meropenem has been researched along with Pneumonia--Pneumococcal* in 4 studies
4 other study(ies) available for meropenem and Pneumonia--Pneumococcal
Article | Year |
---|---|
Empiric Meropenem-based versus Ceftazidime-based Therapy for Severe Community-Acquired Pneumonia in a Retrospective Cohort Study.
Topics: Aged; Anti-Bacterial Agents; Ceftazidime; Cohort Studies; Community-Acquired Infections; Drug Therapy, Combination; Female; Humans; Klebsiella Infections; Male; Melioidosis; Meropenem; Middle Aged; Mortality; Pneumonia, Bacterial; Pneumonia, Pneumococcal; Proportional Hazards Models; Retrospective Studies; Severity of Illness Index; Streptococcal Infections | 2019 |
[Retinal folds as a non-reported secondary effect of darunavir in a 20 year-old HIV patient].
Topics: Anti-HIV Agents; Antiretroviral Therapy, Highly Active; Darunavir; Female; HIV Infections; HIV Protease Inhibitors; Humans; Levofloxacin; Meropenem; Ophthalmoscopy; Pneumonia, Pneumococcal; Polypharmacy; Retinal Dystrophies; Thienamycins; Young Adult | 2015 |
[In vitro and in vivo activities of panipenem against penicillin-resistant Streptococcus pneumoniae].
Efficacy of panipenem/betamipron (PAPM/BP) against experimental pneumonia caused by penicillin-resistant Streptococcus pneumoniae (PRSP: MIC of benzylpenicillin, > or = 1.56 micrograms/ml) in mice was compared with those of imipenem/cilastatin (IPM/CS), meropenem (MEPM), cefozopran (CZOP), ceftriaxone (CTRX), ampicillin (ABPC), and vancomycin (VCM). The infection was induced by inoculating a PRSP clinical isolate, 9601 (serotype 6) or 10,693 (serotype 19), into ddY male mice intranasally. Drugs were administered subcutaneously at doses of 0.4, 2, and 10 mg/kg, 18, 26, 42, and 50 hours post-infection. Viable cell counts in the lungs were determined 66 hours post-infection. PAPM/BP showed the greatest efficacy against the infections among tested drugs. MICs of PAPM against PRSP 9601 and 10,693 were both 0.125 microgram/ml, which were superior to those of IPM (0.25 and 0.5 microgram/ml, respectively), MEPM (0.5 and 1 microgram/ml, respectively), CZOP (2 and 1 microgram/ml, respectively), CTRX (both 1 microgram/ml), ABPC (both 4 micrograms/ml), and VCM (0.5 and 0.25 microgram/ml, respectively). These results suggest that the potent in vivo activity of PAPM/BP reflects the potent in vitro activity of PAPM. MICs of PAPM, IPM, MEPM, and CZOP against clinical isolates, penicillin-susceptible S. pneumoniae (PSSP: MIC of benzylpenicillin, < or = 0.05 microgram/ml), penicillin-intermediate S. pneumoniae (PISP: MIC of benzylpenicillin, 0.1-0.78 microgram/ml), and PRSP, were tested by an agar dilution method. MIC90s of the drugs against the PSSP, PISP, and PRSP were as follows: PAPM, 0.012, 0.05, and 0.39 microgram/ml; IPM, < or = 0.006, 0.1, and 0.78 microgram/ml; MEPM, 0.05, 0.39, and 1.56 micrograms/ml; and CZOP, 0.2, 0.78, and 6.25 micrograms/ml, respectively. Thus, PAPM showed the most potent activity among tested drugs against clinical isolates of PISP and PRSP. Topics: Ampicillin; Animals; beta-Alanine; Cefozopran; Ceftriaxone; Cephalosporins; Cilastatin; Cilastatin, Imipenem Drug Combination; Disease Models, Animal; Drug Combinations; Drug Resistance; Imipenem; Male; Meropenem; Mice; Mice, Inbred Strains; Penicillin Resistance; Pneumonia, Pneumococcal; Streptococcus pneumoniae; Thienamycins; Vancomycin | 2001 |
Development of experimental pneumonia by infection with penicillin-insensitive Streptococcus pneumoniae in guinea pigs and their treatment with amoxicillin, cefotaxime, and meropenem.
Acute respiratory infection with penicillin-insensitive Streptococcus pneumoniae (MIC and MBC, 1 and 2 micrograms/ml, respectively) was established in guinea pigs. Intratracheal instillation of 0.5 ml of an overnight culture of S. pneumoniae concentrated 25 times (approximately 3 x 10(9) CFU) induced a bacteremic and fatal pneumonia in > 85% of untreated animals within 46 h, with a mean +/- standard deviation bacterial count of 8.83 +/- 1.11 log10 CFU in lung homogenates. This model was used to evaluate the efficacies of two doses each of amoxicillin, cefotaxime, and meropenem given 1 h after bacterial inoculation. The antibiotics were given at 8-h intervals for up to a total of four injections. The dose of 50 mg of any antibiotic per kg of body weight gave 66.6% survival, compared with 5.05% survival for untreated control animals (P < 0.001). A dose of 200 mg/kg gave a survival rate of 77.8% for meropenem and 83.3% for amoxicillin and cefotaxime, while survival for untreated controls was 11.1% (P < 0.001). Although antibiotic treatment decreased mortality compared with that in untreated controls, the antibiotics contributed to a high early (less than 9 h after bacterial inoculation) mortality, being 53.5% compared with only 6.06% for the untreated controls (P < 0.001). Quantitative cultures of the lungs of animals that died during the 46-h observation period or that were killed after this time showed a significant reduction in the numbers of organisms among treated animals compared with numbers among the control animals (P < 0.001). The described model is an appropriate system for evaluating antibiotic efficacy in invasive pulmonary infection caused by penicillin-insensitive S. pneumoniae. Topics: Amoxicillin; Animals; Cefotaxime; Cephalosporins; Colony Count, Microbial; Disease Models, Animal; Female; Guinea Pigs; Lung; Meropenem; Penicillin Resistance; Penicillins; Pneumonia, Pneumococcal; Streptococcus pneumoniae; Thienamycins | 1996 |