menatetrenone and Disease-Models--Animal

menatetrenone has been researched along with Disease-Models--Animal* in 12 studies

Other Studies

12 other study(ies) available for menatetrenone and Disease-Models--Animal

ArticleYear
Osteogenic transdifferentiation of vascular smooth muscle cells isolated from spontaneously hypertensive rats and potential menaquinone-4 inhibiting effect.
    Journal of cellular physiology, 2019, Volume: 234, Issue:11

    Vascular calcification (VC) is an active and cell-mediated process that shares many common features with osteogenesis. Knowledge demonstrates that in the presence of risk factors, such as hypertension, vascular smooth muscle cells (vSMCs) lose their contractile phenotype and transdifferentiate into osteoblastic-like cells, contributing to VC development. Recently, menaquinones (MKs), also known as Vitamin K2 family, has been revealed to play an important role in cardiovascular health by decreasing VC. However, the MKs' effects and mechanisms potentially involved in vSMCs osteoblastic transdifferentiation are still unknown. The aim of this study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of MKs family, in the modulation of the vSMCs phenotype. To achieve this, vascular cells from spontaneously hypertensive rats (SHR) were used as an in vitro model of cell vascular dysfunction. vSMCs from Wistar Kyoto normotensive rats were used as control condition. The results showed that MK-4 preserves the contractile phenotype both in control and SHR-vSMCs through a γ-glutamyl carboxylase-dependent pathway, highlighting its capability to inhibit one of the mechanisms underlying VC process. Therefore, MK-4 may have an important role in the prevention of vascular dysfunction and atherosclerosis, encouraging further in-depth studies to confirm its use as a natural food supplement.

    Topics: Animals; Atherosclerosis; Blood Pressure; Carbon-Carbon Ligases; Cell Proliferation; Cell Transdifferentiation; Disease Models, Animal; Humans; Hypertension; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Osteogenesis; Rats; Rats, Inbred SHR; Signal Transduction; Vitamin K 2

2019
Vitamin K Metabolism in a Rat Model of Chronic Kidney Disease.
    American journal of nephrology, 2017, Volume: 45, Issue:1

    Patients with chronic kidney disease (CKD) have very high levels of uncarboxylated, inactive, extra-hepatic vitamin K-dependent proteins measured in circulation, putting them at risk for complications of vitamin K deficiency. The major form of vitamin K found in the liver is phylloquinone (K1). Menaquinone-4 (MK-4) is the form of vitamin K that is preferentially found in extra-hepatic tissues.. In the present study, we assessed tissue concentrations of K1 and MK-4 and the expression of vitamin K-related genes in a rat model of adenine-induced CKD.. It was found that rats with both mild and severe CKD had significantly lower amounts of K1 measured in liver, spleen and heart and higher levels of MK-4 measured in kidney cortex and medulla. All animals treated with high dietary K1 had an increase in tissue levels of both K1 and MK-4; however, the relative increase in K1 differed suggesting that the conversion of K1 to MK-4 may be a regulated/limiting process in some tissues. There was a decrease in the thoracic aorta expression of vitamin K recycling (Vkor) and utilization (Ggcx) enzymes, and a decrease in the kidney level of vitamin K1 to MK-4 bioconversion enzyme Ubiad1 in CKD.. Taken together, these findings suggest that CKD impacts vitamin K metabolism, and this occurs early in the disease course. Our findings that vitamin K metabolism is altered in the presence of CKD provides further support that sub-clinical vitamin K deficiency may represent a modifiable risk factor for vascular and bone health in this population.

    Topics: Adenine; Animals; Aorta, Thoracic; Carbon-Carbon Ligases; Dimethylallyltranstransferase; Disease Models, Animal; Gene Expression; Kidney; Male; Rats; Real-Time Polymerase Chain Reaction; Renal Insufficiency, Chronic; Vitamin K; Vitamin K 1; Vitamin K 2; Vitamin K Epoxide Reductases

2017
Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease.
    Kidney international, 2013, Volume: 83, Issue:5

    The leading cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease, with vascular calcification being a key modifier of disease progression. A local regulator of vascular calcification is vitamin K. This γ-glutamyl carboxylase substrate is an essential cofactor in the activation of several extracellular matrix proteins that inhibit calcification. Warfarin, a common therapy in dialysis patients, inhibits the recycling of vitamin K and thereby decreases the inhibitory activity of these proteins. In this study, we sought to determine whether modifying vitamin K status, either by increasing dietary vitamin K intake or by antagonism with therapeutic doses of warfarin, could alter the development of vascular calcification in male Sprague-Dawley rats with adenine-induced CKD. Treatment of CKD rats with warfarin markedly increased pulse pressure and pulse wave velocity, as well as significantly increased calcium concentrations in the thoracic aorta (3-fold), abdominal aorta (8-fold), renal artery (4-fold), and carotid artery (20-fold). In contrast, treatment with high dietary vitamin K1 increased vitamin K tissue concentrations (10-300-fold) and blunted the development of vascular calcification. Thus, vitamin K has an important role in modifying mechanisms linked to the susceptibility of arteries to calcify in an experimental model of CKD.

    Topics: Adenine; Animals; Anticoagulants; Arteries; Biomarkers; Blood Pressure; Dietary Supplements; Disease Models, Animal; Disease Progression; Male; Osteocalcin; Pulse Wave Analysis; Rats; Rats, Sprague-Dawley; Renal Insufficiency, Chronic; Time Factors; Vascular Calcification; Vitamin K 1; Vitamin K 2; Warfarin

2013
Vitamin K2, a gamma-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency.
    Histology and histopathology, 2008, Volume: 23, Issue:11

    It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.

    Topics: Animals; Biomechanical Phenomena; Bone Resorption; Calcification, Physiologic; Calcium; Collagen; Disease Models, Animal; Electron Probe Microanalysis; Femur; Immunohistochemistry; Magnesium Deficiency; Male; Osteocalcin; Osteoclasts; Phosphorus; Rats; Rats, Wistar; Tibia; Vitamin K 2; X-Ray Diffraction

2008
Menatetrenone rescues bone loss by improving osteoblast dysfunction in rats immobilized by sciatic neurectomy.
    Life sciences, 2005, Feb-25, Volume: 76, Issue:15

    Menatetrenone (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. However, there is no far any reported evidence that MK-4 ameliorates a pre-existing condition of reduced bone mineral density (BMD) in vivo. In this study, we evaluated the effect of MK-4 in a rat model of established bone loss through immobilization caused by sciatic neurectomy. Unilateral sciatic neurectomy (SNx) was performed in rats, and 10 or 30 mg/kg of MK-4 or vehicle was administered to the rats three weeks after operation. Seven weeks after operation, the rats were sacrificed and BMD and bone histomorphometric parameters were measured to assess the effects of MK-4. While BMD of the distal femoral metaphysis was significantly decreased after SNx, MK-4 administration increased BMD in the neurectomized rats. Bone formation was decreased continuously and bone resorption was initially increased in SNx rats. Four weeks treatment of MK-4 increased bone formation and suppressed bone resorption. In addition, increased carboxylated osteocalcin and decreased undercarboxylated osteocalcin in serum were observed in MK-4-administered rats. These results indicated that MK-4 rescued bone volume by improving osteoblast dysfunction and accelerating gamma carboxylation of osteocalcin. MK-4 may be useful for treating disuse osteopenia.

    Topics: Animals; Bone Density; Bone Resorption; Disease Models, Animal; Male; Osteoblasts; Osteocalcin; Osteogenesis; Osteoporosis; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Vitamin K 2

2005
Geranylgeranylacetone inhibits formation and function of human osteoclasts and prevents bone loss in tail-suspended rats and ovariectomized rats.
    Calcified tissue international, 2005, Volume: 77, Issue:6

    Vitamin K is used for protecting against osteoporosis. Recently, it has been reported that the inhibitory effect of vitamin K(2) (menatetrenone) on bone resorption may be related to its side chain. Geranylgeranylacetone (GGA), known as teprenone, an antiulcer drug, has almost the same chemical structure as that of the side chain of menatetrenone. We hypothesized that GGA also has an inhibitory effect on osteoclastogenesis both in vitro and in vivo. GGA in pharmacological concentrations directly inhibited osteoclastogenesis from human monocytes induced by soluble receptor activator of nuclear factor-kappaB ligand. In addition, GGA induced degradation of actin rings in mature osteoclasts, which was reversed by adding geranylgeranylpyrophosphatase. Moreover, GGA increased the bone mineral density of total femur, proximal metaphysis, and diaphysis of femur in ovariectomized rats. GGA also prevented bone loss induced by hindlimb unloading in tail-suspended rats. These results indicate that GGA prevents bone loss by maintaining a positive balance of bone turnover through suppression of both the formation and the activity of osteoclasts. Thus, GGA could be used to prevent and improve osteoporosis.

    Topics: Animals; Anti-Ulcer Agents; Bone Density; Bone Diseases, Metabolic; Bone Resorption; Cells, Cultured; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Female; Femur; Hindlimb Suspension; Humans; NF-kappa B; Osteoclasts; Ovariectomy; Rats; Rats, Inbred F344; Tibia; Vitamin K 2

2005
Menatetrenone ameliorates reduction in bone mineral density and bone strength in sciatic neurectomized rats.
    Journal of nutritional science and vitaminology, 2003, Volume: 49, Issue:4

    Vitamin K2 (menaquinone) acts on the bone metabolism. Menatetrenon (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. Rat models of immobilization induced by sciatic neurectomy are characterized by transiently increased bone resorption and sustained reduction in bone formation. Using such a rat model, we investigated the efficacy of MK-4 on bone loss. Male Sprague-Dawley rats were subjected to unilateral sciatic neurectomy and administered MK-4 for 28 d beginning day 21 after operation. The effect of MK-4 on the immobilized bone was assessed by measuring the bone mineral density of the femur, breaking force of the femoral diaphysis, and bone histomorphometry in tibial diaphysis. The BMD on both the femoral distal metaphysis and diaphysis was reduced by sciatic neurectomy. The administration of MK-4 ameliorated this reduction in a dose-dependent manner. The administration of 30 mg/kg MK-4 ameliorated the reduction in bone strength. An improvement in bone formation was observed following the administration of MK-4. These results suggest that MK-4 has a therapeutic potential for immobilization-induced osteopenia.

    Topics: Absorptiometry, Photon; Animals; Bone Density; Bone Resorption; Disease Models, Animal; Dose-Response Relationship, Drug; Immobilization; Male; Osteoporosis; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Tensile Strength; Vitamin K 2

2003
A comparison of alfacalcidol and menatetrenone for the treatment of bone loss in an ovariectomized rat model of osteoporosis.
    Calcified tissue international, 2002, Volume: 71, Issue:1

    We conducted this study to evaluate the characteristic effects of alfacalcidol (ALF) and menatetrenone (VK) in preventing bone loss using an ovariectomized rat model of osteoporosis. Bilateral ovariectomy (OVX) or sham operation was performed on 10-month-old female Wistar rats. OVX caused a significant decrease in the bone mass and the mechanical strength of the lumbar vertebra as well as the femur 6 months after surgery. VK treatment (30 mg/kg, food intake) required a 6-month period to prevent the bone loss induced by estrogen deficiency, whereas ALF (0.1 or 0.2 mg/kg, p.o.) increased the bone mass and the mechanical strength of the lumbar vertebra as well as the femur in a 3-month treatment period, far above the level in the sham-operated rats. Neither ALF or VK caused hypercalcemia, despite administration for as long as 6 months. By doing a micro-CT analysis of the vertebral trabecular microstructure, it was revealed that ALF treatment increased the interconnections and the plate-like structures and that VK significantly increased the trabecular number. It was also indicated that the increase in spinal strength by ALF treatment was closely associated with improvement of the microstructure, but not VK. The results of histomorphometric analysis showed that ALF caused a significant suppression of bone resorption yet maintained formation in the endocortical perimeter, and also stimulated bone formation in the periosteal perimeter, thereby causing an increase in cortical area. No marked effect of VK on histomorphometric parameters was observed, whereas VK as well as ALF maintained the material strength at femoral midshaft of the normal level, suggesting that VK affected bone quality and thereby prevented the decrease in mechanical strength of femur caused by OVX. In conclusion, it was demonstrated that the two drugs, ALF and VK, differed markedly in their potency and mechanisms for improving bone strength. These results have important implications in understanding the characteristic actions of vitamin K and active vitamin D on bone metabolism.

    Topics: Animals; Anticarcinogenic Agents; Biomechanical Phenomena; Bone Density; Bone Resorption; Disease Models, Animal; Female; Femur; Hydroxycholecalciferols; Lumbar Vertebrae; Osteoporosis; Ovariectomy; Rats; Rats, Wistar; Reference Values; Vitamin K 2

2002
Effect of vitamin K2 on three-dimensional trabecular microarchitecture in ovariectomized rats.
    Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2000, Volume: 15, Issue:9

    Menatetrenone, a vitamin K2 with four isoprene units, has been reported to improve osteoporotic bone loss. The purpose of this investigation was to clarify the effect of menatetrenone on the three-dimensional (3D) trabecular microarchitecture in ovariectomized (OVX) rats by using microcomputed tomography (MCT). Forty-two 13-week-old female rats were used and divided into four groups: the OVX (OVX + MK-4) group treated with menatetrenone, the (OVX untreated) group, the sham-operated (Sham + MK-4) group treated with menatetrenone, and the sham-operated group not treated with menatetrenone (Sham untreated) group. OVX rats were fed a calcium-deficient diet. Menatetrenone treatment was begun just after the ovariectomy, and the mean menatetrenone oral intake over the 8-week period was adjusted to 30 mg/kg BW per day. The proximal metaphyseal region of the right tibia was evaluated by dual X-ray absorptiometry (DXA) and MCT. A parametric analysis of the reconstructed trabecular volume was carried out using bone volume fractions, the fractal dimension calculated by the 3D box-counting method, and the connectivity density as determined by topological analysis. Menatetrenone significantly increased the trabecular bone volume, fractal dimension, and connectivity in the OVX + MK-4 group compared with the OVX-untreated group (p < 0.01). Our results suggest that an 8-week administration of menatetrenone protects against the loss of trabecular bone volume and its connectivity when treatment is begun just after the ovariectomy. Despite this apparent protection, it remains unknown whether it is possible to reestablish trabecular connectivity if therapeutic intervention occurs after the trabecular connectivity has been lost.

    Topics: Alkaline Phosphatase; Animals; Anthropometry; Body Weight; Bone Density; Calcium; Computer Simulation; Disease Models, Animal; Female; Humans; Osteoporosis, Postmenopausal; Ovariectomy; Rats; Rats, Inbred F344; Reproducibility of Results; Tibia; Tomography, X-Ray Computed; Vitamin K; Vitamin K 2

2000
Effect of vitamin K2 (menaquinone-7) in fermented soybean (natto) on bone loss in ovariectomized rats.
    Journal of bone and mineral metabolism, 1999, Volume: 17, Issue:1

    The effect of dietary vitamin K2 (menaquinone-7) on bone loss in ovariectomized (OVX) rats was investigated. OVX rats were freely given experimental diets containing menaquinone-4 (MK-4; 12mg/100g diet) or menaquinone-7 (MK-7; 18.1mg/100g diet) for 24 days; MK-4 and MK-7 were equal in molar concentrations. This feeding caused a remarkable increase of MK-4 and MK-7 concentrations in the serum and femur of OVX rats. OVX-induced decrease in the femoral dry weight and femoral calcium content was prevented by the feeding of dietary MK-4 or NK-7. In separate experiments, OVX rats were freely given experimental diets containing the fermented soybean (natto; including 9.4 microg MK-7/100g diet) without or with added MK-7 (37.6 microg/100g diet) for 77 days. Feeding produced a significant elevation of MK-4 and MK-7 concentrations in the serum of OVX rats. In this case, a significant increase in the femoral MK-4 content was observed but MK-7 was not detected in the femoral tissues. OVX-induced decreases in the femoral dry weight and femoral calcium content were significantly prevented by the feeding of diets containing natto with MK-7 added (37.6 microg/100g diets). This study demonstrates that the intake of dietary MK-7 has a preventive effect on bone loss caused by OVX. This effect may be partly caused by MK-4, which is formed by degradation of MK-7.

    Topics: Animals; Bone and Bones; Bone Density; Calcium; Disease Models, Animal; Female; Fermentation; Glycine max; Osteocalcin; Osteoporosis; Ovariectomy; Rats; Rats, Wistar; Vitamin K; Vitamin K 2

1999
Induction of prothrombin synthesis by K-vitamins compared in vitamin K-deficient and in brodifacoum-treated rats.
    Biochimica et biophysica acta, 1998, Mar-12, Volume: 1380, Issue:1

    Vitamin K is a group name for a number of prenylated 2-methyl-1,4-naphtoquinones, which may differ in their ability to function as a cofactor for prothrombin biosynthesis. To quantify the bioactivity of different forms of vitamin K, two experimental animal systems are frequently used: vitamin K-deficient rats and anticoagulated rats. In this paper both models are compared, and it is shown that the results obtained depend on the model used. The main reason for this discrepancy is the difference in recycling of vitamin K-epoxide, which results in a 500 times higher vitamin K requirement in anticoagulated rats. Absorption and hepatic accumulation of long chain menaquinones seem to be restricted to a maximum, whereas also the lipophilic nature of long chain menaquinones may hamper the quinone-quinol reduction in anticoagulated animals. If these data may be extrapolated to patients, food items rich in K1 and MK-4 would be expected to influence the stability of oral anticoagulation to a much larger extent than food items primarily containing higher menaquinones.

    Topics: 4-Hydroxycoumarins; Absorption; Animals; Anticoagulants; Blood Coagulation; Disease Models, Animal; Male; Prothrombin; Rats; Rats, Inbred Lew; Vitamin K; Vitamin K 1; Vitamin K 2; Vitamin K Deficiency

1998
Modulation of arterial thrombosis tendency in rats by vitamin K and its side chains.
    Atherosclerosis, 1997, Jul-11, Volume: 132, Issue:1

    Vitamin K is involved in the biosynthesis of a number of blood coagulation factors and bone proteins. It has been suggested that the vitamin K requirement of bone tissue is higher than that of the liver. Here we report that in rats very high doses of vitamin K affected neither the blood coagulation characteristics nor the blood platelet aggregation rate. This was observed for both phylloquinone and menaquinone-4. Both vitamers were also tested for their effects on the arterial thrombosis tendency in the rat aorta loop model. The mean obstruction times were prolonged at a high intake of menaquinone-4 (250 mg/kg body weight/day), and shortened after a similarly high phylloquinone regimen. Since (a) both vitamers only differ in their aliphatic side chains; and (b) a similar trend was observed after administration of phytol and geranylgeraniol, we conclude that the modulation of the arterial thrombosis tendency is accomplished by the side chain of vitamin K.

    Topics: Animals; Blood Coagulation; Diet; Dietary Fats, Unsaturated; Disease Models, Animal; Disease Susceptibility; Diterpenes; Dose-Response Relationship, Drug; Male; Phytol; Platelet Aggregation; Rats; Rats, Wistar; Thrombosis; Vitamin K; Vitamin K 1; Vitamin K 2; Vitamin K Deficiency

1997