menaquinone-6 has been researched along with Acute-Disease* in 4 studies
1 trial(s) available for menaquinone-6 and Acute-Disease
3 other study(ies) available for menaquinone-6 and Acute-Disease
Article | Year |
---|---|
Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.
The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects.. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3.. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells.. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis. Topics: Acute Disease; Animals; Autophagy; Ceruletide; Female; HeLa Cells; Humans; Lysosomes; Mice; Mice, Inbred C57BL; Pancreatitis; Phagosomes; Sirolimus; Vitamin K 2; Vitamin K 3 | 2011 |
Combination of 22-oxa-1,25-dihydroxyvitamin D(3), a vitamin D(3) derivative, with vitamin K(2) (VK2) synergistically enhances cell differentiation but suppresses VK2-inducing apoptosis in HL-60 cells.
We originally reported that vitamin K(2) (VK2) effectively induces apoptosis in various types of primary cultured leukemia cells and leukemia cell lines in vitro. In addition, VK2 was shown to induce differentiation of leukemia cells when the cells were resistant against VK2-inducing apoptosis. A novel synthetic vitamin D(3)derivative, 22-oxa-1,25-dihydroxyvitamin D(3) (OCT: oxacarcitriol) shows a more potent differentiation-inducing ability among myeloid leukemia cells in vitro with much lesser extent of the induction of hypercalcemia in vivo as compared to the effects of 1alpha,25(OH)(2)D(3). In the present study, we focused on the effects of a combination of OCT plus VK2 on leukemia cells. Treatment of HL-60 cells with OCT for 72 h induces monocytic differentiation. A combination of OCT plus VK2 dramatically enhances monocytic differentiation as assessed by morphologic features, positivity for non-specific esterase staining, and cell surface antigen expressions. This combined effect far exceeds the maximum differentiation induction ability at the optimal concentrations of either OCT or VK2 alone. In addition, pronounced accumulation of the cells in the G0/G1 phase is observed by combined treatment with OCT plus VK2 as compared with each vitamin alone. In contrast to cell differentiation, caspase-3 activation and apoptosis induction in response to VK2 are significantly suppressed in the presence of OCT in HL-60 cells. These data suggest that monocytic differentiation and apoptosis induction of HL-60 cells are inversely regulated. Furthermore, pronounced induction of differentiation by combined treatment with VK2 plus OCT was also observed in four out of six cases of primary cultured acute myeloid leukemia cells in vitro, suggesting that VK2 plus OCT might be a potent combination for the differentiation-based therapy for acute myeloid leukemias. Topics: Acute Disease; Antineoplastic Agents; Apoptosis; Calcitriol; Cell Differentiation; Drug Screening Assays, Antitumor; Drug Synergism; Female; Gene Expression Regulation, Leukemic; HL-60 Cells; Humans; Leukemia, Myeloid; Male; Middle Aged; Neoplasms, Second Primary; Neoplastic Stem Cells; Tumor Cells, Cultured; Vitamin K 2 | 2002 |
Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: information through a questionnaire survey of multi-center pilot studies in Japan.
Topics: Acute Disease; Adult; Aged; Female; Humans; Leukemia, Myeloid; Male; Middle Aged; Multicenter Studies as Topic; Myelodysplastic Syndromes; Pilot Projects; Vitamin K; Vitamin K 2 | 2000 |