melitten has been researched along with Liver-Failure--Acute* in 2 studies
2 other study(ies) available for melitten and Liver-Failure--Acute
Article | Year |
---|---|
Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect.
Acute liver failure (ALF) is a fatal clinical syndrome with no special drug. Recent evidence shows that modulation of macrophage to inhibit inflammation may be a promising strategy for ALF treatment. In this study we investigated the potential therapeutic effects of melittin, a major peptide component of bee venom both in mice model of ALF and in LPS-stimulated macrophages in vitro, and elucidated the underlying mechanisms. ALF was induced in mice by intraperitoneal injection of D-galactosamine/LPS. Then the mice were treated with melittin (2, 4, and 8 mg/kg, ip). We showed that melittin treatment markedly improved mortality, attenuated severe symptoms and signs, and alleviated hepatic inflammation in D-galactosamine/LPS-induced ALF mice with the optimal dose being 4 mg/kg. In addition, melittin within the effective doses did not cause significant in vivo toxicity. In LPS-stimulated RAW264.7 macrophages, melittin (0.7 μM) exerted anti-oxidation and anti-inflammation effects. We showed that LPS stimulation promoted aerobic glycolysis of macrophages through increasing glycolytic rate, upregulated the levels of Warburg effect-related enzymes and metabolites including lactate, LDHA, LDH, and GLUT-1, and activated Akt/mTOR/PKM2/HIF-1α signaling. Melittin treatment suppressed M2 isoform of pyruvate kinase (PKM2), thus disrupted the Warburg effect to alleviate inflammation. Molecular docking analysis confirmed that melittin targeted PKM2. In LPS-stimulated RAW264.7 macrophages, knockdown of PKM2 caused similar anti-inflammation effects as melittin did. In D-galactosamine/LPS-induced ALF mice, melittin treatment markedly decreased the expression levels of PKM2 and HIF-1α in liver. This work demonstrates that melittin inhibits macrophage activation-mediated inflammation via inhibition of aerobic glycolysis by targeting PKM2, which highlights a novel strategy of using melittin for ALF treatment. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Galactosamine; Glycolysis; Inflammation; Lipopolysaccharides; Liver Failure, Acute; Male; Melitten; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Protein Binding; Pyruvate Kinase; RAW 264.7 Cells | 2021 |
Protective effect of melittin on inflammation and apoptosis in acute liver failure.
Acute hepatic failure remains an extremely poor prognosis and still results in high mortality. Therefore, better treatment is urgently needed. Melittin, a major component of bee venom, is known to inhibit inflammatory reactions induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α in various cell types. However, there is no evidence of the anti-inflammatory and anti-apoptotic effect of melittin on liver cells. In the present study, we investigated the effects of melittin on D: -galactosamine (GalN)/lipopolysaccharide (LPS)-induced acute hepatic failure. Acute liver injury was induced with GalN/LPS to determine in vivo efficacy of melittin. Mice were randomly divided into four groups: sterile saline treated group (NC), melittin only treated group (NM), GalN/LPS-treated group (GalN/LPS), and GalN/LPS treated with melittin group (M+GalN/LPS). Mice were given intraperitoneal GalN/LPS with or without melittin treatment. Liver injury was assessed biochemically and histologically. Inflammatory cytokines in the serum, apoptosis of hepatocytes, and cleavage of caspase-3 in the liver were determined. The expression of TNF-α and interleukin (IL)-1β were increased in the GalN/LPS group. However, treatment of melittin attenuated the increase of inflammatory cytokines. The M+GalN/LPS group showed significantly fewer apoptotic cells compared to the GalN/LPS group. Melittin significantly inhibited the expression of caspase and bax protein levels as well as cytochrome c release in vivo. In addition, melittin prevented the activation of the transcription factor nuclear factor-kappa B (NF-κB) induced by GalN/LPS. These results clearly indicate that melittin provided protection against GalN/LPS-induced acute hepatic failure through the inhibition of inflammatory cytokines and apoptosis. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Cytokines; Disease Models, Animal; Hepatocytes; Humans; Liver Failure, Acute; Male; Melitten; Mice; Mice, Inbred C57BL; Protective Agents | 2012 |