menaquinone-6 has been researched along with Liver-Neoplasms* in 48 studies
7 review(s) available for menaquinone-6 and Liver-Neoplasms
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Postoperative use of the chemopreventive vitamin K2 analog in patients with hepatocellular carcinoma.
To evaluate the chemopreventive efficacy of vitamin K2 (VK2) analog in patients with hepatocellular carcinoma (HCC) after curative hepatic resection or local ablation, since a recent randomized control trial (RCT) and systematic review have given contradictory results.. MEDLINE, EMBASE and Cochrane library databases were systematically searched through the end of May 2012. Meta-analysis of RCTs and cohort studies was performed to estimate the effects of the VK2 analog on tumor recurrence rate and overall survival (OS). Risk ratios (RRs) and 95% confidence intervals (95% CIs) were calculated.. Six RCTs and one cohort study involving a total of 930 patients were included. VK2 analog therapy did not reduce the 1-year recurrence rate, with a pooled RR of 0.67 (95% CI 0.39-1.13, p = 0.13). However, VK2 analog therapy was associated with a significant reduction in the 2- and 3-year tumor recurrence rates, with respective pooled RRs of 0.65 (95% CI 0.51-0.83, p<0.001) and 0.70 (95% CI = 0.58-0.85, p<0.001). The therapy was also associated with a significant improvement in 1-, 2-, and 3-year OS, with respective pooled RRs of 1.03 (95% CI 1.01-1.05, p = 0.02), 1.11 (95% CI 1.03-1.19, p = 0.005) and 1.14 (95% CI 1.02-1.28, p = 0.02). None of the studies reported adverse effects attributable to VK2 analog therapy.. The VK2 analog may reduce recurrence rate after 1 year and improve OS in HCC patients as early as 1 year. However, these findings should be considered preliminary since the majority of patients came from an RCT with survival data out to only 1 year. More extensive studies with larger sample sizes and longer follow-up are needed. Topics: Carcinoma, Hepatocellular; Chemoprevention; Humans; Liver Neoplasms; Postoperative Care; Publication Bias; Recurrence; Risk; Treatment Outcome; Vitamin K 2 | 2013 |
Role of vitamin K2 in preventing the recurrence of hepatocellular carcinoma after curative treatment: a meta-analysis of randomized controlled trials.
Hepatocellular cancer is notorious for recurrence even after curative therapy. High recurrence determines the long term prognosis of the patients. Vitamin K2 has been tested in trials for its effect on prevention of recurrence and improving survival. The results are inconclusive from individual trials and in our knowledge no systematic review which entirely focuses on Vitamin K2 as a chemo preventive agent is available to date. This review is an attempt to pool all the existing trials together and update the existing knowledge on the topic.. Medline, Embase and Cochrane Register of Controlled trials were searched for randomized controlled trials where vitamin K2 or its analogues, in any dosage were compared to placebo or No vitamin K2, for participants of any age or sex. Reference lists and abstracts of conference proceedings were searched by hand. Additional papers were identified by a manual search of the references from the key articles. Attempt was made to contact the authors of primary studies for missing data and with the experts in the field.Trials were assessed for inclusion by two independent reviewers. Primary outcomes were recurrence rates and survival rates. There were no secondary outcomes. Data was synthesized using a random effects model and results presented as relative risk with 95% Confidence Intervals.. For recurrence of hepatocellular cancer after hepatic resection or local ablative therapy, compared with controls, participants receiving Vitamin K2, pooled relative risks for hepatocellular cancer were 0.60; 95% CI: 0.28-1.28, p = 0.64) at 1 yr 0.66; 95% CI: 0.47-0.91), p = 0.01) at 2 yr; 0.71; 95% CI: 0.58-0.85, p = 0.004) at 3 yr respectively. The results were combined using the random analysis model.. Five RCTs evaluated the preventive efficacy of menatetrenone on HCC recurrence after hepatic resection or local ablative therapy. The meta-analysis of all five studies, failed to confirm significantly better tumor recurrence- free survival at 1 year. Improved tumor recurrence at 2nd and 3rd year may be just due to insufficient data. There was no beneficial effect on the overall survival. However, to confirm the beneficial effect or lack of it, large, higher quality randomized controlled trials are still required. Topics: Carcinoma, Hepatocellular; Chemoprevention; Confidence Intervals; Disease-Free Survival; Humans; Liver Neoplasms; Neoplasm Recurrence, Local; Randomized Controlled Trials as Topic; Vitamin K 2; Vitamins | 2012 |
Hepatocellular carcinoma and vitamin K.
On the basis of reports of the antitumor effects of vitamin K on various cancers, we clinically investigated the suppressive effects of vitamin K2 on tumor recurrence after curative treatment for hepatocellular carcinoma (HCC). Our results showed that vitamin K2 administration significantly suppressed HCC recurrence. Our laboratory findings revealed that the inhibitory effect of vitamin K2 against HCC cell growth was generated by suppressing cyclin D1 expression through inhibition of NF-kappaB activation. Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Humans; Liver Neoplasms; Neoplasm Recurrence, Local; Vitamin K; Vitamin K 2 | 2008 |
[Clinical application of vitamin K for hepatocellular carcinoma].
Despite recent progress in diagnosis and therapy, hepatocellular carcinoma (HCC) remains among the cancers with the poorest prognoses. Vitamin K (VK) have been shown to suppress the growth of HCC cells. Long-term administration of VK(2) has established its clinical safety, but it does not appear to exhibit marked anti-tumor effects when administered alone. For more effective use of VK against HCC, co-administration of VK(2) with other proven anticancer agents or development of a new VK preparation with a modified side-chain should be investigated in the future. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Cell Division; Drug Design; Drug Synergism; Drug Therapy, Combination; Humans; Liver Neoplasms; Neoplasm Recurrence, Local; Randomized Controlled Trials as Topic; Vitamin K 2 | 2007 |
[Protective effects of vitamin K against osteoporosis and its pleiotropic actions].
Vitamin K is a nutrient originally identified as an essential factor for blood coagulation. Recently, vitamin K has emerged as a potential protector against osteoporosis and hepatocarcinoma. Accumulated evidence indicates that subclinical non-hemostatic vitamin K deficiency in extrahepatic tissues, particularly in bone, exists widely in the otherwise healthy adult population. Both vitamin K(1) and K(2) have been shown to exert protective effects against osteoporosis. Moreover, therapeutic potential of vitamin K(2) as an anti-hepatoma drug has been recently highlighted. Most of the new biological functions of vitamin K in bone and hepatoma cells are considered to be attributable to promotion of gamma-carboxylation of glutamic acid residues in vitamin K-dependent proteins, which is shared by both vitamins K(1) and K(2). In contrast, vitamin K(2)-specific, gamma-carboxylation-unrelated functions have also been demonstrated. These functions include stimulation of steroid and xenobiotic receptor (SXR)-mediated transcription and anti-oxidant property. Thus, biological differences between vitamins K(1) and K(2), and a potential involvement of gamma-carboxylation-independent actions in the new roles of vitamin K remain open issues. Molecular bases of coagulation-unrelated pleiotropic actions of vitamin K and its implications in human health deserve further investigations. Topics: 1-Carboxyglutamic Acid; Antioxidants; Carcinoma, Hepatocellular; Fractures, Bone; Humans; Liver Neoplasms; Osteoporosis; Pregnane X Receptor; Receptors, Steroid; Soy Foods; Transcription, Genetic; Vitamin K; Vitamin K 1; Vitamin K 2 | 2006 |
[Vitamin K2 as a protector of bone health and beyond].
Several lives of evidence indicate a protective effect of vitamin K against osteoporosis. Epidemiological studies showed that low vitamin K intake is associated with the increased risk of osteoporosis. Vitamin K2 (menatetrenone, MK-4) has been clinically used in the treatment of patients with osteoporosis in Japan, Korea and Thailand. Previous studies demonstrated the efficacy of vitamin K2 (45 mg/day) to prevent bone loss and reduce the rate of vertebral fractures, although a large, randomized intervention study is anticipated to provide more detailed evidence. Recently, vitamin K2 has been shown to reduce the progression of hepatocarcinoma. Moreover, it has been proposed that vitamin K may also have beneficial effects to prevent atherogenesis. The clarification of molecular mechanisms by which vitamin K2 exerts these salutary effects deserve further investigations. Topics: Animals; Arteriosclerosis; Carcinoma, Hepatocellular; Dementia; Evidence-Based Medicine; Humans; Liver Neoplasms; Osteoporosis; Randomized Controlled Trials as Topic; Spinal Fractures; Vitamin K 2 | 2005 |
6 trial(s) available for menaquinone-6 and Liver-Neoplasms
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: a prospective randomized controlled trial.
The aim of this study was to investigate whether menatetrenone (MNT) suppresses hepatocellular carcinoma (HCC) recurrence in patients undergoing hepatectomy. Between January 2005 and September 2009, 101 patients who underwent curative hepatectomy for primary HCC were enrolled in the study. Patients were divided into two groups: a non-MNT group (n=51), and an MNT group (n=50) that was administered 45 mg of MNT daily. During the observation period, recurrence was observed in 33 patients in the non-MNT group and in 28 patients of the MNT group (p=0.545). In patients with a preoperative Des-γ-carboxy-prothrombin (DCP) level lower than 40 AU/l (n=38), the cumulative disease-free survival rates at 12, 36, and 60 months in the non-MNT group, were 81.3%, 0.0%, and 0.0%, respectively, while those in the MNT group were 78.3%, 58.1%, and 31.0%, respectively (p=0.060). MNT has a moderately suppressive effect on HCC recurrence after hepatectomy, especially in patients with a normal preoperative DCP level. Topics: Aged; Carcinoma, Hepatocellular; Combined Modality Therapy; Female; Hepatectomy; Humans; Liver Neoplasms; Male; Neoplasm Recurrence, Local; Prospective Studies; Vitamin K 2 | 2012 |
Effect of vitamin K2 on the recurrence of hepatocellular carcinoma.
Hepatocellular carcinoma (HCC) is characterized by frequent recurrence, even after curative treatment. Vitamin K2, which has been reported to reduce HCC development, may be effective in preventing HCC recurrence. Patients who underwent curative ablation or resection of HCC were randomly assigned to receive placebo, 45 mg/day, or 90 mg/day vitamin K2 in double-blind fashion. HCC recurrence was surveyed every 12 weeks with dynamic computed tomography/magnetic resonance imaging, with HCC-specific tumor markers monitored every 4 weeks. The primary aim was to confirm the superiority of active drug to placebo concerning disease-free survival (DFS), and the secondary aim was to evaluate dose-response relationship. Disease occurrence and death from any cause were treated as events. Hazard ratios (HRs) for disease occurrence and death were calculated using a Cox proportional hazards model. Enrollment was commenced in March 2004. DFS was assessed in 548 patients, including 181 in the placebo group, 182 in the 45-mg/day group, and 185 in the 90-mg/day group. Disease occurrence or death was diagnosed in 58, 52, and 76 patients in the respective groups. The second interim analysis indicated that vitamin K2 did not prevent disease occurrence or death, with an HR of 1.150 (95% confidence interval: 0.843-1.570, one-sided; P=0.811) between the placebo and combined active-drug groups, and the study was discontinued in March 2007.. Efficacy of vitamin K2 in suppressing HCC recurrence was not confirmed in this double-blind, randomized, placebo-controlled study. Topics: Aged; Carcinoma, Hepatocellular; Double-Blind Method; Female; Humans; Liver Neoplasms; Male; Neoplasm Recurrence, Local; Vitamin K 2; Vitamins | 2011 |
Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma.
No chemopreventive agent has been approved against hepatocellular carcinoma (HCC) yet. Since neovascularization plays a pivotal role in HCC, an angiostatic agent is considered as one of the promising approaches. The aim of this study was to elucidate the combined effect of the clinically used vitamin K(2) (VK) and angiotensin-converting enzyme inhibitor (ACE-I) on cumulative recurrence after curative treatment on a total of 87 patients, especially in consideration of neovascularization.. VK (menatetrenone; 45 mg/day) and/or ACE-I (perindopril; 4 mg/day) were administered for 36-48 months after curative therapy for HCC. The cumulative recurrence and several indices were analyzed.. A 48-month follow-up revealed that the combination treatment with VK and ACE-I markedly inhibited the cumulative recurrence of HCC in association with suppression of the serum level of the vascular endothelial growth factor (VEGF); a central angiogenic factor. The serum level of lectin-reactive alpha-fetoprotein was also suppressed almost in parallel with VEGF. These beneficial effects were not observed with single treatment using VK or ACE-I.. The combination treatment of VK and ACE-I may suppress the cumulative recurrence of HCC after the curative therapy, at least partly through suppression of the VEGF-mediated neovascularization. Topics: Aged; Angiotensin-Converting Enzyme Inhibitors; Carcinoma, Hepatocellular; Catheter Ablation; Drug Synergism; Drug Therapy, Combination; Female; Humans; Liver Neoplasms; Male; Middle Aged; Neoplasm Recurrence, Local; Neovascularization, Pathologic; Perindopril; Survival Rate; Vascular Endothelial Growth Factor A; Vitamin K 2 | 2009 |
Preventive effects of vitamin K on recurrent disease in patients with hepatocellular carcinoma arising from hepatitis C viral infection.
Despite the progression of therapeutic approaches, a high frequency of recurrence is what determines the long-term prognosis of patients with hepatocellular carcinoma (HCC). In this study, the chemopreventive effects of vitamin K2 on the recurrence and survival of patients with HCC after curative therapy were evaluated.. Sixty patients who were diagnosed to be free of HCC after radiofrequency ablation therapy or surgery were randomly assigned to either the vitamin K2 group (n = 30 patients) or the control group (n = 30 patients). All patients were positive for the hepatitis C virus (HCV) antibody and hepatitis B surface antigen positive patients were excluded from this study. Patients in the vitamin K2 group received an oral dose of menatetrenone at 45 mg per day. Disease recurrence and the survival rates were analyzed in patients with HCC.. The cumulative recurrence-free rates in the vitamin K2 group were 92.3% at 12 months, 48.6% at 24 months and 38.8% at 36 months; and those in the control group were 71.7%, 35.9% and 9.9%, respectively (P = 0.045). The cumulative survival rates in the vitamin K2 group were 100% at 12 months, 95.0% at 24 months and 77.5% at 36 months; and those in the control group were 95.8%, 90.2% and 66.4%, respectively (P = 0.70).. Vitamin K2 may have a suppressive effect on the recurrence of HCC and a beneficial effect on tumor recurrence. However, there was no significant difference in the survival rates. The chemopreventive effects of vitamin K2 are not sufficient. The development of a further regimen such as combination therapy is required. Topics: Aged; Carcinoma, Hepatocellular; Catheter Ablation; Female; Hepatitis C Antibodies; Humans; Liver Neoplasms; Male; Middle Aged; Proportional Hazards Models; Secondary Prevention; Survival Rate; Vitamin K 2 | 2007 |
The effect of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with hepatocellular carcinoma after curative treatment: a pilot study.
The high recurrence rate of hepatocellular carcinoma (HCC) determines the long-term prognosis for patients with HCC. In the current study, the authors tested the effects of menatetrenone, a vitamin K2 analog, on recurrent HCC and survival after curative treatment.. Sixty-one patients who were diagnosed as free of HCC after surgical resection or percutaneous local ablation were assigned randomly assigned to either a menatetrenone group (n = 32 patients) or a control group (n = 29 patients). Patients in the menatetrenone group received a daily oral dose of 45 mg of menatetrenone. Disease recurrence and survival rates were analyzed in patients with HCC.. The cumulative recurrence rates in the menatetrenone group were 12.5% at 12 months, 39.0% at 24 months, and 64.3% at 36 months; and the corresponding recurrence rates in the control group were 55.2%, 83.2%, and 91.6%, respectively (P = 0.0002). Similar results were obtained even for patients who had low baseline levels of serum des-gamma-carboxy-prothrombin. Univariate and multivariate Cox proportional hazard analyses showed that the administration of menatetrenone was the only factor related to the recurrence rate of HCC. The cumulative survival rates for the patients who received menatetrenone were 100% at 12 months, 96.6% at 24 months, and 87.0% at 36 months; and the corresponding survival rates for patients in the control group were 96.4%, 80.9%, and 64.0%, respectively (P = 0.051).. The current study findings suggested that menatetrenone may have a suppressive effect on recurrence of HCC and a beneficial effect on survival, although a larger, placebo-controlled trial will be required to prove these effects. Topics: Administration, Oral; Aged; Carcinoma, Hepatocellular; Female; Hemostatics; Humans; Liver Neoplasms; Male; Middle Aged; Neoplasm Recurrence, Local; Survival Analysis; Vitamin K 2 | 2006 |
36 other study(ies) available for menaquinone-6 and Liver-Neoplasms
Article | Year |
---|---|
Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway.
The aim of the study was to evaluate the influence of vitamin K2 (VK2) supplementation on the sphingolipid metabolism pathway in palmitate-induced insulin resistant hepatocytes. The study was carried out on human hepatocellular carcinoma cells (HepG2) incubated with VK2 and/or palmitic acid (PA). The concentrations of sphingolipids were measured by high-performance liquid chromatography. The expression of enzymes from the sphingolipid pathway was assessed by Western blotting. The same technique was used in order to determine changes in the expression of the proteins from the insulin signaling pathway in the cells. Simultaneous incubation of HepG2 cells with palmitate and VK2 elevated accumulation of sphinganine and ceramide with increased expression of enzymes from the ceramide de novo synthesis pathway. HepG2 treatment with palmitate and VK2 significantly decreased the insulin-stimulated expression ratio of insulin signaling proteins. Moreover, we observed that the presence of PA w VK2 increased fatty acid transport protein 2 expression. Our study showed that VK2 activated the ceramide de novo synthesis pathway, which was confirmed by the increase in enzymes expression. VK2 also intensified fatty acid uptake, ensuring substrates for sphingolipid synthesis through the de novo pathway. Furthermore, increased concentration of sphingolipids, mainly sphinganine, inhibited insulin pathway proteins phosphorylation, increasing insulin resistance development. Topics: Biosynthetic Pathways; Carcinoma, Hepatocellular; Ceramides; Chromatography, High Pressure Liquid; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Insulin; Insulin Resistance; Liver Neoplasms; Models, Biological; Palmitic Acid; Phosphorylation; Sphingosine; Up-Regulation; Vitamin K 2 | 2021 |
Mechanisms of PKC-Mediated Enhancement of HIF-1α Activity and its Inhibition by Vitamin K2 in Hepatocellular Carcinoma Cells.
Hypoxia-inducible factor 1 (HIF-1) plays important roles in cancer cell biology. HIF-1α is reportedly activated by several factors, including protein kinase C (PKC), in addition to hypoxia. We investigated the role of PKC isoforms and the effects of vitamin K2 (VK2) in the activation process of HIF-1α. Human hepatocellular carcinoma (HCC)-derived Huh7 cells were cultured under normoxic and hypoxic (1% O₂) conditions with or without the PKC stimulator TPA. The expression, transcriptional activity and nuclear translocation of HIF-1α were examined under treatment with PKC inhibitors, siRNAs against each PKC isoform and VK2. Hypoxia increased the expression and activity of HIF-1α. TPA increased the HIF-1α activity several times under both normoxic and hypoxic conditions. PKC-δ siRNA-mediated knockdown, PKC-δ inhibitor (rottlerin) and pan-PKC inhibitor (Ro-31-8425) suppressed the expression and transcriptional activity of HIF-1α. VK2 significantly inhibited the TPA-induced HIF-1α transcriptional activity and suppressed the expression and nuclear translocation of HIF-1α induced by TPA without altering the HIF-1α mRNA levels. These data indicate that PKC-δ enhances the HIF-1α transcriptional activity by increasing the nuclear translocation, and that VK2 might suppress the HIF-1α activation through the inhibition of PKC in HCC cells. Topics: Carcinoma, Hepatocellular; Cell Hypoxia; Cell Line, Tumor; Cell Nucleus; Gene Knockdown Techniques; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Isoenzymes; Liver Neoplasms; Promoter Regions, Genetic; Protein Kinase C; Protein Transport; Tetradecanoylphorbol Acetate; Vascular Endothelial Growth Factor A; Vitamin K 2 | 2019 |
Antitumor Effects and Delivery Profiles of Menahydroquinone-4 Prodrugs with Ionic or Nonionic Promoiety to Hepatocellular Carcinoma Cells.
Hepatocellular carcinoma (HCC) shows poor prognosis owing to its very frequent recurrence even after curative treatment. Thus, an effective and safe long-term chemopreventive agent is strongly in demand. Menahydroquinone-4 (MKH) is an active form of menaquinone-4 (MK-4, vitamin K₂) that is involved in the synthesis of vitamin K-dependent proteins in the liver. We hypothesized that efficient delivery of MKH might be critical to regulate HCC proliferation. The discovery of a suitable prodrug targeting HCC in terms of delivery and activation could reduce the clinical dose of MK-4 and maximize efficacy and safety. We previously showed that MKH dimethylglycinate (MKH-DMG) enables effective delivery of MKH into HCC cells and exhibits strong antitumor effects compared with MK-4. In this study, we prepared anionic MKH hemi-succinate (MKH-SUC) and non-ionic MKH acetate (MKH-ACT), in addition to cationic MKH-DMG, and evaluated MKH delivery profiles and antitumor effects in vitro. MKH-SUC showed the highest uptake and the most efficient release of MKH among the examined compounds and exhibited rapid and strong antitumor effects. These results indicate that MKH-SUC might have a good potential as an MKH delivery system for HCC that overcomes the limitations of MK-4 as a clinical chemopreventive agent. Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Line, Tumor; Drug Delivery Systems; Humans; Hydroquinones; Liver Neoplasms; Prodrugs; Vitamin K 2 | 2018 |
Cytochrome P450 2E1 increases the sensitivity of hepatoma cells to vitamin K2.
Although vitamin K2 (VK2) exhibits inhibitory effects on the viability of hepatoma cells, hepatoma cells are insensitive to VK2. Therefore, this investigation is an attempt to enhance the sensitivity of hepatoma cells to VK2. Our results showed that VK2 acted synergistically with ethanol (EtOH) to inhibit the viability of Smmc-7721 cells, mainly because cytochrome P450 2E1 (CYP2E1) was activated by EtOH. The synergistic effect of VK2 and EtOH was also observed in QGY-7703 cells, which also express CYP2E1. However, in HepG2 cells, which do not express CYP2E1, the synergistic effect of VK2 and EtOH was not observed. In addition, we demonstrated that CYP2E1 could be induced by VK2 via both post-transcriptional and transcriptional mechanisms. These results suggest that induction of CYP2E1 can enhance the inhibitory effect of VK2 on the viability of hepatoma cells. CYP2E1 may be an attractive target for enhanced antitumor effects of VK2 in hepatocellular carcinoma treatment. Topics: Carcinoma, Hepatocellular; Cell Survival; Cytochrome P-450 CYP2E1; Drug Synergism; Ethanol; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Liver Neoplasms; Oxidative Stress; Vitamin K 2 | 2017 |
Enhanced antitumor effects of novel intracellular delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma.
Reduced cellular uptake of menaquinone-4 (MK-4), a vitamin K2 homolog, in human hepatocellular carcinoma (HCC) limits its usefulness as a safe long-term antitumor agent for recurrent HCC and produces des-γ-carboxy prothrombin (DCP). We hypothesized that effective delivery of menahydroquinone-4 (MKH), the active form of MK-4 for γ-glutamyl carboxylation, into HCC cells is critical for regulating HCC growth, and may enable it to be applied as a safe antitumor agent. In this study, we verified this hypothesis using menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of MKH, and demonstrated its effectiveness. Intracellular delivery of MKH and subsequent growth inhibition of PLC/PRF/5 and Hep3B (DCP-positive) and SK-Hep-1 (DCP-negative) cells after MKH-DMG administration were determined and compared with MK-4. The activity of MKH-DMG against tumor progression in the liver alongside DCP formation was determined in a spleen-liver metastasis mouse model. MKH-DMG exhibited greater intracellular delivery of MKH in vitro (AUC0-72 hour of MKH) and increased growth-inhibitory activity against both DCP-positive and DCP-negative HCC cell lines. The phenomena of MKH delivery into cells in parallel with simultaneous growth inhibition suggested that MKH is the active form for growth inhibition of HCC cells. Cell-cycle arrest was determined to be involved in the growth inhibition mechanisms of MKH-DMG. Furthermore, MKH-DMG showed significant inhibition of tumor progression in the liver, and a substantial decrease in plasma DCP levels in the spleen-liver metastasis mouse model. Our results suggest that MKH-DMG is a promising new candidate antitumor agent for safe long-term treatment of HCC. Topics: Animals; Antineoplastic Agents; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chromatography, Liquid; Disease Models, Animal; Flow Cytometry; Humans; Hydroquinones; Intracellular Space; Liver Neoplasms; Male; Mass Spectrometry; Mice; Mice, Inbred BALB C; Mice, Nude; Vitamin K 2 | 2015 |
Carboxylic Derivatives of Vitamin K2 Inhibit Hepatocellular Carcinoma Cell Growth through Caspase/Transglutaminase-Related Signaling Pathways.
Chemoprevention of hepatocellular carcinoma (HCC) is one of the most challenging aspects of medical research. Vitamin K2 (VK2) has been suggested for its chemopreventive role in treatment of HCC, while inconsistent results in clinical trials have been reported. The present study was initiated to add to our insight into the anti-HCC cell proliferative effect of VK2 and its derivatives from a viewpoint of chemical structure. No significant effect was observed with original VK2, while VK2 derivatives bearing both isoprene units and a carboxyl-terminated side chain dose-dependently inhibited the growth of HCC cells without affecting normal liver cells. Loss-of-function analyses revealed that the anti-HCC cell activity by the VK2 derivatives was not mediated by a VK2 binding protein Bcl-2 homologous antagonist/killer (Bak) but rather associated with caspase/transglutaminase-related signaling pathways. Further studies on the carboxylic derivatives of VK2 bearing isoprene structural units introduced in this study might shed new light on the systemic treatment and prevention of HCC. Topics: Carboxylic Acids; Carcinoma, Hepatocellular; Caspases; Cell Proliferation; Hep G2 Cells; Humans; Liver Neoplasms; Signal Transduction; Transglutaminases; Vitamin K 2 | 2015 |
[Hepatocellular carcinoma and vitamin K2].
Despite recent progress in diagnosis and therapy, hepatocellular carcinoma(HCC)remains among the cancers with the poorest prognoses. Vitamin Ks(VKs)have been shown to suppress the growth of HCC cells. Long-term administration of VK2 has established its clinical safety, but it does not appear to exhibit marked anti-tumor effects when administered alone. For more effective use of VK2 against HCC, co-administration of VK2 with other proven anticancer agents or development of a new VK preparation with a modified side-chain should be investigated in the future. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Humans; Liver Neoplasms; Signal Transduction; Vitamin K 2 | 2015 |
The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells.
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ɛ showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKCɛ, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKCɛ after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKCɛ abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKCɛ knockdown. Collectively, all of the PKCs, including α, δ and ɛ, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ɛ kinase activities, as well as subsequent inhibition of PKD1 activation. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Enzyme Inhibitors; Gene Knockdown Techniques; Humans; Indoles; Liver Neoplasms; Maleimides; NF-kappa B; Phosphorylation; Protein Kinase C; Protein Kinase C-delta; Protein Kinase C-epsilon; RNA, Small Interfering; Tetradecanoylphorbol Acetate; Vitamin K 2 | 2012 |
Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.
Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells.. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects.. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice.. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients with poor liver tolerance. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Flow Cytometry; Liver Neoplasms; Mice; Mice, Nude; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Sorafenib; Time Factors; Treatment Outcome; Vitamin K 2 | 2012 |
Vitamin K2 augments 5-fluorouracil-induced growth inhibition of human hepatocellular carcinoma cells by inhibiting NF-κB activation.
Although 5-fluorouracil (5-FU) is one of the most commonly used chemotherapeutic agents in various cancer including hepatocellular carcinoma (HCC), chemoresistance has precluded single use of 5-FU in clinical settings. Since menatetrenone, an analogue of vitamin K2 (VK2), inhibits growth of cancer cells including HCC cells in vitro and in vivo, we examined VK2 modulation of HCC cell response to 5-FU. VK2 pretreatment dose-dependently enhanced growth-inhibition by 5-FU through a G1 cell cycle arrest. VK2 inhibited 5-FU-induced NF-κB activation and cyclin D1 expression. Therefore, combination of VK2 and 5-FU might represent a new therapeutic strategy for patients with HCC. Topics: Antineoplastic Agents; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Separation; Electrophoretic Mobility Shift Assay; Enzyme Activation; Flow Cytometry; Fluorouracil; Humans; Liver Neoplasms; NF-kappa B; Reverse Transcriptase Polymerase Chain Reaction; Vitamin K 2 | 2011 |
Prevention of recurrence after resection of hepatocellular carcinoma: a daunting challenge.
Topics: Carcinoma, Hepatocellular; Female; Humans; Liver Neoplasms; Male; Neoplasm Recurrence, Local; Vitamin K 2; Vitamins | 2011 |
Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway.
Vitamin K(2) (VK(2)) can exert cell growth inhibitory effects in various human cancer cells. In this study, we investigated the cell growth inhibitory effects of VK(2) in hepatocellular carcinoma Smmc-7721 cells and the mechanisms involved. We found that VK(2)-inhibited cell proliferation in Smmc-7721 cells in a dose-dependent manner, and the IC50 of VK(2) in Smmc-7721 cells was 9.73 microM at 24 h. The data from flow cytometric analyses, DNA fragmentation assays, and caspase 3 activity assays revealed that apoptosis was the determining factor in VK(2) activity. Furthermore, a significant increase in p53 phosphorylation and protein level was exhibited in apoptotic cells treated with VK(2), although there were no changes in p53 mRNA expression. Bax expression was unaffected by VK(2) in Smmc-7721 cells. In addition, our study showed that caspase 3 was activated by caspase 8, not caspase 9, in Smmc-7721 cells treated with VK(2). In summary, these data suggested that VK(2) can inhibit the growth of Smmc-7721 cells by induction of apoptosis involving caspase 8 activation and p53. This apoptotic process was not mediated by the intrinsic apoptotic pathway. Topics: Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Carcinoma, Hepatocellular; Caspase 3; Caspase 8; Caspase 9; Cell Proliferation; Enzyme Activation; Flow Cytometry; Humans; Liver Neoplasms; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Vitamin K 2; Vitamins | 2010 |
Vitamin K2 inhibits the growth of hepatocellular carcinoma via decrease of des-gamma-carboxy prothrombin.
Des-gamma-carboxy prothrombin (DCP) is a serum protein produced by hepatocellular carcinoma (HCC) cells in the absence of vitamin K. Serum and tissue DCP expressions are thought to reflect the biological malignant potential of HCC. Hence, we aimed to examine the efficacy of vitamin K(2) on the production of DCP as well as tumor cell growth and invasion.. Cell growth and viability were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The in vivo efficacy of vitamin K(2) was examined in nude mice bearing HCC cells. A 24-well transwell chamber was used to evaluate the motility and invasive ability of HCC cells. Levels of DCP in supernatant of cultures and in serum of mice were measured using an electrochemiluminescence immunoassay method. Western blot and immunohistochemical analysis were employed to evaluate the expression of DCP in HCC.. Vitamin K(2) (2-40 muM) significantly decreased the levels of DCP production in supernatant of PLC/PRF/5 and HepG2 cells and in serum of nude mice bearing HCC xenografts. The inhibition of DCP was also observed using the assays of Western blot analysis in HCC cultures and immunohistochemical analysis in HCC xenografts in mice. As a result of administration of vitamin K(2), the capacity of HCC growth was inhibited and the invasion and migration of tumor cells were decreased. Furthermore, the inhibitory effects of HCC growth were also observed in vivo and the sensitivity was well correlated with the decrease of DCP in the serum of mice.. Vitamin K(2) might suppress the growth and invasion of HCC cells via decrease of DCP. Topics: Animals; Biomarkers; Blotting, Western; Carcinoma, Hepatocellular; Cell Division; Cell Line, Tumor; Humans; Liver Neoplasms; Luminescent Measurements; Mice; Mice, Nude; Neoplasm Invasiveness; Protein Precursors; Prothrombin; Vitamin K 2 | 2009 |
Involvement of hepatoma-derived growth factor in the growth inhibition of hepatocellular carcinoma cells by vitamin K(2).
Vitamin K(2) has been reported to suppress the growth of human hepatocellular carcinoma (HCC) in vitro and hepatocarcinogenesis in hepatitis C virus (HCV)-related cirrhosis in vivo. Hepatoma-derived growth factor (HDGF) is a unique nuclear targeting growth factor that is highly expressed in HCC cells and is a possible prognostic factor for patients with HCC. We investigated the regulation of HDGF expression by vitamin K(2).. Three HCC-derived cell lines, HepG2, HuH-7, and SK-Hep-1, were used. Cell number was determined with the MTT assay. The expression levels of HDGF mRNA and protein were measured by the real-time reverse transcriptase-polymerase chain reaction (PCR) method and ELISA and Western blot analysis, respectively. The HDGF promoter activity was measured by a dual luciferase-reporter assay.. Vitamin K(2) suppressed the growth of the three HCC cell lines in a dose-dependent manner. Vitamin K(2) significantly suppressed the expression of the HDGF protein and mRNA in three cell lines. By a luciferase assay, vitamin K(2) significantly suppressed the promoter activity of the HDGF protein. Based on some luciferase-reporter plasmids containing truncated promoter regions, the possible responsive site of vitamin K(2) seems to reside in the region -1 to -150 bp of the HDGF gene.. These findings suggested that regulation of the HDGF gene expression is one of the crucial mechanisms of vitamin K(2)-induced cell growth suppression for HCC. Topics: Antineoplastic Agents; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation, Neoplastic; Genes, Reporter; Humans; Intercellular Signaling Peptides and Proteins; Liver Neoplasms; Luciferases; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Vitamin K 2 | 2009 |
Vitamin K2 suppresses proliferation and motility of hepatocellular carcinoma cells by activating steroid and xenobiotic receptor.
Vitamin K2, known as a cofactor for gamma-carboxylase, also serves as a ligand of a nuclear receptor, Steroid and Xenobiotic Receptor (SXR). Several clinical trials revealed that vitamin K2 reduced de novo formation and recurrence of hepatocellular carcinoma (HCC). To examine the role of SXR in HCC as a receptor activated by vitamin K2, the cells stably overexpressing SXR were established using a HCC cell line, HuH7. Overexpression of SXR resulted in reduced proliferation and motility of the cells. Further suppression of proliferation and motility was observed when SXR overexpressing clones were treated with vitamin K2. These results suggest that the activation of SXR could contribute to tumor suppressive effects of vitamin K2 on HCC cells. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Cell Proliferation; Hep G2 Cells; Humans; Liver Neoplasms; Pregnane X Receptor; Receptors, Steroid; Rifampin; Vitamin K 2 | 2009 |
Inhibition of matrix metalloproteinase expression by menatetrenone, a vitamin K2 analogue.
Vitamin K2 (VK2) has been shown to have a potent anti-tumor effect against several cancer types including hepatocellular carcinoma (HCC), but the mechanisms remain to be elucidated. Matrix metalloproteinase (MMP) plays an important role in the invasion and metastasis of cancer cells, but it is not known whether VK2 regulates the expression of MMPs. Human HCC cell lines were treated with VK2 combined with 12-O-tetradecanoyl phorbol-13 acetate (TPA) and the expression of MMPs was examined by reporter gene assay, RT-PCR and Western blotting. VK2 inhibited the basal and TPA-induced expression of MMP-1, -3 and -7 at the transcriptional, mRNA and protein levels in a dose-dependent manner. VK2 also inhibited the TPA-induced activation of NF-kappaB and AP-1 activity. The inhibitors against NF-kappaB and mitogen-activated protein kinases (MAP kinase) including ERK and JNK pathways suppressed TPA-induced luciferase activity of MMP-1, -3 and -7 promoters. These data suggest that VK2 inhibits MMP expression by suppressing NF-kappaB and MAP kinase activity and might be potentially useful in the treatment of HCC. Topics: Carcinoma, Hepatocellular; Humans; Liver Neoplasms; MAP Kinase Signaling System; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; NF-kappa B; Protease Inhibitors; Protein Kinase C; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Vitamin K 2 | 2009 |
Effect of oil-in-water lipid emulsions prepared with fish oil or soybean oil on the growth of MCF-7 cells and HepG2 cells.
The growth of human breast cancer-derived MCF-7 cells was affected by oil-in-water lipid emulsions prepared with fish oil (FO) rich in n-3 fatty acids (FAs) and egg-yolk phosphatides (EYP) (FO-emulsions), but not by lipid emulsions prepared with soybean oil (SO) and EYP (SO-emulsions). On the other hand, the growth of human hepatocarcinoma HepG2 cells was affected by neither SO-emulsions nor FO-emulsions. The growth inhibition of MCF-7 cells in the presence of FO-emulsions was not affected by trolox, but was inhibited by alpha-lipoic acid, and was even potentiated by ebselen, which works as an antioxidant as well as a lipoxygenase inhibitor. Since prostaglandin E(3), generated from n-3 FAs by cyclooxygenases, has a suppressive effect on tumour cell growth, and increases when lipoxygenases are inhibited, these findings suggest that lipid emulsions incorporating triglycerides of n-3 FAs might be effective in suppressing the growth of MCF-7 cells, possibly via oxidative stress and through eicosanoid production with anti-proliferating activity against cancer cells. Topics: Antioxidants; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Eicosanoids; Emulsions; Epoxy Compounds; Female; Fish Oils; Humans; Liver Neoplasms; Oxidative Stress; Particle Size; Soybean Oil; Time Factors; Vitamin K 2; Water | 2008 |
Impairment of clathrin-mediated endocytosis via cytoskeletal change by epithelial to fibroblastoid conversion in HepG2 cells: a possible mechanism of des-gamma-carboxy prothrombin production in hepatocellular carcinoma.
Des-gamma-carboxy prothrombin (DCP) has been well established as a hepatocellular carcinoma (HCC) tumor marker. However, the precise mechanism by which HCC cells produce DCP remains unknown. Importantly, DCP is not specific for HCC. For example, vitamin K-deficiency or ingestion of a vitamin K antagonist (warfarin) also leads to DCP production. In addition, supplementary administration of vitamin K2 analogues to HCC patients has led to reduce serum DCP levels. From these observations, we hypothesize that DCP might be produced from HCC cells with functional impairment of vitamin K uptake. Because, as previously reported, the down-regulation of E-cadherin or high serum DCP in HCC patients is associated with a high risk of vascular invasion, intra-hepatic metastasis and tumor recurrence, we examined if HCC cells might produce DCP by epithelial to fibroblastoid conversion (EFC) in vitro. HepG2 cells were induced EFC by tumor promoter, 12-O-tetracanoylphorbol-13-acetate (TPA). DCP production was observed in HepG2 cells that had lost E-cadherin expression in a TPA-dose-dependent manner. The DCP production was inhibited by introducing additional vitamin K2 into the treated cells. In addition, LDL uptake as a surrogate of vitamin K uptake was significantly impaired in TPA-treated HepG2 cells. The cells with impairment of LDL uptake produced DCP. Fat soluble vitamins are taken up into cells through clathrin-mediated endocytosis, in which the dynamic polymerization of F-actin plays a crucial role. We found that HepG2 cells with F-actin rearrangement produced DCP. In addition, latrunculin A, an actin depolymerizer, induced naïve HepG2 cells to produce DCP, confirming that impairment of F-actin polymerization is a key mechanism of DCP production. We showed in vitro that cytoskeletal filament change by EFC is crucial for DCP production in HepG2 cells. Topics: Actins; Biomarkers; Biomarkers, Tumor; Bridged Bicyclo Compounds, Heterocyclic; Cadherins; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Cell Transdifferentiation; Clathrin; Cytoskeleton; Dose-Response Relationship, Drug; Endocytosis; Epithelial Cells; Fibroblasts; Humans; Lipoproteins, LDL; Liver Neoplasms; Protein Precursors; Prothrombin; Tetradecanoylphorbol Acetate; Thiazolidines; Vitamin K 2 | 2008 |
Vitamin K2 suppresses malignancy of HuH7 hepatoma cells via inhibition of connexin 43.
The anti-cancer potential of vitamin K(2) (VK(2)) in hepatoma has gained considerable attention but the underlying mechanisms are unclear. Treatment of HuH7 hepatoma cells with VK(2) produced a normal liver phenotype. Following treatment of cells with VK(2), there was an increase in gap junctional intercellular communication activity, accompanied by up-regulation of connexin 32 (Cx32), dominantly expressed in normal hepatocyte. In contrast, Cx43 expression was inhibited. Moreover, the effect of VK(2) on Cx32 was abolished by over-expression of Cx43. Taken together, we propose that the anti-tumor effect of VK(2) is at least partly due to a decrease in Cx43 promoter activity. Topics: Base Sequence; Carcinoma, Hepatocellular; Cell Line, Tumor; Connexins; DNA Primers; Gap Junction beta-1 Protein; Humans; Immunohistochemistry; Liver Neoplasms; Promoter Regions, Genetic; Vitamin K 2 | 2008 |
Synergistic growth inhibition by acyclic retinoid and vitamin K2 in human hepatocellular carcinoma cells.
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, effective chemopreventive and chemotherapeutic agents for this cancer have not yet been developed. In clinical trials acyclic retinoid (ACR) and vitamin K(2) (VK(2)) decreased the recurrence rate of HCC. In the present study we examined the possible combined effects of ACR or another retinoid 9-cis retinoic acid (9cRA) plus VK(2) in the HuH7 human HCC cell line. We found that the combination of 1.0 microM ACR or 1.0 microM 9cRA plus 10 microM VK(2) synergistically inhibited the growth of HuH7 cells without affecting the growth of Hc normal human hepatocytes. The combined treatment with ACR plus VK(2) also acted synergistically to induce apoptosis in HuH7 cells. Treatment with VK(2) alone inhibited phosphorylation of the retinoid X receptor (RXR)alpha protein, which is regarded as a critical factor for liver carcinogenesis, through inhibition of Ras activation and extracellular signal-regulated kinase phosphorylation. Moreover, the inhibition of RXRalpha phosphorylation by VK(2) was enhanced when the cells were cotreated with ACR. The combination of retinoids plus VK(2) markedly increased both the retinoic acid receptor responsive element and retinoid X receptor responsive element promoter activities in HuH7 cells. Our results suggest that retinoids (especially ACR) and VK(2) cooperatively inhibit activation of the Ras/MAPK signaling pathway, subsequently inhibiting the phosphorylation of RXRalpha and the growth of HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC. Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Synergism; Humans; Liver Neoplasms; Tretinoin; Vitamin K 2 | 2007 |
Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4: in vitro and in vivo experiments.
We examined whether phosphatidylcholine inhibited growth of hepatic cancer, as previously shown for menaquinone-4 (vitamin K2).. Growth inhibitions by phosphatidylcholine and/or menaquinone-4 and apoptosis induction by phosphatidylcholine were evaluated in vitro using human hepatic cancer cell lines (Hep-3B, Hep-G2, HuH-7, and Alexander). Effects of these agents were then investigated in male Sprague-Dawley rats against hepatocarcinogenesis induced by diethylnitrosamine plus phenobarbital. All rats were killed to examine livers to evaluate inhibitory potential macroscopically and immunohistochemically using an antibody against the marker of carcinogenesis, glutathione S-transferase and apoptotic induction by phosphatidylcholine using TUNEL staining. Blood samples were obtained by cardiac puncture.. In vitro, phosphatidylcholine and menaquinone-4 each inhibited cancer cell growth and phosphatidylcholine induced apoptosis dose-dependently. Moreover, exposure to both synergistically inhibited growth in Hep-3B. In vivo, diets containing phosphatidylcholine with or without menaquinone-4 significantly reduced the number of macroscopic hepatic tumor nodules and the extent of abnormally immunoreactive foci conserving hepatic function on serum examinations compared with controls given only the carcinogens. Moreover, phosphatidylcholine supplementation induced apoptosis on TUNEL staining of liver sections.. Given together, phosphatidylcholine and menaquinone-4 may exhibit synergy against hepatocarcinogenesis conserving hepatic function that could benefit patients at high risk for hepatocellular carcinoma. Topics: Animals; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Diet; Diethylnitrosamine; Drug Synergism; Humans; Liver Neoplasms; Liver Neoplasms, Experimental; Male; Phenobarbital; Phosphatidylcholines; Rats; Rats, Sprague-Dawley; Vitamin K 2 | 2007 |
Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation.
Menatetrenone, a vitamin K2 analogue, plays an important role in the production of blood coagulation factors. Menatetrenone has also bee shown to have antineoplastic effects against several cancer cell lines including hepatocellular carcinoma (HCC) cells. However, the mechanisms by which vitamin K2 inhibits HCC cell growth have not bee fully clarified, and we therefore investigated the molecular basis of vitamin K2-induced growth inhibition of HCC cells.. HCC cells were treated with vitamin K2 and the expression of several growth-related genes including cyclin-dependent kinase inhibitors and cyclin D1 was examined at the mRNA and protein levels. A reporter gene assay of the cyclin D1 promoter was done under vitamin K2 treatment. The regulation of nuclear factor kappaB (NF-kappaB) activation was investigated by a NF-kappaB reporter gene assay, an electrophoretic mobility shift assay, a Western blot for phosphorylated IkappaB, and an in vitro kinase assay for IkappaB kinase (IKK). We also examined the effect of vitamin K2 on the growth of HCC cells transfected with p65 or cyclin D1.. Vitamin K2 inhibited cyclin D1 mRNA and protein expression in a dose-dependent manner in the HCC cells. Vitamin K2 also suppressed the NF-kappaB binding site-dependent cyclin D1 promoter activity and suppressed the basal, 12-O-tetradecanoylphorbol-13-acetate (TPA)-, TNF-alpha-, and interleukin (IL)-1-induced activation of NF-kappaB binding and transactivation. Concomitant with the suppression of NF-kappaB activation, vitamin K2 also inhibited the phosphorylation and degradation of IkappaBalpha and suppressed IKK kinase activity. Moreover, HCC cells overexpressing cyclin D1 and p65 became resistant to vitamin K2 treatment.. Vitamin K2 inhibits the growth of HCC cells via suppression of cyclin D1 expression through the IKK/IkappaB/NF-kappaB pathway and might therefore be useful for treatment of HCC. Topics: Antineoplastic Agents; Blotting, Western; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Separation; Cyclin D1; Electrophoretic Mobility Shift Assay; Enzyme Activation; Flow Cytometry; Humans; I-kappa B Kinase; Liver Neoplasms; NF-kappa B; Reverse Transcriptase Polymerase Chain Reaction; Transcription, Genetic; Transfection; Vitamin K 2 | 2007 |
Hepatocellular carcinoma with peritoneal dissemination which was regressed during vitamin K2 and vitamin E administration.
A 65-year-old man with positive anti-hepatitis C antibody and chronic renal failure was diagnosed as having a ruptured hepatocellular carcinoma (HCC) based on computed tomography (CT). The patient underwent transcatheter arterial embolization (TAE) for the HCC. After one more session of TAE, the patient underwent surgery. But HCC seeding peritoneally was pointed out. Vitamin K2 and vitamin E were administered as a conservative treatment. Six months after starting vitamins K2 and E, the primary tumor did not increase in size and intraperitoneal dissemination disappeared on CT with a significant decrease of alpha-fetoprotein. Even though this is only one case, combination therapy of vitamin K2 and E may induce growth suppression of HCC. Topics: Aged; Apoptosis; Carcinoma, Hepatocellular; Combined Modality Therapy; Drug Therapy, Combination; Embolization, Therapeutic; Humans; Liver Neoplasms; Male; Neoplasm Seeding; Peritoneal Neoplasms; Rupture, Spontaneous; Vitamin E; Vitamin K 2; Vitamins | 2007 |
Combined treatment of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates hepatic dysplastic nodule in a patient with liver cirrhosis.
Although it is well known that the hepatocellular carcinoma (HCC) is an ominous complication in patients with liver cirrhosis, there has been no approved drug to prevent the development of HCC to date. We previously reported that the combined treatment of vitamin K2 (VK) and angiotensin-converting enzyme inhibitor (ACE-I) significantly suppressed the experimental hepatocarcinogenesis. A 66-year-old Japanese woman with hepatitis C virus (HCV)-related liver cirrhosis developed a dysplastic nodule in the liver detected by enhanced computed tomography along with elevation of the tumor markers, namely, alpha-fetoprotein (AFP) and lectin-reactive demarcation (AFP-L3), suggesting the presence of latent HCC. After oral administration of VK and ACE-I, the serum levels of both AFP and AFP-L3 gradually decreased without any marked alteration of the serum aminotransferase activity. After one-year treatment, not only the serum levels of AFP and AFP-L3 returned to the normal ranges, but also the dysplastic nodule disappeared. Since both VK and ACE-I are widely used without serious side effects, this combined regimen may become a new strategy for chemoprevention against HCC. Topics: Aged; alpha-Fetoproteins; Angiotensin-Converting Enzyme Inhibitors; Carcinoma, Hepatocellular; Drug Therapy, Combination; Female; Humans; Liver Cirrhosis; Liver Neoplasms; Precancerous Conditions; Tomography, X-Ray Computed; Vitamin K 2 | 2007 |
Apoptosis of liver cancer cells by vitamin K2 and enhancement by MEK inhibition.
Vitamin K2 (VK2) is an anti-proliferative agent toward a variety of cancer including hepatocellular carcinoma (HCC). Because the growth inhibitory effect of VK2 to HCC has not been established yet, we investigated it in HCC cells in vitro. VK2 inhibited growth of Hep3B, but not of HepG2, HLF, and Huh6. VK2 induced the cell cycle arrest at the G1 phase and involvement of apoptosis was suggested because the sub-G1 fraction appeared in flow cytometric analysis and nuclear condensation and fragmentation appeared after VK2 treatment. VK2 activated extracellular signal-regulated kinase (ERK)1/2 in a mitogen-activated ERK-regulating kinase (MEK)-dependent manner in Hep3B and Huh6, but not in HepG2 and HLF. When ERK1/2 was inhibited by U0126, apoptosis by VK2 in Hep3B, but not in Huh6, was significantly enhanced. However, Western blot analysis revealed that neither apoptosis induction by VK2 nor enhancement of apoptosis by U0126 was mediated by caspase activation. These data demonstrated that VK2 induced apoptosis and activated the MEK/ERK1/2 signaling pathway in a cell-type specific manner, and a MEK inhibitor could augment the cell death in these cells. Topics: Apoptosis; Butadienes; Carcinoma, Hepatocellular; Cell Cycle; Cell Growth Processes; Cell Line, Tumor; Drug Synergism; Enzyme Activation; Humans; Liver Neoplasms; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitriles; Protein Kinase Inhibitors; Vitamin K 2 | 2006 |
Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.
A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC. Topics: Animals; Antifibrinolytic Agents; Carcinoma, Hepatocellular; Cell Cycle; Drug Screening Assays, Antitumor; Flow Cytometry; Humans; Liver Neoplasms; Mice; Mice, Nude; Transplantation, Heterologous; Tumor Cells, Cultured; Vitamin K 1; Vitamin K 2; Vitamin K 3 | 2005 |
Combination of vitamin K2 and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression.
Chemoprevention should be a promising approach to improve the prognosis of the patients with hepatocellular carcinoma (HCC). Angiogenesis is now recognized as a crucial step not only in tumor growth, but also in early carcinogenesis. The aim of this study was to elucidate the combination effect of the clinically used vitamin K(2) (VK) and the angiotensin-converting enzyme inhibitor, perindopril (PE), on hepatocarcinogenesis, especially in conjunction with angiogenesis.. In a diethylnitrosamine-induced rat hepatocarcinogenesis model, the effects of VK and PE on the development of liver enzyme-altered preneoplastic lesions and angiogenesis were examined.. Treatment with both VK and PE markedly inhibited the development of preneoplastic lesions in association with suppression of neovascularization in the liver. The combination treatment with VK and PE exerted a more potent inhibitory effect as compared with the single agent treatments. The in vitro study demonstrated that VK and PE inhibited the endothelial cell (EC) tubular formation. VK also suppressed the EC proliferation in a dose-dependent manner.. The combination of VK and PE exerted a chemopreventive effect against rat liver carcinogenesis via suppression of angiogenesis. Since both agents are widely used in the clinical practice, this combination therapy may represent a potential new strategy for chemoprevention against HCC in the future. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antifibrinolytic Agents; Carcinoma, Hepatocellular; Cell Division; Drug Therapy, Combination; Endothelium, Vascular; In Vitro Techniques; Liver; Liver Neoplasms; Male; Neovascularization, Pathologic; Perindopril; Precancerous Conditions; Rats; Rats, Inbred F344; Vitamin K 2 | 2005 |
Vitamin K2 inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation.
Hepatocellular carcinoma (HCC) is a common human malignancy. Its high mortality rate is mainly a result of high intrahepatic recurrence and portal venous invasion (PVI). We previously reported that the development of PVI is related to levels of des-gamma-carboxy prothrombin (DCP), a serum protein that increases at a notably higher rate in patients with HCC. Because DCP is produced by a vitamin K shortage, we examined the biological effects of extrinsic supplementation of vitamin K(2) in HCC cells in vitro and in vivo. Consequently, vitamin K(2) inhibits the growth and invasion of HCC cells through the activation of protein kinase A, which modulates the activities of several transcriptional factors and inhibits the small GTPase Rho, independent of suppression of DCP. In addition, administration of vitamin K(2) to nude mice inoculated with liver tumor cells reduced both tumor growth and body weight loss. In conclusion, similar to an acyclic retinoid--which was previously reported to prevent the recurrence of HCC--vitamin K(2), another lipid-soluble vitamin, may be a promising therapeutic means for the management of HCC. Topics: Animals; Carcinoma, Hepatocellular; cdc25 Phosphatases; Cell Division; Cell Line, Tumor; Cyclic AMP-Dependent Protein Kinases; Enzyme Activation; Humans; Liver Neoplasms; Mice; Mice, Nude; Neoplasm Invasiveness; Neoplasm Transplantation; NIH 3T3 Cells; rhoA GTP-Binding Protein; Signal Transduction; Vitamin K 2 | 2004 |
Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver.
Previous findings indicate that vitamin K2 (menaquinone) may play a role in controlling cell growth.. To determine whether vitamin K2 has preventive effects on the development of hepatocellular carcinoma in women with viral cirrhosis of the liver.. Forty women diagnosed as having viral liver cirrhosis were admitted to a university hospital between 1996 and 1998 and were randomly assigned to the treatment or control group. The original goal of the trial was to assess the long-term effects of vitamin K2 on bone loss in women with viral liver cirrhosis. However, study participants also satisfied criteria required for examination of the effects of such treatment on the development of hepatocellular carcinoma.. The treatment group received 45 mg/d of vitamin K2 (n = 21). Participants in the treatment and control groups received symptomatic therapy to treat ascites, if necessary, and dietary advice.. Cumulative proportion of patients with hepatocellular carcinoma.. Hepatocellular carcinoma was detected in 2 of the 21 women given vitamin K2 and 9 of the 19 women in the control group. The cumulative proportion of patients with hepatocellular carcinoma was smaller in the treatment group (log-rank test, P =.02). On univariate analysis, the risk ratio for the development of hepatocellular carcinoma in the treatment group compared with the control group was 0.20 (95% confidence interval [CI], 0.04-0.91; P =.04). On multivariate analysis with adjustment for age, alanine aminotransferase activity, serum albumin, total bilirubin, platelet count, alpha-fetoprotein, and history of treatment with interferon alfa, the risk ratio for the development of hepatocellular carcinoma in patients given vitamin K2 was 0.13 (95% CI, 0.02-0.99; P =.05).. There is a possible role for vitamin K2 in the prevention of hepatocellular carcinoma in women with viral cirrhosis. Topics: Carcinoma, Hepatocellular; Female; Hepatitis, Viral, Human; Humans; Liver Cirrhosis; Liver Neoplasms; Middle Aged; Randomized Controlled Trials as Topic; Vitamin K 2 | 2004 |
Vitamin K deficiency and hepatocellular carcinoma.
Topics: Carcinoma, Hepatocellular; Humans; Liver Cirrhosis; Liver Neoplasms; Vitamin K; Vitamin K 2; Vitamin K Deficiency | 2004 |
Differential effects of two growth inhibitory K vitamin analogs on cell cycle regulating proteins in human hepatoma cells.
A comparison was made between two K vitamin analogs. Growth in vitro of Hep G2 hepatoma cells was inhibited both by Compound 5 (Cpd 5), a recently synthesized thioalkyl analog of vitamin K or 2-(2-mercaptoethanol)-3-methyl-1, 4-naphthoquinone, as well as by synthetic vitamin K3 (menadione). Using synchronized Hep G2 hepatoma cells, the actions of both Cpd 5 and vitamin K3 on cell cycle regulating proteins were examined. Cpd 5 decreased the levels of cyclin D1, Cdk4, p16, p21 and cyclin B1. By contrast, VK3 only decreased the level of cyclin D1, but had no effect on the levels of Cdk4, p16 or p21. Interestingly, both VK3 and VK2 increased the levels of p21. The naturally occurring K vitamins had little effect on cell growth and none on the cyclins or Cdks. Amounts and activity of the G1/S phase controlling Cdc25A were measured. We found that Cpd 5 directly inhibited both Cdc25A activity and its protein expression, whereas VK3 did not. Thus, the main effects of Cpd 5 were on G1 and S phase proteins, especially Cdk4 and Cdc25A amounts in contrast to VK3. Computer docking studies of Cpd 5 and VK3 to Cdc25A phosphatase showed three binding sites. In the best conformation, Cpd 5 was found to be closer to the enzyme active site than VK3. These findings show that Cpd 5 represents a new class of anticancer agent, being a protein tyrosine phosphatase (PTP) antagonist, that binds to Cdc25A with suppression of its activity. Tumors expressing high levels of oncogenic Cdc25A phosphatase may thus be susceptible to the growth inhibitory activities of this class of compound. Topics: Blotting, Western; Carcinoma, Hepatocellular; cdc25 Phosphatases; Cell Cycle Proteins; Computer Simulation; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinases; G1 Phase; G2 Phase; Humans; Liver Neoplasms; Models, Molecular; Precipitin Tests; Proto-Oncogene Proteins; S Phase; Tumor Cells, Cultured; Vitamin K 1; Vitamin K 2 | 2003 |
Vitamin K uptake in hepatocytes and hepatoma cells.
Hepatocellular carcinoma (HCC) or hepatoma cells have impaired ability to perform vitamin K-dependent carboxylation reactions. Vitamin K can also inhibit growth of HCC cells in vitro. Both carboxylation and growth inhibition are vitamin K dose dependent. We used rat hepatocytes, a vitamin K-growth sensitive (MH7777) and a vitamin K-growth resistant (H4IIE) rat hepatoma cell line to examine vitamin K uptake and vitamin K-mediated microsomal carboxylation. We found that vitamin K is taken up by normal rat hepatocytes against a saturable concentration gradient. The relative rates of uptake by rat hepatocytes and the two rat cell lines MH7777 and H4IIE correlated with their sensitivity to vitamin K-mediated cell growth inhibition. Pooled hepatocytes from liver nodules from rats treated with the hepatocarcinogen diethylnitrosamine (DEN) also had a reduced rate of vitamin K uptake. However, using a cell-free system, microsomes from both normal rat hepatocytes and the two rat hepatoma cell lines had a similar ability to support carboxylation mediated by exogenously added vitamin K. The results support the hypothesis that different sensitivity of hepatoma cells to vitamin K may be due to differences in vitamin K uptake and may be unrelated to the actions of vitamin K on carboxylation. Topics: Animals; Carbon-Carbon Ligases; Carcinoma, Hepatocellular; Cell Count; Cell Division; Dose-Response Relationship, Drug; Enzyme Induction; Focal Nodular Hyperplasia; Growth Inhibitors; Hepatocytes; Humans; Liver Neoplasms; Microsomes, Liver; Rats; Tumor Cells, Cultured; Vitamin K 2 | 2002 |
Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in human hepatocellular carcinomas.
An important marker for hepatocellular carcinoma is the presence of des-gamma-carboxy (abnormal) prothrombin. However, the molecular basis for the reduced carboxylation of prothrombin is unknown.. Two groups of patients were defined according to the absence (Group I, n = 7) or presence (Group II, n = 8) of des-gamma-carboxy prothrombin. The enzymatic activity of gamma-carboxylase and the total microsomal prothrombin concentration were determined in all tumors. The kinetic parameters for the synthetic peptide Phe-Leu-Glu-Glu-Leu (FLEEL) were measured in eight tumors. The gamma-carboxylase mRNA expression was evaluated by Northern blot analysis in 12 of 15 tumors. In addition, the total vitamin K content (K1, K1 epoxide, and menaquinones 4-10) in 10 tumors was investigated by high performance liquid chromatography.. Concentrations of menaquinones 4-10 were normal in the nontumorous part of the liver but significantly decreased (P = 0.02) in all the tumors (Groups I and II). This decrease was more severe in Group II (P = 0.02). The tumors in Group I had normal or increased gamma-carboxylase activity and increased mRNA expression (P < 0.02) as compared with their nontumorous counterparts. The tumors in Group II were heterogeneous. Five tumors displayed low gamma-carboxylase activity, associated with low mRNA expression in two, whereas two others had high gamma-carboxylase activity and mRNA expression. The concentration of FLEEL at half-maximal velocity was normal in all the tumors examined (Groups I and II), and a relation was found between the level of expression of gamma-carboxylase and the maximal velocity for FLEEL carboxylation in the tumors in Group II (r = 0.98; P < 0.01). The microsomal content of normal prothrombin was within normal limits in all tumors (Groups I and II).. Tumor vitamin K content has a critical role in the synthesis of des-gamma-carboxy prothrombin. Furthermore, the gamma-carboxylase defect, which is observed in some secreting tumors, is the result of the defective gene expression of a normal enzyme and not the consequence of the presence of a competitive inhibitor. It is possible that a 75% reduction in gamma-carboxylase gene expression could take a part in the secretion of des-gamma-carboxy prothrombin, but this mechanism is not predominant. Topics: alpha-Fetoproteins; Biomarkers; Carbon-Carbon Ligases; Carcinoma, Hepatocellular; Factor V; Gene Expression Regulation, Neoplastic; Humans; Ligases; Liver; Liver Neoplasms; Microsomes, Liver; Protein Precursors; Prothrombin; RNA; RNA, Neoplasm; Vitamin K; Vitamin K 1; Vitamin K 2 | 1994 |
Serum and liver concentrations of vitamin K in surgical patients.
Topics: Blood Coagulation; Hemostatics; Humans; Liver; Liver Diseases; Liver Neoplasms; Postoperative Period; Vitamin K; Vitamin K 1; Vitamin K 2 | 1992 |
Changes of plasma des-gamma-carboxy prothrombin levels in patients with hepatocellular carcinoma in response to vitamin K.
The effect of menaquinone-4 (MK-4, vitamin K2) was studied on des-gamma-carboxy prothrombin (DCP or PIVKA-II) levels in three subjects with vitamin K deficiency and five patients with hepatocellular carcinoma (HCC) with positive DCP. The half-life of DCP in HCC patients after intravenous MK-4 administration (50 mg daily for 14 days) was determined to be 60 hours, identical to that found in vitamin K-deficient subjects who received MK-4. When a single dose of MK-4 (10 mg) was given intravenously to three patients with HCC and elevated DCP, the levels decreased with a reduction rate identical to that in vitamin K-deficient subjects for the first 1 to 3 days, followed by an increase reaching the previous level in 7 to 10 days. Changes in plasma coagulant activity were compared between subjects with vitamin K deficiency and those with HCC before and after a single dose of MK-4 (10 mg). The activity increased in DCP-positive patients with HCC as in vitamin K-deficient subjects who received the same single dose of MK-4. The increase was greater in HCC patients with higher DCP levels. These results suggest that the level of plasma DCP in patients with HCC responded to vitamin K with the same sensitivity as that in vitamin K-deficient subjects. When patients with HCC underwent effective tumor therapy (resection or arterial embolization), the reduction rate (slope of DCP decline) was found to be identical to that in vitamin K-deficient subjects given with MK-4. In patients with less effective therapy, the reduction rate was smaller, or there was an increase in DCP. These observations strongly suggest that sequential measurements of the DCP reduction rate after treatment for HCC are useful for assessing therapeutic effects. Topics: Aged; Biomarkers; Carcinoma, Hepatocellular; Embolization, Therapeutic; Female; Half-Life; Humans; Liver Neoplasms; Male; Middle Aged; Protein Precursors; Prothrombin; Vitamin K; Vitamin K 2; Vitamin K Deficiency | 1992 |
Vitamin K (menaquinone-4) metabolism in liver disease.
We measured menaquinone-4 (MK-4) and MK-4 epoxide concentrations in plasma and liver tissue after intravenous injection of 200 micrograms/kg MK-4 in 42 patients who underwent hepatectomy. They were classified into normal (N; n = 10), chronic hepatitis (CH; n = 12), and liver cirrhosis (LC; n = 20) groups, on the basis of the diagnosis given by the pathologist after examining resected liver specimens. The plasma MK-4 epoxide concentration reached maximum level (Cmax) 60 min after MK-4 injection. The Cmax in groups LC and CH were 85.9 and 126.3 nmol/l, respectively, which is significantly reduced compared with that of group N (184.4 nmol/l) (p less than 0.01 and p less than 0.05, respectively). The MK-4 concentrations in liver tissues of 24 patients 60 min after MK-4 injection were 2.77 in group N, 3.79 in group CH, and 3.83 nmol/g in group LC, and the MK-4 epoxide concentrations were 4.01, 3.09, and 2.62 nmol/g in the respective groups. Consequently, the ratio of MK-4 epoxide to total MK-4 (MK-4 + MK-4 epoxide) in groups CH and LC was significantly lower than in group N (p less than 0.01). It is concluded that the Cmax of MK-4 epoxide after MK-4 injection may serve as an indicator of liver function and that the low ratio of MK-4 epoxide to total MK-4 in the liver shows impairment in vitamin K metabolism. Topics: Carcinoma, Hepatocellular; Chronic Disease; Female; Hepatectomy; Hepatitis; Humans; Liver Cirrhosis; Liver Neoplasms; Male; Regression Analysis; Vitamin K; Vitamin K 2 | 1990 |