mercaptopurine has been researched along with Hypertension--Pulmonary* in 2 studies
2 other study(ies) available for mercaptopurine and Hypertension--Pulmonary
Article | Year |
---|---|
Effects of 6-mercaptopurine in pressure overload induced right heart failure.
Several antineoplastic drugs have been proposed as new compounds for pulmonary arterial hypertension treatment but many have cardiotoxic side effects. The chemotherapeutic agent 6-mercaptopurine may have an effect in treatment of pulmonary arterial hypertension but at the same time, its effects on the afterload adaption of the right ventricle is unpredictable due to interaction with multiple downstream signalling pathways in the cardiomyocytes. We investigated the direct cardiac effects of 6-mercaptopurine in rats with isolated right heart failure caused by pulmonary trunk banding (PTB).. Male Wistar rat weanlings (112±2 g) were randomized to sham operation (sham, n = 10) or PTB. The PTB animals were randomized to placebo (PTB-control, n = 10) and 6-mercaptopurine (7.5 mg/kg/day) groups with treatment start before the PTB procedure (PTB-prevention, n = 10) or two weeks after (PTB-reversal, n = 10). Right ventricular effects were evaluated by echocardiography, cardiac MRI, invasive pressure-volume measurements, and histological and molecular analyses.. PTB increased right ventricular afterload and caused right ventricular hypertrophy and failure. 6-mercaptopurine did not improve right ventricular function nor reduce right ventricular remodelling in both prevention and reversal studies compared with placebo-treated rats.. Treatment with 6-mercaptopurine did not have any beneficial or detrimental effects on right ventricular function or remodelling. Our data suggest that treatment of pulmonary arterial hypertension with 6-mercaptopurine is not harmful to the failing right ventricle. Topics: Animals; Apoptosis; Blood Pressure; Disease Models, Animal; Heart Failure; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Male; Mercaptopurine; Rats, Wistar; Ventricular Function, Right; Ventricular Remodeling | 2019 |
Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling.
Pulmonary arterial hypertension (PAH) is a progressive fatal disease characterised by abnormal remodelling of pulmonary vessels, leading to increased vascular resistance and right ventricle failure. This abnormal vascular remodelling is associated with endothelial cell dysfunction, increased proliferation of smooth muscle cells, inflammation and impaired bone morphogenetic protein (BMP) signalling. Orphan nuclear receptor Nur77 is a key regulator of proliferation and inflammation in vascular cells, but its role in impaired BMP signalling and vascular remodelling in PAH is unknown.We hypothesised that activation of Nur77 by 6-mercaptopurine (6-MP) would improve PAH by inhibiting endothelial cell dysfunction and vascular remodelling.Nur77 expression is decreased in cultured pulmonary microvascular endothelial cells (MVECs) and lungs of PAH patients. Nur77 significantly increased BMP signalling and strongly decreased proliferation and inflammation in MVECs. In addition, conditioned medium from PAH MVECs overexpressing Nur77 inhibited the growth of healthy smooth muscle cells. Pharmacological activation of Nur77 by 6-MP markedly restored MVEC function by normalising proliferation, inflammation and BMP signalling. Finally, 6-MP prevented and reversed abnormal vascular remodelling and right ventricle hypertrophy in the Sugen/hypoxia rat model of severe angioproliferative PAH.Our data demonstrate that Nur77 is a critical modulator in PAH by inhibiting vascular remodelling and increasing BMP signalling, and activation of Nur77 could be a promising option for the treatment of PAH. Topics: Animals; Bone Morphogenetic Proteins; Cell Proliferation; Culture Media, Conditioned; Disease Models, Animal; Disease Progression; Endothelial Cells; HEK293 Cells; Humans; Hypertension, Pulmonary; Inflammation; Lung; Male; Mercaptopurine; Microcirculation; Nuclear Receptor Subfamily 4, Group A, Member 1; Rats; Rats, Sprague-Dawley; Signal Transduction; Vascular Remodeling | 2019 |