; Diabetes Mellitus, Type 2; Female; Flow Cytometry; Genetic Predisposition to Disease; Humans; Male; Metallothionein; Middle Aged; Polymorphism, Single Nucleotide; Zinc | 2008 |
A role for metallothionein in the pathogenesis of diabetes and its cardiovascular complications.
It has been suspected for a long time that zinc has a role in various aspects of diabetes, but specific molecular targets of zinc remained largely elusive. Recent discoveries of associations between diabetes and polymorphisms in human genes now suggest that proteins that control the cellular availability of zinc ions are involved. One protein is the zinc transporter ZnT-8 that supplies pancreatic beta-cells with zinc. The other is metallothionein 1A, a member of a protein family that links zinc and redox metabolism. Changes in the availability of zinc ions modulate insulin signaling and redox processes. Both zinc and metallothionein protect cells against the redox stress that occurs in diabetes and contributes to its progression towards diabetic complications, including heart disease. Topics: Cardiovascular Diseases; Cation Transport Proteins; Diabetes Complications; Diabetes Mellitus, Type 2; Humans; Metallothionein; Oxidation-Reduction; Zinc; Zinc Transporter 8 | 2008 |
Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications.
Metallothionein (MT) as a potent antioxidant can affect energy metabolism. The present study was undertaken to investigate the association between MT gene polymorphism and type 2 diabetes mellitus. Using the PCR-based restriction fragment length polymorphism method, seven single nucleotide polymorphisms (SNPs) in MT genes (rs8052394 and rs11076161 in MT1A gene, rs8052334, rs964372, and rs7191779 in MT1B gene, rs708274 in MT1E gene, and rs10636 in MT2A gene) were detected in 851 Chinese people of Han descent (397 diabetes and 454 controls). Several serum measurements were also examined randomly for 43 diabetic patients and 41 controls. The frequency distributions of the G allele in SNP rs8052394 of MT1A gene were significantly associated with the incidence of type 2 diabetes. There was no difference between patients and controls for the rest of six SNPs. Serum levels of interleukin-6 and tumor necrosis factor-alpha were higher, and serum superoxide dismutase activity was significantly lower in the diabetic group than those in the control group. For diabetic patients, serum superoxide dismutase activity was significantly lower in GG or GA carriers than those of AA carriers of rs8052394 SNP. Increased serum levels in diabetic patients were positively associated with rs964372 SNP, and type 2 diabetes with neuropathy was positively associated with rs10636 and rs11076161. These results suggest that multiple SNPs in MT genes are associated with diabetes and its clinical symptoms. Furthermore, MT1A gene in rs8052394 SNP is most likely the predisposition gene locus for diabetes or changes of serum superoxide dismutase activity. Topics: Body Mass Index; China; Diabetes Complications; Diabetes Mellitus, Type 2; DNA; Female; Genotype; Hexokinase; Humans; Interleukin-6; Male; Metallothionein; Polymorphism, Single Nucleotide; Reverse Transcriptase Polymerase Chain Reaction; Risk; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2008 |
Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population.
It has been reported that diabetes may increase the risk of cadmium-induced kidney damage. The presence of metallothionein antibody (MT-Ab) increased the susceptibility for tubular damage among cadmium workers. This study focused on the relationships between levels of MT-Ab, urinary cadmium, and kidney function in a Chinese type 2 diabetic population.. A cross-sectional study was performed on 229 type 2 diabetic patients (92 men and 137 women) who were recruited from two community centers in one district of Shanghai City in China. Information was obtained from interviews, health records, and blood and urine samples.. Levels of the tubular biomarker beta2-microglobulin increased significantly when the levels of MT-Ab and urinary cadmium were elevated in male and female subjects; in contrast, the levels of urinary albumin, a glomerular biomarker, did not display such a pattern. After adjusting for potential confounding covariates, logistic regression showed that the odds ratios (ORs) of tubular dysfunction increased upon 1) increasing the MT-Ab concentration from a low to high level (OR 5.56 [95% CI 2.25-13.73]) and 2) increasing the level of urinary cadmium from <1 to >or=1 microg/g creatinine (3.34 [1.17-9.53]); the OR of patients currently smoking was 3.51 (1.14-10.80) relative to that of those who had never smoked.. This study proves that the presence of MT-Ab can potentiate tubular dysfunction among diabetic subjects and that patients with high MT-Ab levels are more prone to development of tubular damage. Topics: Aged; Albuminuria; Alcohol Drinking; Antibodies; Cadmium; China; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Humans; Male; Metallothionein; Middle Aged; Smoking | 2006 |
Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes.
Cardiomyopathy is a major cause of mortality for both type 1 and 2 diabetic patients. However, experimental analysis of diabetic cardiomyopathy has focused on type 1 diabetes and there are few reports on cardiomyocyte dysfunction in the widely used type 2 diabetic model, db/db. In the current study, we assessed function in isolated ventricular myocytes from type 1 diabetic OVE26 mice and from type 2 diabetic db/db mice. When compared with their respective control strains, both diabetic models showed significant impairment in contractility, as assessed by percent peak shortening, maximal rate of contraction, and maximal rate of relaxation. The calcium decay rate was also significantly reduced in both types of diabetes, but the decrement was much greater in OVE26 myocytes, approx 50% vs only 20% in db/db myocytes. To understand the basis for slow calcium decay in diabetic myocytes and to understand the molecular basis for the quantitative difference between calcium decay in OVE26 and db/db myocytes, we measured cardiac content of the SERCA2a calcium pump. SERCA2a was significantly decreased in OVE26 diabetic myocytes but not reduced at all in db/db myocytes. The reduction of SERCA2a in OVE26 myocytes was completely prevented by overexpression of the antioxidant protein metallothionein, confirming that oxidative stress is an important component of diabetic cardiomyopathy. The current results demonstrate that though contractility is impaired in individual myocytes of db/db hearts and deficits are similar to what is seen in a severe model of type 1 diabetes, impairment in calcium reuptake is less severe, probably as a result of maintenance of normal levels of SERCA2a. Topics: Animals; Blotting, Western; Calcium Signaling; Calcium-Transporting ATPases; Cell Separation; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Electrophoresis, Polyacrylamide Gel; Female; Fluorescent Dyes; Fura-2; Male; Metallothionein; Mice; Mice, Inbred Strains; Myocardial Contraction; Myocytes, Cardiac; Sarcoplasmic Reticulum Calcium-Transporting ATPases | 2005 |
The susceptibility of spontaneously diabetic mice to cadmium-metallothionein nephrotoxicity.
Cadmium metallothionein (CdMT) was injected subcutaneously into obese hyperglycaemic Umeå ob/ob mice or their lean litter mates (normal mice) at doses of 0, 0.1 and 0.4 mg Cd/kg. Proteinuria and calciuria were induced in both types of mice, but in the ob/ob mice this condition developed at a lower dose of CdMT (0.1 mg Cd/kg) than in the normal mice (0.4 mg Cd/kg). These results show, therefore, that Umeå ob/ob mice are particularly susceptible to CdMT-induced nephrotoxicity. The mechanism underlying this phenomenon needs to be further investigated. After the administration of CdMT, a dose-related increase in glycosuria was observed in both types of mice, in spite of decreased levels of serum insulin and glucose. It is suggested that such glycosuria induced by CdMT could be one of the signs of cadmium nephrotoxicity. The results of the present study thus indicate that metabolic changes like those in diabetes may increase susceptibility to cadmium-induced renal tubular damage. Topics: Animals; Blood Glucose; Calcium; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Injections, Subcutaneous; Insulin; Kidney Diseases; Kidney Tubules; Liver; Male; Metallothionein; Mice; Mice, Obese; Obesity; Pancreas; Proteinuria; Tissue Distribution | 1994 |