mersalyl has been researched along with Carcinoma--Ehrlich-Tumor* in 2 studies
2 other study(ies) available for mersalyl and Carcinoma--Ehrlich-Tumor
Article | Year |
---|---|
Submitochondrial localization and membrane topography of Ehrlich ascitic tumour cell glutaminase.
The intramitocondrial localization of the phosphate-activated glutaminase from Ehrlich cells has been examined by a combination of techniques, including: mitochondria subfractionation studies, chemical modification with sulfhydryl group reagents of different permeability, enzymatic digestion in both sides of the inner mitochondrial membrane, and immunological studies. Using alkaline extraction at high ionic strength, hypoosmotic shock and freezing-thawing cycle techniques, the enzyme was found in the particulate fraction. On the contrary, glutaminase activity was labile when subfractionation was carried out by digitonin/lubrol method; Western blot analysis localized the inactive enzyme in the matrix fraction. In addition, glutaminase was fully inactivated when mitoplasts were incubated with phospholipase A2 and phospholipase C. The enzyme also showed a non-linear Arrhenius plot with a break at 24 degrees C. The membrane-impermeant thiol reagents mersalyl and p-chloromercuriphenylsulfonic acid do not inhibit glutaminase activity in freeze-thawed mitochondria and mitoplasts, but N-ethylmaleimide, which is membrane permeant, strongly inhibited the enzyme. However, mersalyl and p-chloromercuriphenylsulfonic acid were effective inhibitors when the alkylation was performed on the matrix side of mitoplasts or using detergent-solubilized enzyme. Furthermore, trypsin digestion of mitoplasts was only effective inactivating glutaminase when the proteolysis was carried out on the matrix side of the vesicles. Enzyme-linked immunosorbent assay of the soluble and membrane fractions obtained in the preparation of submitochondrial particles, revealed that most of the enzyme was solubilized, but in the inactive form. Phase separation with Triton X-114 rendered most of the protein in the aqueous phase. These results taken together discard a transmembrane localization for the protein, whereas they are consistent with anchorage of glutaminase on the matrix side of the inner mitochondrial membrane, the matrix portion of the enzyme being relevant for its function. Topics: 4-Chloromercuribenzenesulfonate; Alkylating Agents; Animals; Carcinoma, Ehrlich Tumor; Cell Fractionation; Enzyme Inhibitors; Ethylmaleimide; Glutaminase; Intracellular Membranes; Mersalyl; Mitochondria; Phospholipases A; Phospholipases A2; Sulfhydryl Reagents; Temperature; Trypsin; Type C Phospholipases | 1997 |
L-lactate transport in Ehrlich ascites-tumour cells.
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids. Topics: Animals; Biological Transport; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Carboxylic Acids; Carcinoma, Ehrlich Tumor; Cinnamates; Hydrogen-Ion Concentration; In Vitro Techniques; Kinetics; Lactates; Mersalyl; Mice; Nigericin; Protons; Temperature; Valinomycin | 1976 |