merocyanine-dye has been researched along with Lymphoma* in 7 studies
2 review(s) available for merocyanine-dye and Lymphoma
Article | Year |
---|---|
Pharmacological purging of bone marrow with reference to autografting.
Topics: Adolescent; Adult; Animals; Bleomycin; Bone Marrow; Bone Marrow Transplantation; Cell Separation; Child; Child, Preschool; Clinical Trials as Topic; Cyclophosphamide; Drug Evaluation; Etoposide; Graft vs Host Disease; Hematopoietic Stem Cells; Humans; Leukemia; Leukemia, Lymphoid; Lymphoma; Lysophosphatidylcholines; Methylprednisolone; Neoplasms, Experimental; Phospholipid Ethers; Pyrimidinones; Transplantation, Autologous; Transplantation, Isogeneic | 1986 |
In vitro chemoseparation as part of autologous bone marrow transplantation (ABMT) in hematologic malignancy.
Topics: Acute Disease; Animals; Bone Marrow; Bone Marrow Transplantation; Cyclophosphamide; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Leukemia; Lymphoma; Mechlorethamine; Neoplastic Stem Cells; Photosensitivity Disorders; Podophyllotoxin; Pyrimidinones; Rats; Transplantation, Autologous | 1984 |
1 trial(s) available for merocyanine-dye and Lymphoma
Article | Year |
---|---|
Pharmacological purging of bone marrow with reference to autografting.
Topics: Adolescent; Adult; Animals; Bleomycin; Bone Marrow; Bone Marrow Transplantation; Cell Separation; Child; Child, Preschool; Clinical Trials as Topic; Cyclophosphamide; Drug Evaluation; Etoposide; Graft vs Host Disease; Hematopoietic Stem Cells; Humans; Leukemia; Leukemia, Lymphoid; Lymphoma; Lysophosphatidylcholines; Methylprednisolone; Neoplasms, Experimental; Phospholipid Ethers; Pyrimidinones; Transplantation, Autologous; Transplantation, Isogeneic | 1986 |
5 other study(ies) available for merocyanine-dye and Lymphoma
Article | Year |
---|---|
Sequence of physical changes to the cell membrane during glucocorticoid-induced apoptosis in S49 lymphoma cells.
During apoptosis, physical changes in the plasma membrane prepare the cell for clearance by phagocytes and hydrolysis by secretory phospholipase A(2) (sPLA(2)). The relationships among these changes have not been adequately established, especially for hormone-stimulated apoptosis. This study addresses these issues for glucocorticoid-induced apoptosis in S49 lymphoma cells. Flow cytometry, microscopy, and fluorescence spectroscopy were used to assess merocyanine 540 emission, laurdan generalized polarization, phosphatidylserine exposure, caspase activation, and membrane permeability to propidium iodide in the absence and presence of sPLA(2). The earliest event observed was activation of cellular caspases. Results with membrane probes suggest that interlipid spacing also increases early during apoptosis and precedes transbilayer migration of phosphatidylserine, DNA fragmentation, and a general increase in lipid order associated with blebbing and dissolution of the cells. The activity of sPLA(2) appeared to be linked more to lipid spacing than to loss of membrane asymmetry. The early nature of some of these events and their ability to promote activity of a proinflammatory enzyme suggests the possibility of an inflammatory response during T-lymphocyte apoptosis. Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Membrane; Cell Survival; Enzymes; Flow Cytometry; Fluorescent Dyes; Glucocorticoids; Hydrolysis; Lipid Metabolism; Lymphoma; Microscopy; Phosphatidylserines; Phospholipases A2; Pyrimidinones; Spectrometry, Fluorescence; Time Factors; Water | 2009 |
Plasma membrane properties regulating the sensitivity of leukemia, lymphoma, and solid tumor cells to merocyanine 540-sensitized photoirradiation.
Merocyanine 540 (MC 540) is a photosensitizing dye that has been used in a phase I clinical trial for the purging of leukemia and lymphoma cells from autologous bone marrow grafts. In this paper we examine the role of plasma membrane negative charge, plasma membrane fluidity, and plasma membrane hydrophobicity in the regulation of a cell's susceptibility to MC 540-sensitized photoirradiation. Among solid tumor cells, we found an inverse correlation between surface electronegativity, affinity for dye molecules, and susceptibility to MC 540-sensitized photoinactivation. That is, the least electronegative cells bound the highest amount of dye and were the most susceptible to dye-sensitized photoirradiation. By contrast, no such correlations were found among leukemia/lymphoma cells. This suggested that dye binding and susceptibility to MC 540-mediated photodynamic damages are regulated differently in hematopoietic/lymphopoietic and solid tumor cells. Topics: Bone Marrow; Bone Marrow Cells; Cell Membrane; Cell Separation; Humans; Leukemia; Light; Lymphoma; Membrane Fluidity; Neoplasms; Neuraminidase; Pyrimidinones; Radiation-Sensitizing Agents; Solubility; Surface Properties; Trypsin; Tumor Cells, Cultured | 1991 |
Photoradiation methods for purging autologous bone marrow grafts.
The potential of various photoradiation therapy for the in vitro purging of residual tumor cells from autologous bone marrow (BM) transplants is discussed in this paper. The results with fluorescent dyes, Dihematoporphyrin Ether (DHE) and Merocyanine-540 (MC-540) are detailed. Following photoradiation of cells with white light, both DHE and MC-540 showed high cytocidal activity towards lymphoid and myeloid neoplastic cells, but had significantly less effect on normal granulocyte-macrophage (CFU-GM), erythroid (BFU-E) and mixed colony-forming (CFU-GEMM) progenitor cells. Acute promyelocytic leukemia (HL-60), non-B, non-T, cALLa positive acute lymphoblastic leukemia (Reh), and diffuse histiocytic B-cell lymphoma (SK-DHL-2) cell lines were exposed to different drug concentrations in combination with white light at a constant illumination rate of 50,000 lux. With DHE doses varying from 2.0 to 2.5 ug/ml and MC-540 concentrations of 15 to 20 ug/ml, clonogenic tumor cells could be reduced by more than 4 logs, when treated alone or in mixtures with normal irradiated human marrow cells. However, preferential cytotoxicity towards neoplastic cells was highly dependent on the mode of light activation. MC-540 had no substantial effect on malignant lymphoid (SK-DHL-2) and myeloid (HL-60) cells, and on normal marrow myeloid (CFU-GM) precursors, when the drug incubation was performed in the dark and followed by light exposure of washed cells. Equal doses of MC-540 (15-20 ug/ml) could preferentially eliminate tumor cells under conditions of simultaneous light and drug treatment (30 minutes at 37 degrees C). Using DHE (2.5 ug/ml), 29.3%, 46.8%, and 27.5% of normal marrow CFU-GM, BFU-E, and CFU-GEMM, respectively, were spared, following sequential drug and light exposure of cells, while simultaneous treatment reduced both normal (CFU-GM) and neoplastic cells below the limits of detection. The data from various centers is briefly discussed with special emphasis on clinical trials. Our results provide a useful model for leukemia and lymphoma cells and suggest that these phototherapy experiments can be implemented into clinical trials. Topics: Bone Marrow; Bone Marrow Cells; Bone Marrow Transplantation; Cell Survival; Colony-Forming Units Assay; Dihematoporphyrin Ether; Hematoporphyrins; Humans; Leukemia, Lymphoid; Leukemia, Promyelocytic, Acute; Lymphoma; Photochemotherapy; Pyrimidinones; Radiation-Sensitizing Agents; Transplantation, Autologous; Tumor Cells, Cultured | 1990 |
Photoradiation models for the clinical ex vivo treatment of autologous bone marrow grafts.
To assess the potential of photoradiation therapy for the in vitro purging of residual tumor cells from autologous bone marrow (BM) transplants, we studied normal marrow and tumor cell clonogenicity in response to different light-activated compounds by using the fluorescent dyes dihematoporphyrin ether (DHE) and merocyanine-540 (MC-540). After photoradiation of cells with white light, both DHE and MC-540 showed high cytocidal activity toward lymphoid and myeloid neoplastic cells but had a significantly lesser effect on normal granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and mixed colony-forming (CFU-GEMM) progenitor cells. Acute promyelocytic leukemia (HL-60), non-B, non-T, CALLA-positive acute lymphoblastic leukemia (Reh), and diffuse histocytic B cell lymphoma (SK-DHL-2) cell lines were exposed to different drug concentrations in combination with white light at a constant illumination rate of 50,000 lux. With DHE doses varying from 2.0 to 2.5 micrograms/mL and MC-540 concentrations of 15 to 20 micrograms/mL, clonogenic tumor cells could be reduced by more than 4 logs when treated alone or in mixtures with normal irradiated human marrow cells. However, preferential cytotoxicity towards neoplastic cells was highly dependent on the mode of light activation. MC-540 had no substantial effect on malignant lymphoid (SK-DHL-2) and myeloid (HL-60) cells and on normal marrow myeloid (CFU-GM) precursors when drug incubation was performed in the dark and followed by light exposure of washed cells. Equal doses of MC-540 (15 to 20 micrograms/mL) could preferentially eliminate tumor cells under conditions of simultaneous light and drug treatment (30 minutes at 37 degrees C). When using DHE (2.5 micrograms/mL), 29.3%, 46.8%, and 27.5% of normal marrow CFU-GM, BFU-E, and CFU-GEMM, respectively, were spared after sequential drug and light exposure of cells, whereas simultaneous treatment reduced both normal (CFU-GM) and neoplastic cells below the limits of detection. In summary, our results indicate the usefulness of various photoradiation models for the ex vivo treatment of leukemic and lymphomatous bone marrow autografts. Topics: Bone Marrow; Bone Marrow Cells; Bone Marrow Transplantation; Cell Line; Dihematoporphyrin Ether; Hematopoietic Stem Cells; Hematoporphyrins; Humans; Leukemia; Lymphoma; Phototherapy; Pyrimidinones; Radiation-Sensitizing Agents; Transplantation, Autologous | 1987 |
Merocyanine 540 staining of human leukemic cells: relation to stage of disease.
Previous work based on fluorescence microscopic observation has indicated that leukemic leukocytes and immature hematopoietic precursor cells show a greater permeability to the membrane stain, merocyanine 540 (MC) than normal, mature cells and that changes in MC permeability seem to be correlated with failure in membrane maturation during leukemic cell differentiation. In the interest of addressing questions concerning the efficacy of the MC staining reaction as a diagnostic tool in clinical contexts relevant to leukemia, we have looked for any correlations which might exist between the MC staining patterns displayed by circulating leukocytes, cellular morphology and the clinical status of 53 patients with leukemia and non-Hodgkin's lymphoma, using fluorescence activated cell sorting. In 85% of cases, MC staining was found to be correlated with blood status while in 15% of the cases discrepancies were found. These results are discussed in light of changes in the hematologic profiles of the patients during the clinical course. Topics: Diagnosis, Differential; Diagnostic Errors; Humans; Leukemia; Leukocytes; Lymphoma; Microscopy, Fluorescence; Neoplasm Staging; Pyrimidinones; Staining and Labeling | 1985 |