metallothionein and Central-Nervous-System-Diseases

metallothionein has been researched along with Central-Nervous-System-Diseases* in 5 studies

Reviews

4 review(s) available for metallothionein and Central-Nervous-System-Diseases

ArticleYear
Physiological Roles of Metallothioneins in Central Nervous System Diseases.
    Biological & pharmaceutical bulletin, 2018, Volume: 41, Issue:7

    Metallothioneins (MTs) are small-molecular weight metal-binding proteins involved in the maintenance of tissue structure, efficient metal metabolism, and metal detoxification and have an antioxidative effect. Moreover, MTs are expressed as four isoforms, and there are no known patterns in their localization with various effects. According to recent studies, MTs affect central nervous system (CNS) diseases, and many reports suggest that each isoform of MT has a protective effect against disease. Notably, MTs are involved in regions of diseases related to unmet medical needs, and MTs affect intractable neurological diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). This review specifically focuses on MT-related ocular diseases, cerebral ischemia, psychological disorders, ALS, and SMA. Each of these diseases has a separate cause, but the conditions are related to MTs. To understand the physiological roles of MTs in CNS diseases, we reviewed the current literature on the complex interactions between each MT, pathological conditions, and perspectives. We also discuss current evidence on the expression and function of MTs for diagnosis and new therapeutic strategies.

    Topics: Central Nervous System Diseases; Eye Diseases; Humans; Metallothionein; Molecular Targeted Therapy; Protein Isoforms

2018
Metallothionein in the central nervous system: Roles in protection, regeneration and cognition.
    Neurotoxicology, 2008, Volume: 29, Issue:3

    Metallothionein (MT) is an enigmatic protein, and its physiological role remains a matter of intense study and debate 50 years after its discovery. This is particularly true of its function in the central nervous system (CNS), where the challenge remains to link its known biochemical properties of metal binding and free radical scavenging to the intricate workings of brain. In this compilation of four reports, first delivered at the 11th International Neurotoxicology Association (INA-11) Meeting, June 2007, the authors present the work of their laboratories, each of which gives an important insight into the actions of MT in the brain. What emerges is that MT has the potential to contribute to a variety of processes, including neuroprotection, regeneration, and even cognitive functions. In this article, the properties and CNS expression of MT are briefly reviewed before Dr Hidalgo describes his pioneering work using transgenic models of MT expression to demonstrate how this protein plays a major role in the defence of the CNS against neurodegenerative disorders and other CNS injuries. His group's work leads to two further questions, what are the mechanisms at the cellular level by which MT acts, and does this protein influence higher order issues of architecture and cognition? These topics are addressed in the second and third sections of this review by Dr West, and Dr Levin and Dr Eddins, respectively. Finally, Dr Aschner examines the ability of MT to protect against a specific toxicant, methylmercury, in the CNS.

    Topics: Animals; Animals, Genetically Modified; Central Nervous System; Central Nervous System Diseases; Cognition; Humans; Metallothionein; Methylmercury Compounds; Mice; Mice, Knockout; Nerve Regeneration; Neuroprotective Agents

2008
Metallothionein I + II expression and roles during neuropathology in the CNS.
    Danish medical bulletin, 2006, Volume: 53, Issue:2

    Topics: 6-Aminonicotinamide; Animals; Brain; Brain Diseases; Brain Injuries; Central Nervous System; Central Nervous System Diseases; DNA Fragmentation; Humans; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation Mediators; Lymphocyte Activation; Macrophages; Metallothionein; Necrosis; Neovascularization, Pathologic; Neurofibrillary Tangles; Oxidative Stress; Tumor Necrosis Factor-alpha

2006
Molecular basis of cadmium toxicity.
    Progress in food & nutrition science, 1984, Volume: 8, Issue:1-2

    Cadmium has been shown to manifest its toxicity in human and animals by mainly accumulating in almost all of the organs and kidney is the main target organ where it is concentrated mainly in cortex. Environmental exposure of cadmium occurs via food, occupational industries, terrestrial and aquatic ecosystem. At molecular level, cadmium interferes with the utilization of essential metals e.g. Ca, Zn, Se, Cr and Fe and deficiencies of these essential metals including protein and vitamins, exaggerate cadmium toxicity, due to its increased absorption through the gut and greater retention in different organs as metallothionein (Cd-Mt). Cadmium transport, across the intestinal and renal brush border membrane vesicles, is carrier mediated and it competes with zinc and calcium. It has been postulated that cadmium shares the same transport system. Cadmium inhibits protein synthesis, carbohydrate metabolism and drug metabolizing enzymes in liver of animals. Chronic environmental exposure of cadmium produces hypertension in experimental animals. Functional changes accompanying cadmium nephropathy include low molecular weight proteinuria which is of tubular origin associated with excess excretion of proteins such as beta 2 microglobulin, metallothionein and high molecular weight proteinuria of glomerular origin (excretion of proteins such as albumin IgG, transferrin etc.). Recent data has shown that metallothionein is more nephrotoxic to animals. Cadmium is also toxic to central nervous system. It causes an alterations of cellular functions in lungs. Cadmium affects both humoral and cell mediated immune response in animals. Cadmium induces metallothionein in liver and kidney but under certain nutritional deficiencies like protein-calorie malnutrition and calcium deficiency, enhanced induction and greater accumulation of cadmium metallothionein has been observed.

    Topics: Aging; Animals; Bone Diseases; Cadmium; Calcium; Central Nervous System Diseases; Chromium; Copper; Dietary Proteins; Drug Interactions; Environmental Exposure; Female; Half-Life; Humans; Hypertension; Immunity; Intestinal Absorption; Intestinal Diseases; Iron; Kidney Diseases; Liver; Lung; Male; Metallothionein; Ovary; Selenium; Sex Factors; Testis; Tissue Distribution; Vitamins; Zinc

1984

Other Studies

1 other study(ies) available for metallothionein and Central-Nervous-System-Diseases

ArticleYear
Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures.
    Journal of neuroscience research, 2005, Feb-15, Volume: 79, Issue:4

    We examined metallothionein (MT)-induced neuroprotection during kainic acid (KA)-induced excitotoxicity by studying transgenic mice with MT-I overexpression (TgMT mice). KA induces epileptic seizures and hippocampal excitotoxicity, followed by inflammation and delayed brain damage. We show for the first time that even though TgMT mice were more susceptible to KA, the cerebral MT-I overexpression decreases the hippocampal inflammation and delayed neuronal degeneration and cell death as measured 3 days after KA administration. Hence, the proinflammatory responses of microglia/macrophages and lymphocytes and their expression of interleukin (IL)-1, IL-6, IL-12, tumor necrosis factor-alpha and matrix metalloproteinases (MMP-3, MMP-9) were significantly reduced in hippocampi of TgMT mice relative to wild-type mice. Also by 3 days after KA, the TgMT mice showed significantly less delayed damage, such as oxidative stress (formation of nitrotyrosine, malondialdehyde, and 8-oxoguanine), neurodegeneration (neuronal accumulation of abnormal proteins), and apoptotic cell death (judged by TUNEL and activated caspase-3). This reduced bystander damage in TgMT mice could be due to antiinflammatory and antioxidant actions of MT-I but also to direct MT-I effects on the neurons, in that significant extracellular MT presence was detected. Furthermore, MT-I overexpression stimulated astroglia and increased immunostaining of antiinflammatory IL-10, growth factors, and neurotrophins (basic fibroblastic growth factor, transforming growth factor-beta, nerve growth factor, brain-derived neurotrophic factor, glial-derived neurotrophic factor) in hippocampus. Accordingly, MT-I has different functions that likely contribute to the increased neuron survival and improved CNS condition of TgMT mice. The data presented here add new insight into MT-induced neuroprotection and indicate that MT-I therapy could be used against neurological disorders.

    Topics: Amyloid beta-Peptides; Analysis of Variance; Animals; Astrocytes; Cell Count; Cell Death; Central Nervous System Diseases; Epilepsy; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Growth Substances; Guanine; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Interleukins; Kainic Acid; Matrix Metalloproteinase 3; Matrix Metalloproteinase 9; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurodegenerative Diseases; Neurofibrillary Tangles; Staining and Labeling; Tyrosine

2005