Page last updated: 2024-10-19

melatonin and Diabetes Mellitus, Type 2

melatonin has been researched along with Diabetes Mellitus, Type 2 in 139 studies

Diabetes Mellitus, Type 2: A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.

Research Excerpts

ExcerptRelevanceReference
"Melatonin may benefit diabetic people with coronary heart disease (CHD) through its beneficial effects on biomarkers of oxidative stress and cardio-metabolic risk."9.30Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. ( Asemi, Z; Bahmani, F; Ostadmohammadi, V; Raygan, F; Reiter, RJ, 2019)
"To assess the effect of daily treatment with melatonin on fasting glucose, insulin, insulin sensitivity and haemoglobin A1c (HbA1c) levels."9.12Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta-analysis. ( Kampmann, U; Lauritzen, ES; Smedegaard, SB; Støy, J, 2021)
"Recent evidence suggests that diabetic retinopathy (DR) is associated with abnormal melatonin regulation, possibly related to dysfunction of the melanopsin-expressing intrinsically photosensitive retinal ganglion cells."8.02Sleep variability, 6-sulfatoxymelatonin, and diabetic retinopathy. ( Chailurkit, LO; Chirakalwasan, N; Gerber, BS; Nimitphong, H; Pinyopodjanard, S; Reutrakul, S; Saetung, S; Sirisreetreerux, S; Sujirakul, T, 2021)
" The aim of this study was to determine the association between urinary 6-sulfatoxymelatonin, which is a urinary metabolite of melatonin, and diabetic vascular complications or arteriosclerosis in patients with type 2 diabetes."8.02Associations between urinary 6-sulfatoxymelatonin excretion and diabetic vascular complications or arteriosclerosis in patients with type 2 diabetes. ( Maiko, H; Mori, H; Okada, Y; Tanaka, K; Tanaka, Y, 2021)
"Melatonin can be considered as a promising solution in preventing neuroinflammation development in T2DM owing to its ability to render the oxidative stress and accompanied low-grade systemic inflammation."7.96Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression. ( Elguindy, NM; Hashem, HM; Maher, AM; Saleh, SR; Yacout, GA, 2020)
"Both aero-bic exercise and melatonin can improve diabetic osteoporosis, and the effect of both joint intervention is more significant, it may be associated with oxidative stress by increasing the ability of diabetic rats, regulate glucose metabolism in order to effectively reduce the calcium and PTH, improve BMD to alleviate osteoporosis."7.85[Effects of aerobic exercise combined with melatonin on osteoporosis of type II diabetic rats]. ( Jing, HF; Wang, XM, 2017)
"Melatonin supplementation in combination with exercise behavior may ameliorate IR, hypertension and exercise performance or fatigue possibly by improving antioxidative activities, hyperlipidemia, inflammatory cytokines via up-regulation of GLUT4, PGC-1 α and mitochondrial biogenesis in T2DM rats."7.85Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. ( Go, HK; Kim, DH; Kim, MJ; Kwon, HS; Oak, MH; Rahman, MM, 2017)
"The effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 (lymphatic vessel endothelial hyaluronan receptor) in the liver were studied in db/db mice with experimental obesity and type 2 diabetes mellitus."7.83Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus. ( Arkhipov, SA; Ishchenko, IY; Klimontov, VV; Konenkov, VI; Michurina, SV; Rachkovskaya, LN; Zavyalov, EL, 2016)
"Seventeen male participants with type 2 diabetes completed (1) 3 months of daily melatonin treatment (10 mg) 1 h before bedtime (M) and (2) 3 months of placebo treatment 1 h before bedtime (P)."7.11Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo-controlled crossover trial. ( Christensen, LL; Jessen, N; Kampmann, U; Lauritzen, ES; Møller, N; Pedersen, MGB; Støy, J, 2022)
"Melatonin has been suggested to have a role in glucose metabolism, yet the results across studies have been inconsistent."6.72Effects of Melatonin Supplementation on Insulin Levels and Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ( Li, Y; Xu, Z, 2021)
"Finally, hemodynamic index changes, infarct size, CK-MB levels, mitochondrial functional endpoints, and expression of mitochondrial biogenesis genes (SIRT-1/PGC-1α/NRF-2/TFAM) were assessed."5.91Melatonin/nicotinamide mononucleotide/ubiquinol: a cocktail providing superior cardioprotection against ischemia/reperfusion injury in a common co-morbidities modelled rat. ( Badalzadeh, R; Chodari, L; Ghaffari, S; Høilund-Carlsen, PF; Mokhtari, B; Yasami, M, 2023)
"Type 2 diabetes mellitus is often complicated by osteoporosis, a process which may involve osteoblast autophagy."5.43Melatonin suppresses autophagy in type 2 diabetic osteoporosis. ( Liu, F; Liu, JH; Meng, HZ; Shi, PX; Sun, GH; Yang, B; Yang, MW; Yang, RF; Zhang, WL, 2016)
"Melatonin is a powerful antioxidant."5.40Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes. ( Cao, H; Chen, W; Lu, QY; Wang, N; Xu, X; Zhao, SZ; Zheng, Z, 2014)
"Melatonin may benefit diabetic people with coronary heart disease (CHD) through its beneficial effects on biomarkers of oxidative stress and cardio-metabolic risk."5.30Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. ( Asemi, Z; Bahmani, F; Ostadmohammadi, V; Raygan, F; Reiter, RJ, 2019)
" This review article aimed to present the role of melatonin in this direction, by providing an overview of melatonin's physiology followed by its effect as a therapeutic agent in arterial hypertension and T2DM."5.22The Role of Melatonin in Chronic Kidney Disease and Its Associated Risk Factors: A New Tool in Our Arsenal? ( Kalaitzidis, RG; Theofilis, P; Vordoni, A, 2022)
"To assess the effect of daily treatment with melatonin on fasting glucose, insulin, insulin sensitivity and haemoglobin A1c (HbA1c) levels."5.12Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta-analysis. ( Kampmann, U; Lauritzen, ES; Smedegaard, SB; Støy, J, 2021)
" There has also been a marked increase in the prevalence of metabolic syndrome in recent decades, which has been associated with a reduction in nocturnal pineal production of melatonin with aging and an increased risk of coronary diseases, type 2 diabetes mellitus (T2DM) and death."4.90Melatonin and metabolic regulation: a review. ( A-Serrano, MM; Acuña-Castroviejo, D; Agil, A; Blanca-Herrera, RM; Fernández-Vázquez, G; Navarro-Alarcón, M; Ruiz-Ojeda, FJ, 2014)
"Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634)."4.21 ( Abbasi, S; Abd El-Wahab, A; Abdallah, M; Abebe, G; Aca-Aca, G; Adama, S; Adefegha, SA; Adidigue-Ndiome, R; Adiseshaiah, P; Adrario, E; Aghajanian, C; Agnese, W; Ahmad, A; Ahmad, I; Ahmed, MFE; Akcay, OF; Akinmoladun, AC; Akutagawa, T; Alakavuklar, MA; Álava-Rabasa, S; Albaladejo-Florín, MJ; Alexandra, AJE; Alfawares, R; Alferiev, IS; Alghamdi, HS; Ali, I; Allard, B; Allen, JD; Almada, E; Alobaid, A; Alonso, GL; Alqahtani, YS; Alqarawi, W; Alsaleh, H; Alyami, BA; Amaral, BPD; Amaro, JT; Amin, SAW; Amodio, E; Amoo, ZA; Andia Biraro, I; Angiolella, L; Anheyer, D; Anlay, DZ; Annex, BH; Antonio-Aguirre, B; Apple, S; Arbuznikov, AV; Arinsoy, T; Armstrong, DK; Ash, S; Aslam, M; Asrie, F; Astur, DC; Atzrodt, J; Au, DW; Aucoin, M; Auerbach, EJ; Azarian, S; Ba, D; Bai, Z; Baisch, PRM; Balkissou, AD; Baltzopoulos, V; Banaszewski, M; Banerjee, S; Bao, Y; Baradwan, A; Barandika, JF; Barger, PM; Barion, MRL; Barrett, CD; Basudan, AM; Baur, LE; Baz-Rodríguez, SA; Beamer, P; Beaulant, A; Becker, DF; Beckers, C; Bedel, J; Bedlack, R; Bermúdez de Castro, JM; Berry, JD; Berthier, C; Bhattacharya, D; Biadgo, B; Bianco, G; Bianco, M; Bibi, S; Bigliardi, AP; Billheimer, D; Birnie, DH; Biswas, K; Blair, HC; Bognetti, P; Bolan, PJ; Bolla, JR; Bolze, A; Bonnaillie, P; Borlimi, R; Bórquez, J; Bottari, NB; Boulleys-Nana, JR; Brighetti, G; Brodeur, GM; Budnyak, T; Budnyk, S; Bukirwa, VD; Bulman, DM; Burm, R; Busman-Sahay, K; Butcher, TW; Cai, C; Cai, H; Cai, L; Cairati, M; Calvano, CD; Camacho-Ordóñez, A; Camela, E; Cameron, T; Campbell, BS; Cansian, RL; Cao, Y; Caporale, AS; Carciofi, AC; Cardozo, V; Carè, J; Carlos, AF; Carozza, R; Carroll, CJW; Carsetti, A; Carubelli, V; Casarotta, E; Casas, M; Caselli, G; Castillo-Lora, J; Cataldi, TRI; Cavalcante, ELB; Cavaleiro, A; Cayci, Z; Cebrián-Tarancón, C; Cedrone, E; Cella, D; Cereda, C; Ceretti, A; Ceroni, M; Cha, YH; Chai, X; Chang, EF; Chang, TS; Chanteux, H; Chao, M; Chaplin, BP; Chaturvedi, S; Chaturvedi, V; Chaudhary, DK; Chen, A; Chen, C; Chen, HY; Chen, J; Chen, JJ; Chen, K; Chen, L; Chen, Q; Chen, R; Chen, SY; Chen, TY; Chen, WM; Chen, X; Chen, Y; Cheng, G; Cheng, GJ; Cheng, J; Cheng, YH; Cheon, HG; Chew, KW; Chhoker, S; Chiu, WN; Choi, ES; Choi, MJ; Choi, SD; Chokshi, S; Chorny, M; Chu, KI; Chu, WJ; Church, AL; Cirrincione, A; Clamp, AR; Cleff, MB; Cohen, M; Coleman, RL; Collins, SL; Colombo, N; Conduit, N; Cong, WL; Connelly, MA; Connor, J; Cooley, K; Correa Ramos Leal, I; Cose, S; Costantino, C; Cottrell, M; Cui, L; Cundall, J; Cutaia, C; Cutler, CW; Cuypers, ML; da Silva Júnior, FMR; Dahal, RH; Damiani, E; Damtie, D; Dan-Li, W; Dang, Z; Dasa, SSK; Davin, A; Davis, DR; de Andrade, CM; de Jong, PL; de Oliveira, D; de Paula Dorigam, JC; Dean, A; Deepa, M; Delatour, C; Dell'Aiera, S; Delley, MF; den Boer, RB; Deng, L; Deng, Q; Depner, RM; Derdau, V; Derici, U; DeSantis, AJ; Desmarini, D; Diffo-Sonkoue, L; Divizia, M; Djenabou, A; Djordjevic, JT; Dobrovolskaia, MA; Domizi, R; Donati, A; Dong, Y; Dos Santos, M; Dos Santos, MP; Douglas, RG; Duarte, PF; Dullaart, RPF; Duscha, BD; Edwards, LA; Edwards, TE; Eichenwald, EC; El-Baba, TJ; Elashiry, M; Elashiry, MM; Elashry, SH; Elliott, A; Elsayed, R; Emerson, MS; Emmanuel, YO; Emory, TH; Endale-Mangamba, LM; Enten, GA; Estefanía-Fernández, K; Estes, JD; Estrada-Mena, FJ; Evans, S; Ezra, L; Faria de, RO; Farraj, AK; Favre, C; Feng, B; Feng, J; Feng, L; Feng, W; Feng, X; Feng, Z; Fernandes, CLF; Fernández-Cuadros, ME; Fernie, AR; Ferrari, D; Florindo, PR; Fong, PC; Fontes, EPB; Fontinha, D; Fornari, VJ; Fox, NP; Fu, Q; Fujitaka, Y; Fukuhara, K; Fumeaux, T; Fuqua, C; Fustinoni, S; Gabbanelli, V; Gaikwad, S; Gall, ET; Galli, A; Gancedo, MA; Gandhi, MM; Gao, D; Gao, K; Gao, M; Gao, Q; Gao, X; Gao, Y; Gaponenko, V; Garber, A; Garcia, EM; García-Campos, C; García-Donas, J; García-Pérez, AL; Gasparri, F; Ge, C; Ge, D; Ge, JB; Ge, X; George, I; George, LA; Germani, G; Ghassemi Tabrizi, S; Gibon, Y; Gillent, E; Gillies, RS; Gilmour, MI; Goble, S; Goh, JC; Goiri, F; Goldfinger, LE; Golian, M; Gómez, MA; Gonçalves, J; Góngora-García, OR; Gonul, I; González, MA; Govers, TM; Grant, PC; Gray, EH; Gray, JE; Green, MS; Greenwald, I; Gregory, MJ; Gretzke, D; Griffin-Nolan, RJ; Griffith, DC; Gruppen, EG; Guaita, A; Guan, P; Guan, X; Guerci, P; Guerrero, DT; Guo, M; Guo, P; Guo, R; Guo, X; Gupta, J; Guz, G; Hajizadeh, N; Hamada, H; Haman-Wabi, AB; Han, TT; Hannan, N; Hao, S; Harjola, VP; Harmon, M; Hartmann, MSM; Hartwig, JF; Hasani, M; Hawthorne, WJ; Haykal-Coates, N; Hazari, MS; He, DL; He, P; He, SG; Héau, C; Hebbar Kannur, K; Helvaci, O; Heuberger, DM; Hidalgo, F; Hilty, MP; Hirata, K; Hirsch, A; Hoffman, AM; Hoffmann, JF; Holloway, RW; Holmes, RK; Hong, S; Hongisto, M; Hopf, NB; Hörlein, R; Hoshino, N; Hou, Y; Hoven, NF; Hsieh, YY; Hsu, CT; Hu, CW; Hu, JH; Hu, MY; Hu, Y; Hu, Z; Huang, C; Huang, D; Huang, DQ; Huang, L; Huang, Q; Huang, R; Huang, S; Huang, SC; Huang, W; Huang, Y; Huffman, KM; Hung, CH; Hung, CT; Huurman, R; Hwang, SM; Hyun, S; Ibrahim, AM; Iddi-Faical, A; Immordino, P; Isla, MI; Jacquemond, V; Jacques, T; Jankowska, E; Jansen, JA; Jäntti, T; Jaque-Fernandez, F; Jarvis, GA; Jatt, LP; Jeon, JW; Jeong, SH; Jhunjhunwala, R; Ji, F; Jia, X; Jia, Y; Jian-Bo, Z; Jiang, GD; Jiang, L; Jiang, W; Jiang, WD; Jiang, Z; Jiménez-Hoyos, CA; Jin, S; Jobling, MG; John, CM; John, T; Johnson, CB; Jones, KI; Jones, WS; Joseph, OO; Ju, C; Judeinstein, P; Junges, A; Junnarkar, M; Jurkko, R; Kaleka, CC; Kamath, AV; Kang, X; Kantsadi, AL; Kapoor, M; Karim, Z; Kashuba, ADM; Kassa, E; Kasztura, M; Kataja, A; Katoh, T; Kaufman, JS; Kaupp, M; Kehinde, O; Kehrenberg, C; Kemper, N; Kerr, CW; Khan, AU; Khan, MF; Khan, ZUH; Khojasteh, SC; Kilburn, S; Kim, CG; Kim, DU; Kim, DY; Kim, HJ; Kim, J; Kim, OH; Kim, YH; King, C; Klein, A; Klingler, L; Knapp, AK; Ko, TK; Kodavanti, UP; Kolla, V; Kong, L; Kong, RY; Kong, X; Kore, S; Kortz, U; Korucu, B; Kovacs, A; Krahnert, I; Kraus, WE; Kuang, SY; Kuehn-Hajder, JE; Kurz, M; Kuśtrowski, P; Kwak, YD; Kyttaris, VC; Laga, SM; Laguerre, A; Laloo, A; Langaro, MC; Langham, MC; Lao, X; Larocca, MC; Lassus, J; Lattimer, TA; Lazar, S; Le, MH; Leal, DB; Leal, M; Leary, A; Ledermann, JA; Lee, JF; Lee, MV; Lee, NH; Leeds, CM; Leeds, JS; Lefrandt, JD; Leicht, AS; Leonard, M; Lev, S; Levy, K; Li, B; Li, C; Li, CM; Li, DH; Li, H; Li, J; Li, L; Li, LJ; Li, N; Li, P; Li, T; Li, X; Li, XH; Li, XQ; Li, XX; Li, Y; Li, Z; Li, ZY; Liao, YF; Lin, CC; Lin, MH; Lin, Y; Ling, Y; Links, TP; Lira-Romero, E; Liu, C; Liu, D; Liu, H; Liu, J; Liu, L; Liu, LP; Liu, M; Liu, T; Liu, W; Liu, X; Liu, XH; Liu, Y; Liuwantara, D; Ljumanovic, N; Lobo, L; Lokhande, K; Lopes, A; Lopes, RMRM; López-Gutiérrez, JC; López-Muñoz, MJ; López-Santamaría, M; Lorenzo, C; Lorusso, D; Losito, I; Lu, C; Lu, H; Lu, HZ; Lu, SH; Lu, SN; Lu, Y; Lu, ZY; Luboga, F; Luo, JJ; Luo, KL; Luo, Y; Lutomski, CA; Lv, W; M Piedade, MF; Ma, J; Ma, JQ; Ma, JX; Ma, N; Ma, P; Ma, S; Maciel, M; Madureira, M; Maganaris, C; Maginn, EJ; Mahnashi, MH; Maierhofer, M; Majetschak, M; Malla, TR; Maloney, L; Mann, DL; Mansuri, A; Marelli, E; Margulis, CJ; Marrella, A; Martin, BL; Martín-Francés, L; Martínez de Pinillos, M; Martínez-Navarro, EM; Martinez-Quintanilla Jimenez, D; Martínez-Velasco, A; Martínez-Villaseñor, L; Martinón-Torres, M; Martins, BA; Massongo, M; Mathew, AP; Mathews, D; Matsui, J; Matsumoto, KI; Mau, T; Maves, RC; Mayclin, SJ; Mayer, JM; Maynard, ND; Mayr, T; Mboowa, MG; McEvoy, MP; McIntyre, RC; McKay, JA; McPhail, MJW; McVeigh, AL; Mebazaa, A; Medici, V; Medina, DN; Mehmood, T; Mei-Li, C; Melku, M; Meloncelli, S; Mendes, GC; Mendoza-Velásquez, C; Mercadante, R; Mercado, MI; Merenda, MEZ; Meunier, J; Mi, SL; Michels, M; Mijatovic, V; Mikhailov, V; Milheiro, SA; Miller, DC; Ming, F; Mitsuishi, M; Miyashita, T; Mo, J; Mo, S; Modesto-Mata, M; Moeller, S; Monte, A; Monteiro, L; Montomoli, J; Moore, EE; Moore, HB; Moore, PK; Mor, MK; Moratalla-López, N; Moratilla Lapeña, L; Moreira, R; Moreno, MA; Mörk, AC; Morton, M; Mosier, JM; Mou, LH; Mougharbel, AS; Muccillo-Baisch, AL; Muñoz-Serrano, AJ; Mustafa, B; Nair, GM; Nakanishi, I; Nakanjako, D; Naraparaju, K; Nawani, N; Neffati, R; Neil, EC; Neilipovitz, D; Neira-Borrajo, I; Nelson, MT; Nery, PB; Nese, M; Nguyen, F; Nguyen, MH; Niazy, AA; Nicolaï, J; Nogueira, F; Norbäck, D; Novaretti, JV; O'Donnell, T; O'Dowd, A; O'Malley, DM; Oaknin, A; Ogata, K; Ohkubo, K; Ojha, M; Olaleye, MT; Olawande, B; Olomo, EJ; Ong, EWY; Ono, A; Onwumere, J; Ortiz Bibriesca, DM; Ou, X; Oza, AM; Ozturk, K; Özütemiz, C; Palacio-Pastrana, C; Palaparthi, A; Palevsky, PM; Pan, K; Pantanetti, S; Papachristou, DJ; Pariani, A; Parikh, CR; Parissis, J; Paroul, N; Parry, S; Patel, N; Patel, SM; Patel, VC; Pawar, S; Pefura-Yone, EW; Peixoto Andrade, BCO; Pelepenko, LE; Peña-Lora, D; Peng, S; Pérez-Moro, OS; Perez-Ortiz, AC; Perry, LM; Peter, CM; Phillips, NJ; Phillips, P; Pia Tek, J; Piner, LW; Pinto, EA; Pinto, SN; Piyachaturawat, P; Poka-Mayap, V; Polledri, E; Poloni, TE; Ponessa, G; Poole, ST; Post, AK; Potter, TM; Pressly, BB; Prouty, MG; Prudêncio, M; Pulkki, K; Pupier, C; Qian, H; Qian, ZP; Qiu, Y; Qu, G; Rahimi, S; Rahman, AU; Ramadan, H; Ramanna, S; Ramirez, I; Randolph, GJ; Rasheed, A; Rault, J; Raviprakash, V; Reale, E; Redpath, C; Rema, V; Remucal, CK; Remy, D; Ren, T; Ribeiro, LB; Riboli, G; Richards, J; Rieger, V; Rieusset, J; Riva, A; Rivabella Maknis, T; Robbins, JL; Robinson, CV; Roche-Campo, F; Rodriguez, R; Rodríguez-de-Cía, J; Rollenhagen, JE; Rosen, EP; Rub, D; Rubin, N; Rubin, NT; Ruurda, JP; Saad, O; Sabell, T; Saber, SE; Sabet, M; Sadek, MM; Saejio, A; Salinas, RM; Saliu, IO; Sande, D; Sang, D; Sangenito, LS; Santos, ALSD; Sarmiento Caldas, MC; Sassaroli, S; Sassi, V; Sato, J; Sauaia, A; Saunders, K; Saunders, PR; Savarino, SJ; Scambia, G; Scanlon, N; Schetinger, MR; Schinkel, AFL; Schladweiler, MC; Schofield, CJ; Schuepbach, RA; Schulz, J; Schwartz, N; Scorcella, C; Seeley, J; Seemann, F; Seinige, D; Sengoku, T; Seravalli, J; Sgromo, B; Shaheen, MY; Shan, L; Shanmugam, S; Shao, H; Sharma, S; Shaw, KJ; Shen, BQ; Shen, CH; Shen, P; Shen, S; Shen, Y; Shen, Z; Shi, J; Shi-Li, L; Shimoda, K; Shoji, Y; Shun, C; Silva, MA; Silva-Cardoso, J; Simas, NK; Simirgiotis, MJ; Sincock, SA; Singh, MP; Sionis, A; Siu, J; Sivieri, EM; Sjerps, MJ; Skoczen, SL; Slabon, A; Slette, IJ; Smith, MD; Smith, S; Smith, TG; Snapp, KS; Snow, SJ; Soares, MCF; Soberman, D; Solares, MD; Soliman, I; Song, J; Sorooshian, A; Sorrell, TC; Spinar, J; Staudt, A; Steinhart, C; Stern, ST; Stevens, DM; Stiers, KM; Stimming, U; Su, YG; Subbian, V; Suga, H; Sukhija-Cohen, A; Suksamrarn, A; Suksen, K; Sun, J; Sun, M; Sun, P; Sun, W; Sun, XF; Sun, Y; Sundell, J; Susan, LF; Sutjarit, N; Swamy, KV; Swisher, EM; Sykes, C; Takahashi, JA; Talmor, DS; Tan, B; Tan, ZK; Tang, L; Tang, S; Tanner, JJ; Tanwar, M; Tarazi, Z; Tarvasmäki, T; Tay, FR; Teketel, A; Temitayo, GI; Thersleff, T; Thiessen Philbrook, H; Thompson, LC; Thongon, N; Tian, B; Tian, F; Tian, Q; Timothy, AT; Tingle, MD; Titze, IR; Tolppanen, H; Tong, W; Toyoda, H; Tronconi, L; Tseng, CH; Tu, H; Tu, YJ; Tung, SY; Turpault, S; Tuynman, JB; Uemoto, AT; Ugurlu, M; Ullah, S; Underwood, RS; Ungell, AL; Usandizaga-Elio, I; Vakonakis, I; van Boxel, GI; van den Beucken, JJJP; van der Boom, T; van Slegtenhorst, MA; Vanni, JR; Vaquera, A; Vasconcellos, RS; Velayos, M; Vena, R; Ventura, G; Verso, MG; Vincent, RP; Vitale, F; Vitali, S; Vlek, SL; Vleugels, MPH; Volkmann, N; Vukelic, M; Wagner Mackenzie, B; Wairagala, P; Waller, SB; Wan, J; Wan, MT; Wan, Y; Wang, CC; Wang, H; Wang, J; Wang, JF; Wang, K; Wang, L; Wang, M; Wang, S; Wang, WM; Wang, X; Wang, Y; Wang, YD; Wang, YF; Wang, Z; Wang, ZG; Warriner, K; Weberpals, JI; Weerachayaphorn, J; Wehrli, FW; Wei, J; Wei, KL; Weinheimer, CJ; Weisbord, SD; Wen, S; Wendel Garcia, PD; Williams, JW; Williams, R; Winkler, C; Wirman, AP; Wong, S; Woods, CM; Wu, B; Wu, C; Wu, F; Wu, P; Wu, S; Wu, Y; Wu, YN; Wu, ZH; Wurtzel, JGT; Xia, L; Xia, Z; Xia, ZZ; Xiao, H; Xie, C; Xin, ZM; Xing, Y; Xing, Z; Xu, S; Xu, SB; Xu, T; Xu, X; Xu, Y; Xue, L; Xun, J; Yaffe, MB; Yalew, A; Yamamoto, S; Yan, D; Yan, H; Yan, S; Yan, X; Yang, AD; Yang, E; Yang, H; Yang, J; Yang, JL; Yang, K; Yang, M; Yang, P; Yang, Q; Yang, S; Yang, W; Yang, X; Yang, Y; Yao, JC; Yao, WL; Yao, Y; Yaqub, TB; Ye, J; Ye, W; Yen, CW; Yeter, HH; Yin, C; Yip, V; Yong-Yi, J; Yu, HJ; Yu, MF; Yu, S; Yu, W; Yu, WW; Yu, X; Yuan, P; Yuan, Q; Yue, XY; Zaia, AA; Zakhary, SY; Zalwango, F; Zamalloa, A; Zamparo, P; Zampini, IC; Zani, JL; Zeitoun, R; Zeng, N; Zenteno, JC; Zepeda-Palacio, C; Zhai, C; Zhang, B; Zhang, G; Zhang, J; Zhang, K; Zhang, Q; Zhang, R; Zhang, T; Zhang, X; Zhang, Y; Zhang, YY; Zhao, B; Zhao, D; Zhao, G; Zhao, H; Zhao, Q; Zhao, R; Zhao, S; Zhao, T; Zhao, X; Zhao, XA; Zhao, Y; Zhao, Z; Zheng, Z; Zhi-Min, G; Zhou, CL; Zhou, HD; Zhou, J; Zhou, W; Zhou, XQ; Zhou, Z; Zhu, C; Zhu, H; Zhu, L; Zhu, Y; Zitzmann, N; Zou, L; Zou, Y, 2022)
"The pretreatment of hUC-MSCs with melatonin partly boosted cell efficiency and thereby alleviated impaired glycemic control and insulin resistance."4.12Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway. ( Aierken, A; Cheng, X; Du, X; Enkhbaatar, BB; He, X; Hua, J; Jia, W; Kou, Z; Li, B; Li, N; Liu, P; Peng, S; Shen, Q; Tan, N; Wang, C; Wang, R; Wu, X; Yu, S; Zhang, J; Zhang, M; Zhang, R, 2022)
"Recent evidence suggests that diabetic retinopathy (DR) is associated with abnormal melatonin regulation, possibly related to dysfunction of the melanopsin-expressing intrinsically photosensitive retinal ganglion cells."4.02Sleep variability, 6-sulfatoxymelatonin, and diabetic retinopathy. ( Chailurkit, LO; Chirakalwasan, N; Gerber, BS; Nimitphong, H; Pinyopodjanard, S; Reutrakul, S; Saetung, S; Sirisreetreerux, S; Sujirakul, T, 2021)
" The aim of this study was to determine the association between urinary 6-sulfatoxymelatonin, which is a urinary metabolite of melatonin, and diabetic vascular complications or arteriosclerosis in patients with type 2 diabetes."4.02Associations between urinary 6-sulfatoxymelatonin excretion and diabetic vascular complications or arteriosclerosis in patients with type 2 diabetes. ( Maiko, H; Mori, H; Okada, Y; Tanaka, K; Tanaka, Y, 2021)
" This is due to hyperglycemia, the higher prevalence of sleep disorders and also the low levels of melatonin, a substance with anti-inflammatory actions, in these patients."4.02Possible role of exogenous melatonin in preventing more serious COVID-19 infection in patients with type 2 diabetes mellitus. ( Martorina, WJ; Tavares, A, 2021)
"Melatonin can be considered as a promising solution in preventing neuroinflammation development in T2DM owing to its ability to render the oxidative stress and accompanied low-grade systemic inflammation."3.96Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression. ( Elguindy, NM; Hashem, HM; Maher, AM; Saleh, SR; Yacout, GA, 2020)
"Both aero-bic exercise and melatonin can improve diabetic osteoporosis, and the effect of both joint intervention is more significant, it may be associated with oxidative stress by increasing the ability of diabetic rats, regulate glucose metabolism in order to effectively reduce the calcium and PTH, improve BMD to alleviate osteoporosis."3.85[Effects of aerobic exercise combined with melatonin on osteoporosis of type II diabetic rats]. ( Jing, HF; Wang, XM, 2017)
"Melatonin supplementation in combination with exercise behavior may ameliorate IR, hypertension and exercise performance or fatigue possibly by improving antioxidative activities, hyperlipidemia, inflammatory cytokines via up-regulation of GLUT4, PGC-1 α and mitochondrial biogenesis in T2DM rats."3.85Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. ( Go, HK; Kim, DH; Kim, MJ; Kwon, HS; Oak, MH; Rahman, MM, 2017)
"The effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 (lymphatic vessel endothelial hyaluronan receptor) in the liver were studied in db/db mice with experimental obesity and type 2 diabetes mellitus."3.83Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus. ( Arkhipov, SA; Ishchenko, IY; Klimontov, VV; Konenkov, VI; Michurina, SV; Rachkovskaya, LN; Zavyalov, EL, 2016)
"The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM)."3.78Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. ( Agil, A; Fernández-Vázquez, G; Figueroa, A; Rosado, I; Ruiz, R; Zen, N, 2012)
"Glycemic variability in patients with type 2 diabetes mellitus (T2DM) may be associated with chronic complications of the disease."3.30Glycemic Variability in Patients with Type 2 Diabetes Mellitus (T2DM): The Role of Melatonin in a Crossover, Double-Blind, Placebo-Controlled, Randomized Study. ( Martorina, W; Tavares, A, 2023)
"Melatonin serum levels were 3."3.11Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial. ( Baraza, JC; Dashti, HS; Florez, JC; Garaulet, M; Hernández-Martínez, AM; Lopez-Minguez, J; Pérez-Ayala, M; Saxena, R; Scheer, FAJL; Vetter, C; Wang, W, 2022)
"Seventeen male participants with type 2 diabetes completed (1) 3 months of daily melatonin treatment (10 mg) 1 h before bedtime (M) and (2) 3 months of placebo treatment 1 h before bedtime (P)."3.11Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo-controlled crossover trial. ( Christensen, LL; Jessen, N; Kampmann, U; Lauritzen, ES; Møller, N; Pedersen, MGB; Støy, J, 2022)
"Melatonin was also well tolerated."3.01Adjuvant use of melatonin for relieving symptoms of painful diabetic neuropathy: results of a randomized, double-blinded, controlled trial. ( Mehrpooya, M; Mohammadi, Y; Sajedi, F; Shokri, M, 2021)
"Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood."2.82Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. ( Chen, J; Dong, K; Fan, R; Ma, D; Peng, X; Shi, X; Xie, L; Xu, W; Yang, Y; Yu, X; Zhang, S, 2022)
"Melatonin has been suggested to have a role in glucose metabolism, yet the results across studies have been inconsistent."2.72Effects of Melatonin Supplementation on Insulin Levels and Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ( Li, Y; Xu, Z, 2021)
"The prevalence of type 2 diabetes is increased in individuals with mental disorders."2.72Interventions for preventing type 2 diabetes in adults with mental disorders in low- and middle-income countries. ( Ajjan, RA; Al Azdi, Z; Aslam, F; Churchill, R; Mishu, MP; Philip, S; Siddiqi, N; Stubbs, B; Tirbhowan, N; Uphoff, E; Wright, J, 2021)
"Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes."2.66The roles of melatonin on kidney injury in obese and diabetic conditions. ( Lungkaphin, A; Promsan, S, 2020)
" Despite intensive investigation, there is considerable confusion and seemingly conflicting data on the metabolic effects of melatonin and MTNR1B variation, and disagreement on whether melatonin is metabolically beneficial or deleterious, a crucial issue for melatonin agonist/antagonist drug development and dosing time."2.66Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. ( Arendt, J; Florez, JC; Garaulet, M; Qian, J; Saxena, R; Scheer, FAJL, 2020)
"Individuals with type 2 diabetes mellitus have lower night-time serum melatonin levels and increased risk of comorbid sleep disturbances compared with healthy individuals."2.55Chronomedicine and type 2 diabetes: shining some light on melatonin. ( Forrestel, AC; Miedlich, SU; Sellix, MT; Wittlin, SD; Yurcheshen, M, 2017)
"The incidence of both type 2 diabetes (T2DM) and cancer is increasing worldwide, making these diseases a global health problem along with increasing healthcare expenditures."2.55Melatonin as a Pleiotropic Molecule with Therapeutic Potential for Type 2 Diabetes and Cancer. ( Cypryk, K; Krawczyk, M; Wojcik, M; Wojcik, P; Wozniak, LA, 2017)
"Melatonin is a multifunctional indoleamine which counteracts several pathophysiologic steps and displays significant beneficial effects against hyperglycemia-induced cellular toxicity."2.48Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state. ( Korkmaz, A; Ma, S; Reiter, RJ; Rosales-Corral, S; Tan, DX; Topal, T, 2012)
"Type 2 diabetes is a metabolic disease, which frequency increases substantially with age."2.46[Melatonin and oxidative stress in elderly patients with type 2 diabetes]. ( Kedziora, J; Kedziora-Kornatowska, K; Kupczyk, D; Rybka, J, 2010)
"The incidence of type 2 diabetes mellitus has markedly increased worldwide over the past decades."2.46Genetic variants in MTNR1B affecting insulin secretion. ( Fritsche, A; Häring, HU; Machicao, F; Müssig, K; Staiger, H, 2010)
"Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD."2.40GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus. ( Das, UN, 1999)
"Finally, hemodynamic index changes, infarct size, CK-MB levels, mitochondrial functional endpoints, and expression of mitochondrial biogenesis genes (SIRT-1/PGC-1α/NRF-2/TFAM) were assessed."1.91Melatonin/nicotinamide mononucleotide/ubiquinol: a cocktail providing superior cardioprotection against ischemia/reperfusion injury in a common co-morbidities modelled rat. ( Badalzadeh, R; Chodari, L; Ghaffari, S; Høilund-Carlsen, PF; Mokhtari, B; Yasami, M, 2023)
"The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates."1.72Melatonin Inhibits hIAPP Oligomerization by Preventing β-Sheet and Hydrogen Bond Formation of the Amyloidogenic Region Revealed by Replica-Exchange Molecular Dynamics Simulation. ( Qian, Z; Song, X; Wang, G; Zhang, Q; Zhu, X, 2022)
"Individuals with type 2 diabetes (cases) and healthy individuals (controls) (n=2034) were recruited from a cross-sectional study and were matched for age and sex in a case-control study."1.72Gut microbiota mediate melatonin signalling in association with type 2 diabetes. ( An, Z; Chen, W; Deng, Y; Gao, Y; He, Z; Hu, Q; Huang, X; Lin, R; Lv, Y; Mo, Z; Qiu, Y; Wang, X; Zhang, H; Zhou, R, 2022)
"People with type 2 diabetes (T2D) suffer from sleep disorders, with the mechanism not clearly understood."1.62Supplemental light exposure improves sleep architecture in people with type 2 diabetes. ( Adhikari, P; Feigl, B; Pradhan, A; Zele, AJ, 2021)
"Melatonin level was evaluated by measuring 24-hour urine 6-sulfatoxymelatonin levels."1.62Presence of Peripheral Neuropathy Does Not Affect Urine 6-Sulfatoxymelatonin Levels in Type 2 Diabetics. ( Cakin, S; Karakılıç, E; Kurt, K; Ocak, O, 2021)
"Melatonin was decreased (124."1.48Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. ( Brković, B; DJukić, L; DŽeletović, B; Milašin, J; Milosavljević, A; Roganović, J; Toljić, B, 2018)
"Melatonin was estimated from plasma samples by ELISA."1.48Association of melatonin &MTNR1B variants with type 2 diabetes in Gujarat population. ( Begum, R; Palit, SP; Patel, R; Ramachandran, AV; Rathwa, N, 2018)
"Obstructive sleep apnea was diagnosed using an ambulatory device."1.46Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. ( Chailurkit, LO; Chirakalwasan, N; Nimitphong, H; Ongphiphadhanakul, B; Reutrakul, S; Saetung, S; Siwasaranond, N; Srijaruskul, K; Thakkinstian, A, 2017)
"The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation."1.43Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology. ( Aeschbach, D; Anderson, C; Bjonnes, AC; Buxton, OM; Cade, BE; Cain, SW; Chang, AM; Czeisler, CA; Duffy, JF; Gharib, SA; Gooley, JJ; Gottlieb, DJ; Grant, SF; Klerman, EB; Lane, JM; Lauderdale, DS; Lockley, SW; Munch, M; Patel, S; Punjabi, NM; Rajaratnam, SM; Redline, S; Rueger, M; Santhi, N; Saxena, R; Scheer, FA; Scheuermaier, K; Shea, SA; St Hilaire, MA; Van Reen, E; Zee, PC, 2016)
"Melatonin was administered (10 mg/kg/day) by gavage for 24 weeks."1.43Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation. ( Fan, T; Gui, S; Hu, R; Su, H; Tang, S; Wang, Y; Yang, X; Zhou, Q; Zou, D; Zuo, L, 2016)
"Melatonin treatment in a human recall-by-genotype study reduced insulin secretion and raised glucose levels more extensively in risk G-allele carriers."1.43Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. ( Alenkvist, I; Almgren, P; Asplund, O; Bennet, H; Fadista, J; Fex, M; Forsén, T; Groop, L; Hakaste, L; Isomaa, B; Martikainen, S; Mulder, H; Nagorny, CLF; Östman, B; Pesonen, AK; Räikkönen, K; Shcherbina, L; Singh, P; Söderström, J; Storm, P; Tengholm, A; Tuomi, T; Wierup, N; Yu, Q, 2016)
"Type 2 diabetes mellitus is often complicated by osteoporosis, a process which may involve osteoblast autophagy."1.43Melatonin suppresses autophagy in type 2 diabetic osteoporosis. ( Liu, F; Liu, JH; Meng, HZ; Shi, PX; Sun, GH; Yang, B; Yang, MW; Yang, RF; Zhang, WL, 2016)
"Melatonin plays a protective role in type 2 diabetes (T2D) through regulation of glucose metabolism."1.42Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats. ( Li, S; McCabe, MF; Rong, P; Wang, S; Wang, X; Zhai, X, 2015)
"Melatonin is a powerful antioxidant."1.40Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes. ( Cao, H; Chen, W; Lu, QY; Wang, N; Xu, X; Zhao, SZ; Zheng, Z, 2014)
"It plays a key role in type 1 and type 2 diabetes."1.39Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice. ( Fischer, C; Korf, HW; Shalabi, A; von Gall, C, 2013)
"Melatonin has a protective role in type 2 diabetes; however, its synthesis itself is affected in the disease."1.36Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats. ( Bach, AG; Mühlbauer, E; Peschke, E, 2010)
"Melatonin was given daily during the dark period for 12 hr."1.36Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. ( Mühlbauer, E; Peschke, E; Schucht, H, 2010)
"Melatonin administration in NIDDM patients resulted in a significant increase in the morning melatonin concentration and SOD-1 activity, and a reduction in the MDA level and Cp oxidase activity."1.35Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. ( Bartosz, G; Czuczejko, J; Kedziora, J; Kedziora-Kornatowska, K; Kornatowski, T; Kozakiewicz, M; Pawluk, H; Szewczyk-Golec, K, 2009)
"Melatonin dynamics were re-evaluated with respect to autonomic nervous system in diabetic patients with autonomic neuropathy who were diagnosed by the cardiovascular reflex tests, heart rate variability (HRV), and 24-hr blood pressure monitoring."1.33Melatonin levels decrease in type 2 diabetic patients with cardiac autonomic neuropathy. ( Aksoyek, S; Batur, MK; Deger, A; Erbas, B; Erbas, T; Kabakci, G; Koray, Z; Tutuncu, NB; Tutuncu, T; Yildirir, A, 2005)
"Melatonin plays several important physiological functions in mammals, such as immune enhancement and regulation of dark-light signal transduction."1.32The effect of melatonin on antioxidant enzymes in human diabetic skin fibroblasts. ( Bryszewska, M; Kilańczyk, E, 2003)
"Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD."1.30GLUT-4, tumour necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus, and longevity. ( Das, UN, 1999)

Research

Studies (139)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (2.16)18.2507
2000's12 (8.63)29.6817
2010's71 (51.08)24.3611
2020's53 (38.13)2.80

Authors

AuthorsStudies
Li, Y10
Xu, Z1
Li, X11
He, J1
Zhou, Y1
Cai, S1
Xue, P1
Tan, X1
Wu, J1
Tang, X1
Benedict, C1
Huang, K1
Luo, X1
Zhong, Y1
Deng, L2
Feng, J2
Patel, R3
Parmar, N2
Pramanik Palit, S1
Rathwa, N3
Ramachandran, AV2
Begum, R3
Nikolaev, G1
Robeva, R1
Konakchieva, R1
Peng, X2
Fan, R2
Xie, L2
Shi, X2
Dong, K2
Zhang, S2
Tao, J1
Xu, W2
Ma, D2
Chen, J4
Yang, Y6
Garaulet, M3
Lopez-Minguez, J1
Dashti, HS1
Vetter, C1
Hernández-Martínez, AM1
Pérez-Ayala, M1
Baraza, JC1
Wang, W1
Florez, JC2
Scheer, FAJL3
Saxena, R4
Shen, S2
Liao, Q1
Wong, YK1
Chen, X3
Yang, C3
Xu, C1
Sun, J3
Wang, J7
Park, J1
Kim, J2
Yun, Y1
Han, DH1
Kim, K1
Hong, J1
Cho, S1
Aierken, A1
Li, B2
Liu, P1
Cheng, X1
Kou, Z1
Tan, N1
Zhang, M2
Yu, S2
Shen, Q1
Du, X1
Enkhbaatar, BB1
Zhang, J3
Zhang, R3
Wu, X1
Wang, R1
He, X1
Li, N2
Peng, S2
Jia, W1
Wang, C1
Hua, J1
Lauritzen, ES2
Kampmann, U2
Pedersen, MGB1
Christensen, LL1
Jessen, N1
Møller, N1
Støy, J2
Parravano, M1
Eandi, CM1
Figus, M1
Lupidi, M1
Menchini, F1
Nicolo, M1
Parisi, V1
Toto, L1
Viola, F1
Vujosevic, S1
Querques, G1
Gheban, BA1
Colosi, HA1
Gheban-Roșca, IA1
Georgiu, C1
Gheban, D1
Crișan, D1
Crișan, M1
Theofilis, P1
Vordoni, A1
Kalaitzidis, RG1
Huang, X1
Qiu, Y2
Gao, Y2
Zhou, R1
Hu, Q1
He, Z1
Lv, Y1
Wang, X4
Chen, W2
Deng, Y1
An, Z1
Zhang, H1
Mo, Z1
Lin, R1
Yu, X2
Wang, G1
Zhu, X1
Song, X1
Zhang, Q2
Qian, Z1
Maity, J3
Dey, T3
Banerjee, A3
Chattopadhyay, A3
Das, AR3
Bandyopadhyay, D3
Su, S2
Zhao, Q3
Dan, L2
Lin, Y3
Zhang, Y8
Dong, Y3
Regazzi, R2
Sun, C2
Chu, X2
Lu, H3
Palit, SP2
Ilić, J1
Milosavljević, A2
Lazarević, M1
Milošević Marković, M1
Milašin, J3
Vučetić, M1
Chaurasia, A1
Miletić, V1
Roganović, J3
Mokhtari, B1
Høilund-Carlsen, PF1
Chodari, L1
Yasami, M1
Badalzadeh, R1
Ghaffari, S1
Zhu, H4
Zhao, ZJ2
Liu, HY2
Cai, J1
Lu, QK1
Ji, LD2
Xu, J2
Xia, AY1
Wang, PH1
Böhm, A1
Lauko, V1
Dostalova, K1
Balanova, I1
Varga, I1
Bezak, B1
Jajcay, N1
Moravcik, R1
Lazurova, L1
Slezak, P1
Mojto, V1
Kollarova, M1
Petrikova, K1
Danova, K1
Zeman, M1
Amin, M1
Gragnoli, C1
Song, Z1
Yan, C1
Zhan, Y1
Wang, Q1
Jiang, T1
Watanabe, K1
Nakano, M1
Maruyama, Y1
Hirayama, J1
Suzuki, N1
Hattori, A1
Zhang, YZ1
Xin, C1
Zhang, ZX1
Zhang, KQ1
Li, L2
Rong, PJ1
Li, SY1
Martorina, W1
Tavares, A2
Wilson, JB1
Epstein, M1
Lopez, B1
Brown, AK1
Lutfy, K1
Friedman, TC1
Roberts, FL1
Cataldo, LR1
Fex, M2
Barać, M1
Petrović, M1
Petrović, N1
Nikolić-Jakoba, N1
Aleksić, Z1
Todorović, L1
Petrović-Stanojević, N1
Anđelić-Jelić, M1
Davidović, A1
Luo, N1
Wang, Y7
Ma, Y1
Liu, Y3
Liu, Z1
Park, JH1
Seo, I1
Shim, HM1
Cho, H1
Qian, J2
Arendt, J1
Reutrakul, S3
Crowley, SJ1
Park, JC1
Chau, FY1
Priyadarshini, M1
Hanlon, EC1
Danielson, KK1
Gerber, BS2
Baynard, T1
Yeh, JJ1
McAnany, JJ1
Maher, AM1
Saleh, SR1
Elguindy, NM1
Hashem, HM1
Yacout, GA1
Promsan, S1
Lungkaphin, A1
Nese, M1
Riboli, G1
Brighetti, G1
Sassi, V1
Camela, E1
Caselli, G1
Sassaroli, S1
Borlimi, R1
Aucoin, M1
Cooley, K1
Saunders, PR1
Carè, J1
Anheyer, D1
Medina, DN1
Cardozo, V1
Remy, D1
Hannan, N1
Garber, A1
Velayos, M1
Muñoz-Serrano, AJ1
Estefanía-Fernández, K1
Sarmiento Caldas, MC1
Moratilla Lapeña, L1
López-Santamaría, M1
López-Gutiérrez, JC1
Li, J1
Zhang, B2
Yu, WW1
Toyoda, H1
Huang, DQ1
Le, MH1
Nguyen, MH1
Huang, R1
Zhu, L2
Xue, L1
Liu, L2
Yan, X2
Huang, S1
Xu, T1
Li, C4
Ji, F1
Ming, F1
Zhao, Y2
Cheng, J1
Zhao, H1
Hong, S1
Chen, K2
Zhao, XA1
Zou, L1
Sang, D1
Shao, H1
Guan, X1
Chen, Y4
Wei, J1
Zhu, C1
Wu, C1
Moore, HB1
Barrett, CD1
Moore, EE1
Jhunjhunwala, R1
McIntyre, RC1
Moore, PK1
Hajizadeh, N1
Talmor, DS1
Sauaia, A1
Yaffe, MB1
Liu, C3
Wu, Y1
Bao, Y1
Yan, H2
Ma, J1
Fernández-Cuadros, ME1
Albaladejo-Florín, MJ1
Álava-Rabasa, S1
Usandizaga-Elio, I1
Martinez-Quintanilla Jimenez, D1
Peña-Lora, D1
Neira-Borrajo, I1
López-Muñoz, MJ1
Rodríguez-de-Cía, J1
Pérez-Moro, OS1
Abdallah, M1
Alsaleh, H1
Baradwan, A1
Alfawares, R1
Alobaid, A1
Rasheed, A1
Soliman, I1
Wendel Garcia, PD1
Fumeaux, T1
Guerci, P1
Heuberger, DM1
Montomoli, J2
Roche-Campo, F1
Schuepbach, RA1
Hilty, MP1
Poloni, TE1
Carlos, AF1
Cairati, M1
Cutaia, C1
Medici, V1
Marelli, E1
Ferrari, D1
Galli, A1
Bognetti, P1
Davin, A1
Cirrincione, A1
Ceretti, A1
Cereda, C1
Ceroni, M1
Tronconi, L1
Vitali, S1
Guaita, A1
Leeds, JS1
Raviprakash, V1
Jacques, T1
Scanlon, N1
Cundall, J1
Leeds, CM1
Riva, A1
Gray, EH1
Azarian, S1
Zamalloa, A1
McPhail, MJW1
Vincent, RP1
Williams, R1
Chokshi, S1
Patel, VC1
Edwards, LA1
Alqarawi, W1
Birnie, DH1
Golian, M1
Nair, GM1
Nery, PB1
Klein, A1
Davis, DR1
Sadek, MM1
Neilipovitz, D1
Johnson, CB1
Green, MS1
Redpath, C1
Miller, DC1
Beamer, P1
Billheimer, D1
Subbian, V1
Sorooshian, A1
Campbell, BS1
Mosier, JM1
Novaretti, JV1
Astur, DC1
Cavalcante, ELB1
Kaleka, CC1
Amaro, JT1
Cohen, M1
Huang, W1
Li, T1
Ling, Y1
Qian, ZP1
Zhang, YY1
Huang, D1
Xu, SB1
Liu, XH1
Xia, L1
Lu, SH1
Lu, HZ1
Ma, JX1
Tang, S2
Li, CM1
Wan, J1
Wang, JF1
Ma, JQ1
Luo, JJ1
Chen, HY2
Mi, SL1
Chen, SY1
Su, YG1
Ge, JB1
Milheiro, SA1
Gonçalves, J1
Lopes, RMRM1
Madureira, M1
Lobo, L1
Lopes, A1
Nogueira, F1
Fontinha, D1
Prudêncio, M1
M Piedade, MF1
Pinto, SN1
Florindo, PR1
Moreira, R1
Castillo-Lora, J1
Delley, MF1
Laga, SM1
Mayer, JM1
Sutjarit, N1
Thongon, N1
Weerachayaphorn, J1
Piyachaturawat, P1
Suksamrarn, A1
Suksen, K1
Papachristou, DJ1
Blair, HC1
Hu, Y1
Shen, P1
Zeng, N1
Wang, L3
Yan, D1
Cui, L1
Yang, K2
Zhai, C1
Yang, M1
Lao, X1
Ma, N1
Wang, S2
Ye, W1
Guo, P1
Rahimi, S1
Singh, MP1
Gupta, J1
Nakanishi, I1
Ohkubo, K1
Shoji, Y1
Fujitaka, Y1
Shimoda, K1
Matsumoto, KI1
Fukuhara, K1
Hamada, H1
van der Boom, T1
Gruppen, EG1
Lefrandt, JD1
Connelly, MA1
Links, TP1
Dullaart, RPF1
Berry, JD1
Bedlack, R1
Mathews, D1
Agnese, W1
Apple, S1
Meloncelli, S1
Divizia, M1
Germani, G1
Adefegha, SA1
Bottari, NB1
Leal, DB1
de Andrade, CM1
Schetinger, MR1
Martínez-Velasco, A1
Perez-Ortiz, AC1
Antonio-Aguirre, B1
Martínez-Villaseñor, L1
Lira-Romero, E1
Palacio-Pastrana, C1
Zenteno, JC1
Ramirez, I1
Zepeda-Palacio, C1
Mendoza-Velásquez, C1
Camacho-Ordóñez, A1
Ortiz Bibriesca, DM1
Estrada-Mena, FJ1
Martin, BL1
Thompson, LC1
Kim, YH2
Snow, SJ1
Schladweiler, MC1
Phillips, P1
Harmon, M1
King, C1
Richards, J1
George, I1
Haykal-Coates, N1
Gilmour, MI1
Kodavanti, UP1
Hazari, MS1
Farraj, AK1
Shen, Z1
Zou, Y1
Gao, K1
Lazar, S1
Wurtzel, JGT1
Ma, P1
Goldfinger, LE1
Vukelic, M1
Laloo, A1
Kyttaris, VC1
Chen, R1
Xun, J1
Hu, Z1
Huang, Q2
Steinhart, C1
Shen, Y1
Mansuri, A1
Lokhande, K1
Kore, S1
Gaikwad, S1
Nawani, N1
Swamy, KV1
Junnarkar, M1
Pawar, S1
Shaheen, MY1
Basudan, AM1
Niazy, AA1
van den Beucken, JJJP1
Jansen, JA1
Alghamdi, HS1
Gao, Q2
Guo, X1
Cao, Y1
Jia, X1
Xu, S2
Lu, C2
Melku, M1
Abebe, G1
Teketel, A1
Asrie, F1
Yalew, A1
Biadgo, B1
Kassa, E1
Damtie, D1
Anlay, DZ1
Ahmed, MFE1
Ramadan, H1
Seinige, D1
Kehrenberg, C1
Abd El-Wahab, A1
Volkmann, N1
Kemper, N1
Schulz, J1
Hu, MY1
Wu, YN1
McEvoy, MP1
Wang, YF1
Cong, WL1
Liu, LP1
Li, XX1
Zhou, CL1
Chen, WM1
Wei, KL1
Tung, SY1
Shen, CH1
Chang, TS1
Yen, CW1
Hsieh, YY1
Chiu, WN1
Hu, JH1
Lu, SN1
Hung, CH1
Alakavuklar, MA1
Fuqua, C1
Luo, KL1
Underwood, RS1
Greenwald, I1
Elashiry, MM1
Elashiry, M1
Zeitoun, R1
Elsayed, R1
Tian, F1
Saber, SE1
Elashry, SH1
Tay, FR1
Cutler, CW1
O'Dowd, A1
Maciel, M1
Poole, ST1
Jobling, MG1
Rollenhagen, JE1
Woods, CM1
Sincock, SA1
McVeigh, AL1
Gregory, MJ1
Maves, RC1
Prouty, MG1
Holmes, RK1
Savarino, SJ1
Mor, MK1
Palevsky, PM1
Kaufman, JS1
Thiessen Philbrook, H1
Weisbord, SD1
Parikh, CR1
John, CM1
Phillips, NJ1
Jarvis, GA1
Zhu, Y1
Kilburn, S1
Kapoor, M1
Chaturvedi, S1
Shaw, KJ1
Chaturvedi, V1
Kong, X1
Zhang, T1
Xiao, H1
Feng, X1
Tu, H1
Sabet, M1
Tarazi, Z1
Griffith, DC1
Nguyen, F1
Guan, P1
Guerrero, DT1
Kolla, V1
Naraparaju, K1
Perry, LM1
Soberman, D1
Pressly, BB1
Alferiev, IS1
Chorny, M1
Brodeur, GM1
Gao, X2
Cheng, YH1
Enten, GA1
DeSantis, AJ1
Gaponenko, V1
Majetschak, M1
Kim, DY1
Choi, MJ1
Ko, TK1
Lee, NH1
Kim, OH1
Cheon, HG1
Cai, H1
Yip, V1
Lee, MV1
Wong, S1
Saad, O1
Ma, S2
Ljumanovic, N1
Khojasteh, SC1
Kamath, AV1
Shen, BQ1
Cuypers, ML1
Chanteux, H1
Gillent, E1
Bonnaillie, P1
Saunders, K1
Beckers, C1
Delatour, C1
Dell'Aiera, S1
Ungell, AL1
Nicolaï, J1
Knapp, AK1
Chen, A1
Griffin-Nolan, RJ1
Baur, LE1
Carroll, CJW1
Gray, JE1
Hoffman, AM1
Post, AK1
Slette, IJ1
Collins, SL1
Luo, Y1
Smith, MD1
Temitayo, GI1
Olawande, B1
Emmanuel, YO1
Timothy, AT1
Kehinde, O1
Susan, LF1
Ezra, L1
Joseph, OO1
Lev, S1
Desmarini, D1
Liuwantara, D1
Sorrell, TC1
Hawthorne, WJ1
Djordjevic, JT1
Verso, MG1
Costantino, C1
Marrella, A1
Immordino, P1
Vitale, F1
Amodio, E1
Wang, YD1
Yao, WL1
Xin, ZM1
Han, TT1
Wang, ZG1
Chen, L1
Cai, C1
Ba, D1
Wen, S1
Tian, Q1
Lv, W1
Cheng, G1
Yue, XY1
Chu, WJ1
Chen, Q1
Choi, ES1
Zhao, X3
Zhou, HD1
Sun, XF1
Sharma, S3
Chhoker, S1
Xie, C1
Ong, EWY1
Tan, ZK1
Evans, S1
Weinheimer, CJ1
Kovacs, A1
Williams, JW1
Randolph, GJ1
Jiang, W1
Barger, PM1
Mann, DL1
Liu, J2
Huang, Y1
Kong, L1
Feng, B1
Liu, D1
Zhao, B1
Mendes, GC1
Yuan, P1
Ge, D1
Wang, WM1
Fontes, EPB1
Li, P1
Shan, L1
He, P1
Katoh, T1
Sengoku, T1
Hirata, K1
Ogata, K1
Suga, H1
Shun, C1
Yong-Yi, J1
Mei-Li, C1
Shi-Li, L1
Jian-Bo, Z1
Dan-Li, W1
Zhi-Min, G1
Ibrahim, AM1
Zakhary, SY1
Amin, SAW1
Ugurlu, M1
Fornari, VJ1
Hartmann, MSM1
Vanni, JR1
Rodriguez, R1
Langaro, MC1
Pelepenko, LE1
Zaia, AA1
Nakanjako, D1
Zalwango, F1
Wairagala, P1
Luboga, F1
Andia Biraro, I1
Bukirwa, VD1
Mboowa, MG1
Cose, S1
Seeley, J1
Elliott, A1
Zhao, G1
Sun, P1
Hao, S2
Qu, G1
Xing, Y1
Xu, X2
Maierhofer, M1
Rieger, V1
Mayr, T1
Bigliardi, AP1
Fernandes, CLF1
Pinto, EA1
Dos Santos, M1
Garcia, EM1
Baisch, PRM1
Soares, MCF1
Muccillo-Baisch, AL1
da Silva Júnior, FMR1
Yu, W1
Ju, C1
Wang, K1
Zheng, Z2
Liu, H1
Martínez-Navarro, EM1
Cebrián-Tarancón, C1
Moratalla-López, N1
Lorenzo, C1
Alonso, GL1
Salinas, RM1
Bermúdez de Castro, JM1
Modesto-Mata, M1
Martín-Francés, L1
García-Campos, C1
Martínez de Pinillos, M1
Martinón-Torres, M1
Hasani, M1
Wu, F2
Warriner, K1
Kurz, M1
Gretzke, D1
Hörlein, R1
Turpault, S1
Atzrodt, J1
Derdau, V1
Yao, Y1
Ou, X1
Zhao, S1
Tian, B1
Jin, S1
Jiang, Z1
Zhou, Z1
Liu, M2
Jiang, GD1
Mou, LH1
Chen, JJ1
Li, ZY1
He, SG1
Reale, E1
Fustinoni, S1
Mercadante, R1
Polledri, E1
Hopf, NB1
Grant, PC1
Levy, K1
Lattimer, TA1
Depner, RM1
Kerr, CW1
Sato, J1
Merenda, MEZ1
Uemoto, AT1
Dos Santos, MP1
Barion, MRL1
Carciofi, AC1
de Paula Dorigam, JC1
Ribeiro, LB1
Vasconcellos, RS1
Waller, SB1
Peter, CM1
Hoffmann, JF1
Cleff, MB1
Faria de, RO1
Zani, JL1
Martins, BA1
Sande, D1
Solares, MD1
Takahashi, JA1
Yang, S2
Jia, Y1
Yin, C1
Zhao, R1
Ojha, M1
Wu, B1
Deepa, M1
Mo, J1
Au, DW1
Wan, MT1
Shi, J1
Zhang, G1
Winkler, C1
Kong, RY1
Seemann, F1
Bianco, M1
Calvano, CD1
Ventura, G1
Bianco, G1
Losito, I1
Cataldi, TRI1
Angiolella, L1
Staudt, A1
Duarte, PF1
Amaral, BPD1
Peixoto Andrade, BCO1
Simas, NK1
Correa Ramos Leal, I1
Sangenito, LS1
Santos, ALSD1
de Oliveira, D1
Junges, A1
Cansian, RL1
Paroul, N1
Siu, J1
Klingler, L1
Hung, CT1
Jeong, SH1
Smith, S1
Tingle, MD1
Wagner Mackenzie, B1
Biswas, K1
Douglas, RG1
Oza, AM1
Lorusso, D1
Aghajanian, C1
Oaknin, A1
Dean, A1
Colombo, N1
Weberpals, JI1
Clamp, AR1
Scambia, G1
Leary, A1
Holloway, RW1
Gancedo, MA1
Fong, PC1
Goh, JC1
O'Malley, DM1
Armstrong, DK1
Banerjee, S1
García-Donas, J1
Swisher, EM1
Cella, D1
Meunier, J1
Goble, S1
Cameron, T1
Maloney, L1
Mörk, AC1
Bedel, J1
Ledermann, JA1
Coleman, RL1
Vlek, SL1
Burm, R1
Govers, TM1
Vleugels, MPH1
Tuynman, JB1
Mijatovic, V1
Leicht, AS1
Connor, J1
Conduit, N1
Vaquera, A1
Gómez, MA1
McKay, JA1
Church, AL1
Rubin, N1
Emory, TH1
Hoven, NF1
Kuehn-Hajder, JE1
Nelson, MT1
Ramanna, S1
Auerbach, EJ1
Moeller, S1
Bolan, PJ1
Fox, NP1
Leonard, M1
Sjerps, MJ1
Chang, EF1
Hyun, S1
Saejio, A1
Shanmugam, S1
Liu, X1
Sun, M1
Bai, Z1
Jaque-Fernandez, F1
Beaulant, A1
Berthier, C1
Monteiro, L1
Allard, B1
Casas, M1
Rieusset, J1
Jacquemond, V1
Góngora-García, OR1
Aca-Aca, G1
Baz-Rodríguez, SA1
Monte, A1
Maganaris, C1
Baltzopoulos, V1
Zamparo, P1
Wang, Z3
Hou, Y1
Cai, L1
Tu, YJ1
Tan, B1
Jiang, L1
Wu, ZH1
Yu, HJ1
Li, XQ1
Yang, AD1
Titze, IR1
Palaparthi, A1
Mau, T1
González, MA1
Goiri, F1
Barandika, JF1
García-Pérez, AL1
Jatt, LP1
Gandhi, MM1
Guo, R1
Sukhija-Cohen, A1
Bhattacharya, D1
Tseng, CH1
Chew, KW1
Onwumere, J1
Pia Tek, J1
Budnyak, T1
Budnyk, S1
Karim, Z1
Thersleff, T1
Kuśtrowski, P1
Mathew, AP1
Slabon, A1
Guo, M1
Zhao, T1
Xing, Z1
Pan, K1
Li, Z2
Zhou, W1
Ghassemi Tabrizi, S1
Arbuznikov, AV1
Jiménez-Hoyos, CA1
Kaupp, M1
Lin, MH2
Bulman, DM1
Remucal, CK1
Chaplin, BP1
Laguerre, A1
George, LA1
Gall, ET1
Emerson, MS1
Wang, H3
Maginn, EJ1
Margulis, CJ1
Li, H2
Feng, W1
Kang, X2
Yan, S1
Chao, M1
Mo, S1
Sun, W1
Lu, Y1
Chen, C1
Stevens, DM1
Adiseshaiah, P1
Dasa, SSK1
Potter, TM1
Skoczen, SL1
Snapp, KS1
Cedrone, E1
Patel, N2
Busman-Sahay, K1
Rosen, EP1
Sykes, C1
Cottrell, M1
Dobrovolskaia, MA1
Estes, JD1
Kashuba, ADM1
Stern, ST1
Özütemiz, C1
Neil, EC1
Tanwar, M1
Rubin, NT1
Ozturk, K1
Cayci, Z1
Duscha, BD1
Kraus, WE1
Jones, WS1
Robbins, JL1
Piner, LW1
Huffman, KM1
Allen, JD1
Annex, BH1
Mehmood, T1
Ahmad, I1
Bibi, S1
Mustafa, B1
Ali, I1
Dahal, RH1
Chaudhary, DK1
Kim, DU1
Yeter, HH1
Gonul, I1
Guz, G1
Helvaci, O1
Korucu, B1
Akcay, OF1
Derici, U1
Arinsoy, T1
Neffati, R1
Judeinstein, P1
Rault, J1
Xu, Y1
Chai, X1
Ren, T1
Fu, Q2
Ye, J1
Ge, X1
Song, J1
Yang, H2
El-Baba, TJ1
Lutomski, CA1
Kantsadi, AL1
Malla, TR1
John, T1
Mikhailov, V1
Bolla, JR1
Schofield, CJ1
Zitzmann, N1
Vakonakis, I1
Robinson, CV1
Langham, MC1
Caporale, AS1
Wehrli, FW1
Parry, S1
Schwartz, N1
den Boer, RB1
Jones, KI1
Ash, S1
van Boxel, GI1
Gillies, RS1
O'Donnell, T1
Ruurda, JP1
Sgromo, B1
Silva, MA1
Maynard, ND1
Sivieri, EM1
Eichenwald, EC1
Rub, D1
Abbasi, S1
Krahnert, I1
Bolze, A1
Gibon, Y1
Fernie, AR1
Huang, L1
Wan, Y1
Dang, Z1
Yang, P1
Yang, Q1
Wu, S2
Lin, CC1
Hsu, CT1
Liu, W3
Huang, SC1
Kortz, U1
Mougharbel, AS1
Chen, TY1
Hu, CW1
Lee, JF1
Wang, CC1
Liao, YF1
Li, LJ1
Stimming, U1
Hebbar Kannur, K1
Yaqub, TB1
Pupier, C1
Héau, C1
Cavaleiro, A1
Yamamoto, S1
Ono, A1
Matsui, J1
Hoshino, N1
Akutagawa, T1
Miyashita, T1
Mitsuishi, M1
Patel, SM1
Smith, TG1
Morton, M1
Stiers, KM1
Seravalli, J1
Mayclin, SJ1
Edwards, TE1
Tanner, JJ1
Becker, DF1
Butcher, TW1
Yang, JL1
Hartwig, JF1
Yu, MF1
Xia, ZZ1
Yao, JC1
Feng, Z1
Li, DH1
Liu, T1
Cheng, GJ1
He, DL1
Li, XH1
Huurman, R1
Schinkel, AFL1
de Jong, PL1
van Slegtenhorst, MA1
Hirsch, A1
Michels, M1
Kataja, A1
Tarvasmäki, T1
Lassus, J1
Sionis, A1
Mebazaa, A1
Pulkki, K1
Banaszewski, M1
Carubelli, V1
Hongisto, M1
Jankowska, E1
Jurkko, R1
Jäntti, T1
Kasztura, M1
Parissis, J1
Sabell, T1
Silva-Cardoso, J1
Spinar, J1
Tolppanen, H1
Harjola, VP1
Carsetti, A1
Damiani, E1
Casarotta, E1
Scorcella, C1
Domizi, R1
Gasparri, F1
Gabbanelli, V1
Pantanetti, S1
Carozza, R1
Adrario, E1
Donati, A1
Almada, E1
Pariani, A1
Rivabella Maknis, T1
Hidalgo, F1
Vena, R1
Favre, C1
Larocca, MC1
Lu, ZY1
Jiang, WD1
Wu, P1
Kuang, SY1
Tang, L1
Yang, J2
Zhou, XQ1
Feng, L1
Leal, M1
Zampini, IC1
Mercado, MI1
Moreno, MA1
Simirgiotis, MJ1
Bórquez, J1
Ponessa, G1
Isla, MI1
Saliu, IO1
Amoo, ZA1
Khan, MF1
Olaleye, MT1
Rema, V1
Akinmoladun, AC1
Khan, AU1
Rahman, AU1
Yuan, Q1
Ahmad, A1
Khan, ZUH1
Mahnashi, MH1
Alyami, BA1
Alqahtani, YS1
Ullah, S1
Wirman, AP1
Gao, M1
Zhang, K1
Wang, M1
Xia, Z1
Gao, D1
Balkissou, AD1
Poka-Mayap, V1
Massongo, M1
Djenabou, A1
Endale-Mangamba, LM1
Olomo, EJ1
Boulleys-Nana, JR1
Diffo-Sonkoue, L1
Adidigue-Ndiome, R1
Alexandra, AJE1
Haman-Wabi, AB1
Adama, S1
Iddi-Faical, A1
Pefura-Yone, EW1
Tong, W1
Ge, C1
Zhao, D1
Norbäck, D1
Zhao, Z1
Huang, C1
Zhang, X2
Qian, H1
Yang, X2
Sun, Y1
Sundell, J1
Deng, Q1
Kim, HJ1
Jeon, JW1
Hwang, SM1
Chu, KI1
Cha, YH1
Kwak, YD1
Choi, SD1
Aslam, M1
Kim, CG1
Zhou, J1
Yang, E1
Yang, W1
Sirisreetreerux, S1
Sujirakul, T1
Nimitphong, H2
Pinyopodjanard, S1
Saetung, S2
Chailurkit, LO2
Chirakalwasan, N2
Lim, MA1
Pranata, R1
Jabłońska, J1
Kluska, M1
Lin, XJ1
Liu, R1
Yi, X1
Fu, B1
Walker, MJ1
Xu, XM1
Sun, G1
Lin, CH1
Lan, NSR1
Yeap, BB1
Fegan, PG1
Green, G1
Rankin, JM1
Dwivedi, G1
Habibi, A1
Karami, S1
Varmira, K1
Hadadi, M1
Li, Q1
Lan, X1
Zheng, J1
Eskandari-Sedighi, G1
Cortez, LM1
Daude, N1
Shmeit, K1
Sim, V1
Westaway, D1
Weigand, S1
O'Connor, M1
Blažek, P1
Kantenwein, V1
Friedrich, L1
Grebmer, C1
Schaarschmidt, C1
von Olshausen, G1
Reents, T1
Deisenhofer, I1
Lennerz, C1
Kolb, C1
Iwata, H1
Sassa, N1
Kato, M1
Murase, Y1
Seko, S1
Kawanishi, H1
Hattori, R1
Gotoh, M1
Tsuzuki, T1
Chen, D1
Chen, YP1
Zhou, M1
Waterhouse, GIN1
Shi, W1
Ai, S1
Manne, ASN1
Hegde, AR1
Raut, SY1
Rao, RR1
Kulkarni, VI1
Mutalik, S1
Jafari, R1
Hectors, SJ1
Koehne de González, AK1
Spincemaille, P1
Prince, MR1
Brittenham, GM1
Yu, LM1
Dong, X1
Xue, XD1
Xu, YL1
Wang, ZS1
Gao, H1
Liang, YX1
Wang, HS1
Tanaka, K1
Okada, Y1
Maiko, H1
Mori, H1
Tanaka, Y1
Anton, DM1
Martu, MA1
Maris, M1
Maftei, GA1
Sufaru, IG1
Tatarciuc, D1
Luchian, I1
Ioanid, N1
Martu, S1
Mishu, MP1
Uphoff, E1
Aslam, F1
Philip, S1
Wright, J2
Tirbhowan, N1
Ajjan, RA1
Al Azdi, Z1
Stubbs, B1
Churchill, R1
Siddiqi, N1
Bazyar, H2
Zare Javid, A2
Bavi Behbahani, H1
Moradi, F1
Moradi Poode, B1
Amiri, P1
Adhikari, P1
Pradhan, A1
Zele, AJ1
Feigl, B1
Kurt, K1
Karakılıç, E1
Ocak, O1
Cakin, S1
Shokri, M1
Sajedi, F1
Mohammadi, Y1
Mehrpooya, M1
Martorina, WJ1
Smedegaard, SB1
Bonnefond, A3
Froguel, P3
Opperhuizen, AL1
Stenvers, DJ1
Jansen, RD1
Foppen, E1
Fliers, E1
Kalsbeek, A1
Catalán, Ú1
Barrubés, L1
Valls, RM1
Solà, R1
Rubió, L1
Rahman, MM1
Kwon, HS1
Kim, MJ1
Go, HK1
Oak, MH1
Kim, DH1
Wojcik, M1
Krawczyk, M1
Wojcik, P1
Cypryk, K1
Wozniak, LA1
Wu, H1
Liu, N1
Cao, X1
Yang, Z1
Lu, B1
Hu, R2
Wen, J1
Isola, M1
Lilliu, MA1
Loy, F1
Isola, R1
Raygan, F1
Ostadmohammadi, V1
Bahmani, F1
Reiter, RJ2
Asemi, Z1
Zemlianitsyna, O1
Polozova, L1
Karachentsev, I1
Sinaiko, V1
Kravchun, N1
Hurley, MJ1
Deacon, RMJ1
Beyer, K1
Ioannou, E1
Ibáñez, A1
Teeling, JL1
Cogram, P1
DJukić, L1
Toljić, B1
DŽeletović, B1
Brković, B1
Espino, J1
Rodríguez, AB1
Pariente, JA1
Al-Sarraf, IAK1
Kasabri, V1
Akour, A1
Naffa, R1
Jing, HF1
Wang, XM1
Karamitri, A3
Plouffe, B1
Chen, M1
Gallion, J1
Guillaume, JL3
Hegron, A2
Boissel, M1
Canouil, M1
Langenberg, C1
Wareham, NJ1
Le Gouill, C1
Lukasheva, V1
Lichtarge, O1
Bouvier, M1
Jockers, R5
Gholinezhad, H1
Moradi, L1
Salehi, P1
Abadi, F1
Ravanbakhsh, M1
Kaisanlahti, A1
Glumoff, T1
Nie, Q1
Chen, H1
Hu, J1
Fan, S1
Nie, S1
Johansson, LC1
Stauch, B1
McCorvy, JD1
Han, GW1
Huang, XP1
Batyuk, A1
Gati, C1
Slocum, ST1
Grandner, JM1
Olsen, RHJ1
Tribo, AR1
Zaare, S1
Zatsepin, NA1
Weierstall, U1
Yous, S1
Stevens, RC1
Roth, BL1
Katritch, V1
Cherezov, V1
McMullan, CJ2
Schernhammer, ES2
Rimm, EB1
Hu, FB1
Forman, JP2
Shalabi, A1
Fischer, C1
Korf, HW1
von Gall, C1
Renault, N1
Clement, N1
Abbott, SM1
Zee, PC2
Kreutzkamp, B1
Lardone, PJ1
Alvarez-Sanchez, SN1
Guerrero, JM1
Carrillo-Vico, A1
Navarro-Alarcon, M3
Ruiz-Ojeda, FJ2
Blanca-Herrera, RM2
Kaki, A1
Adem, A2
Agil, A4
Rybka, J2
Kędziora-Kornatowska, K3
Kupczyk, D2
Muszalik, M1
Kornatowski, M1
Kędziora, J3
Tosini, G1
Owino, S1
Agarkov, AA1
Popova, TN1
Verevkin, AN1
Matasova, LV1
Cao, H1
Lu, QY1
Wang, N1
Zhao, SZ1
She, M1
Laudon, M1
Yin, W1
A-Serrano, MM1
Acuña-Castroviejo, D2
Fernández-Vázquez, G2
Costes, S1
Boss, M1
Thomas, AP1
Matveyenko, AV1
Zhai, X1
Li, S1
McCabe, MF1
Rong, P1
Peschke, E8
Bähr, I1
Mühlbauer, E8
Elmahallawy, EK1
Rodríguez-Ferrer, JM1
Bastaki, SM1
Al-Abbadi, I1
Fino Solano, YA1
Singh, H1
Ahmad, N1
Mishra, P1
Tiwari, A1
Gómez-Abellán, P1
Rubio-Sastre, P1
Madrid, JA1
Scheer, FA2
Salmanoglu, DS1
Gurpinar, T1
Vural, K1
Ekerbicer, N1
Darıverenli, E1
Var, A1
Lane, JM1
Chang, AM1
Bjonnes, AC1
Aeschbach, D1
Anderson, C1
Cade, BE1
Cain, SW1
Czeisler, CA1
Gharib, SA1
Gooley, JJ1
Gottlieb, DJ1
Grant, SF1
Klerman, EB1
Lauderdale, DS1
Lockley, SW1
Munch, M1
Patel, S1
Punjabi, NM1
Rajaratnam, SM1
Rueger, M1
St Hilaire, MA1
Santhi, N1
Scheuermaier, K1
Van Reen, E1
Shea, SA1
Duffy, JF1
Buxton, OM1
Redline, S1
Zou, D1
Fan, T1
Su, H1
Zhou, Q1
Gui, S1
Zuo, L1
Popov, SS1
Pashkov, AN1
Shul'gin, KK1
Tuomi, T1
Nagorny, CLF1
Singh, P1
Bennet, H1
Yu, Q1
Alenkvist, I1
Isomaa, B1
Östman, B1
Söderström, J1
Pesonen, AK1
Martikainen, S1
Räikkönen, K1
Forsén, T1
Hakaste, L1
Almgren, P1
Storm, P1
Asplund, O1
Shcherbina, L1
Fadista, J1
Tengholm, A1
Wierup, N1
Groop, L1
Mulder, H2
Greenhill, C1
Zhang, WL1
Meng, HZ1
Yang, RF1
Yang, MW1
Sun, GH1
Liu, JH1
Shi, PX1
Liu, F1
Yang, B1
Persaud, SJ1
Jones, PM1
Hardeland, R1
Michurina, SV1
Ishchenko, IY1
Arkhipov, SA1
Klimontov, VV1
Rachkovskaya, LN1
Konenkov, VI1
Zavyalov, EL1
Forrestel, AC1
Miedlich, SU1
Yurcheshen, M1
Wittlin, SD1
Sellix, MT1
Maarman, GJ1
Andrew, BM1
Blackhurst, DM1
Ojuka, EO1
Siwasaranond, N1
Srijaruskul, K1
Ongphiphadhanakul, B1
Thakkinstian, A1
Szewczyk-Golec, K1
Kozakiewicz, M1
Pawluk, H1
Czuczejko, J1
Kornatowski, T1
Bartosz, G1
Frese, T2
Bach, AG2
Pönicke, K2
Brömme, HJ1
Welp, A1
Müssig, K1
Staiger, H1
Machicao, F1
Häring, HU1
Fritsche, A1
Schucht, H1
Olsson, L1
Pettersen, E1
Ahlbom, A1
Carlsson, S1
Midthjell, K1
Grill, V1
Rosado, I1
Ruiz, R1
Figueroa, A1
Zen, N1
Hofmann, K1
Wedekind, D1
Korkmaz, A1
Topal, T1
Rosales-Corral, S1
Tan, DX1
Mäntele, S1
Otway, DT1
Middleton, B1
Bretschneider, S1
Robertson, MD1
Skene, DJ1
Johnston, JD1
Salido, EM1
Bordone, M1
De Laurentiis, A1
Chianelli, M1
Keller Sarmiento, MI1
Dorfman, D1
Rosenstein, RE1
Nagorny, C1
Lyssenko, V1
Kilańczyk, E1
Bryszewska, M1
Cutando, A1
Gómez-Moreno, G1
Villalba, J1
Ferrera, MJ1
Escames, G1
Tormo, MA1
Romero de Tejada, A1
Morales, I1
Paredes, S1
Sánchez, S1
Barriga, C1
Hernández, R1
Tutuncu, NB1
Batur, MK1
Yildirir, A1
Tutuncu, T1
Deger, A1
Koray, Z1
Erbas, B1
Kabakci, G1
Aksoyek, S1
Erbas, T1
Chankiewitz, E1
Peschke, D1
Preiss, U1
Schneyer, U1
Spessert, R1
Kadhim, HM1
Ismail, SH2
Hussein, KI2
Bakir, IH1
Sahib, AS2
Khalaf, BH2
Hussain, SA2
Khadim, HM1
Stumpf, I2
Bazwinsky, I1
Litvak, L1
Dralle, H1
Roush, W1
Das, UN2
Nishida, S1
Segawa, T1
Murai, I1
Nakagawa, S1

Clinical Trials (10)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
MTNR1B SNP*Food Timing Interaction on Glucose Control in a Late Eater Mediterranean Population[NCT03036592]1,000 participants (Anticipated)Interventional2017-01-01Recruiting
Effects of Time-Restricted Fasting on the Postprandial Glycemic Responses in Chinese Adults: A Randomized Crossover Study[NCT05913635]36 participants (Actual)Interventional2022-09-01Active, not recruiting
Association of Anesthesia Technique With Morbidity and Mortality in Patients With COVID-19 and Surgery for Hip Fracture: a Retrospective Population Cohort Study[NCT05133648]1,000 participants (Anticipated)Observational2023-01-05Active, not recruiting
A Randomized, Double-Blind, Controlled Trial of Bright Light Therapy on All-Cause Excessive Daytime Sleepiness in Prader-Willi Syndrome[NCT05939453]30 participants (Anticipated)Interventional2023-10-01Recruiting
Sleep and Circadian Regulation in Diabetic Retinopathy: The Role of Intrinsically Photosensitive Retinal Ganglion Cells and Melatonin Supplementation[NCT04547439]Phase 236 participants (Anticipated)Interventional2021-02-03Recruiting
A Pilot Placebo-controlled Randomized Double-blind Trial of Melatonin in Outpatients With COVID-19 Infection[NCT04784754]Phase 20 participants (Actual)Interventional2021-04-01Withdrawn (stopped due to lack of subject enrollment)
A Pilot Placebo-controlled Randomized Double-blind Trial of Melatonin in Outpatients With COVID-19 Infection[NCT04474483]Phase 28 participants (Actual)Interventional2020-11-06Terminated (stopped due to difficult recruitment and complete first visit in person during thne hight of tne pandemic and later not enough subjects)
Effect of the Administration of Melatonin and Metformin on Glycemic Control, Genotoxicity and Cytotoxicity Markers in Patients With Prediabetes: Pilot Study[NCT03848533]Phase 242 participants (Anticipated)Interventional2019-08-22Recruiting
Does Melatonin Treatment Affect Glucose Tolerance Among Individuals With a Variant (rs10830963) of the Melatonin Receptor 1B (MTNR1B) Gene?[NCT01705639]Phase 345 participants (Actual)Interventional2012-11-30Completed
Association Between Plasma Melatonin and No-reflow[NCT03306303]1,700 participants (Actual)Observational2014-01-01Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

40 reviews available for melatonin and Diabetes Mellitus, Type 2

ArticleYear
Effects of Melatonin Supplementation on Insulin Levels and Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2021, Volume: 53, Issue:9

    Topics: Antioxidants; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; Hyperinsulinism; Insulin; Insu

2021
New insights into the role of melatonin in diabetic cardiomyopathy.
    Pharmacology research & perspectives, 2022, Volume: 10, Issue:1

    Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Endoplasmic Reticulum Stress; Humans;

2022
Diabetes mellitus and melatonin: Where are we?
    Biochimie, 2022, Volume: 202

    Topics: Diabetes Complications; Diabetes Mellitus, Type 2; Humans; Insulin; Melatonin; Oxidative Stress

2022
Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease.
    International journal of molecular sciences, 2021, Dec-31, Volume: 23, Issue:1

    Topics: Animals; Autoimmune Diseases; Diabetes Mellitus, Type 2; Humans; Melatonin; Neoplasms; Receptors, G-

2021
A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease.
    International journal of molecular sciences, 2022, Jan-03, Volume: 23, Issue:1

    Topics: Alzheimer Disease; Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Humans; Melatonin

2022
The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease.
    International journal of biological sciences, 2022, Volume: 18, Issue:3

    Topics: Alzheimer Disease; Anti-Inflammatory Agents; Antioxidants; Diabetes Mellitus, Type 2; Humans; Inflam

2022
The Role of Melatonin in Chronic Kidney Disease and Its Associated Risk Factors: A New Tool in Our Arsenal?
    American journal of nephrology, 2022, Volume: 53, Issue:7

    Topics: Diabetes Mellitus, Type 2; Humans; Hypertension; Melatonin; Renal Insufficiency, Chronic; Renin-Angi

2022
Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions.
    Aging cell, 2022, Volume: 21, Issue:10

    Topics: Adiponectin; Aging; Alzheimer Disease; ARNTL Transcription Factors; Diabetes Mellitus, Type 2; Human

2022
Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors.
    Journal of pineal research, 2023, Volume: 74, Issue:2

    Topics: Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cholesterol; Diabetes Mellitus, Type 2; Humans; M

2023
Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors.
    Journal of pineal research, 2023, Volume: 74, Issue:2

    Topics: Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cholesterol; Diabetes Mellitus, Type 2; Humans; M

2023
Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors.
    Journal of pineal research, 2023, Volume: 74, Issue:2

    Topics: Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cholesterol; Diabetes Mellitus, Type 2; Humans; M

2023
Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors.
    Journal of pineal research, 2023, Volume: 74, Issue:2

    Topics: Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cholesterol; Diabetes Mellitus, Type 2; Humans; M

2023
The melatonin receptor 1B gene links circadian rhythms and type 2 diabetes mellitus: an evolutionary story.
    Annals of medicine, 2023, Volume: 55, Issue:1

    Topics: Blood Glucose; Circadian Rhythm; Diabetes Mellitus, Type 2; Genome-Wide Association Study; Humans; M

2023
Molecular Mechanisms of the Melatonin Receptor Pathway Linking Circadian Rhythm to Type 2 Diabetes Mellitus.
    Nutrients, 2023, Mar-15, Volume: 15, Issue:6

    Topics: Circadian Rhythm; Diabetes Mellitus, Type 2; Humans; Insulin Secretion; Melatonin; Receptor, Melaton

2023
The role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression.
    Frontiers in endocrinology, 2023, Volume: 14

    Topics: Adolescent; Depression; Depressive Disorder, Major; Diabetes Mellitus, Type 2; Feedback; Humans; Imm

2023
Monoamines' role in islet cell function and type 2 diabetes risk.
    Trends in molecular medicine, 2023, Volume: 29, Issue:12

    Topics: Diabetes Mellitus, Type 2; Glucose; Humans; Insulin; Insulin-Secreting Cells; Melatonin; Serotonin

2023
Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy.
    Trends in endocrinology and metabolism: TEM, 2020, Volume: 31, Issue:3

    Topics: Animals; Blood Glucose; Carbohydrate Metabolism; Circadian Rhythm; Diabetes Mellitus, Type 2; Geneti

2020
The roles of melatonin on kidney injury in obese and diabetic conditions.
    BioFactors (Oxford, England), 2020, Volume: 46, Issue:4

    Topics: Adipocytes; Adipose Tissue; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cytokines; D

2020
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
Interventions for preventing type 2 diabetes in adults with mental disorders in low- and middle-income countries.
    The Cochrane database of systematic reviews, 2021, 02-16, Volume: 2

    Topics: Adult; Aged; Antidepressive Agents, Tricyclic; Antioxidants; Antipsychotic Agents; Blood Glucose; Bo

2021
Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta-analysis.
    Clinical endocrinology, 2021, Volume: 95, Issue:5

    Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Fasting; Glucose; Glycated Hemoglobin; Humans; Insu

2021
In vitro Metabolomic Approaches to Investigating the Potential Biological Effects of Phenolic Compounds: An Update.
    Genomics, proteomics & bioinformatics, 2017, Volume: 15, Issue:4

    Topics: Catecholamines; Diabetes Mellitus, Type 2; Humans; Melatonin; Metabolomics; Neurodegenerative Diseas

2017
Melatonin as a Pleiotropic Molecule with Therapeutic Potential for Type 2 Diabetes and Cancer.
    Current medicinal chemistry, 2017, Nov-20, Volume: 24, Issue:35

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Diabetes Mellitus, Type 2;

2017
Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go?
    Current diabetes reports, 2017, Oct-23, Volume: 17, Issue:12

    Topics: Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Genome-Wide Association Study; Humans; Insulin

2017
The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases.
    Pharmacology & therapeutics, 2018, Volume: 188

    Topics: Alzheimer Disease; Animals; Atherosclerosis; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug

2018
Melatonin and Oxidative Stress in the Diabetic State: Clinical Implications and Potential Therapeutic Applications.
    Current medicinal chemistry, 2019, Volume: 26, Issue:22

    Topics: Animals; Antioxidants; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Melatonin; Oxidative

2019
Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes.
    Journal of physiology and biochemistry, 2019, Volume: 75, Issue:1

    Topics: Adipose Tissue, Beige; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Diabetes Mellitus, Typ

2019
Melatonin in type 2 diabetes mellitus and obesity.
    Nature reviews. Endocrinology, 2019, Volume: 15, Issue:2

    Topics: Animals; Diabetes Mellitus, Type 2; Female; Gene Expression Regulation; Genetic Variation; Genome-Wi

2019
Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota.
    Critical reviews in food science and nutrition, 2019, Volume: 59, Issue:6

    Topics: Blood Glucose; Diabetes Mellitus, Type 2; Diet; Dietary Fiber; Gastrointestinal Microbiome; Humans;

2019
Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes.
    Molecular endocrinology (Baltimore, Md.), 2013, Volume: 27, Issue:8

    Topics: Amino Acid Sequence; Animals; Diabetes Mellitus, Type 2; Glucose; Humans; Melatonin; Mice; Molecular

2013
Melatonin and glucose metabolism: clinical relevance.
    Current pharmaceutical design, 2014, Volume: 20, Issue:30

    Topics: Diabetes Mellitus, Type 2; Glucagon; Glucose; Homeostasis; Humans; Insulin; Insulin Secretion; Melat

2014
Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease.
    BioEssays : news and reviews in molecular, cellular and developmental biology, 2014, Volume: 36, Issue:8

    Topics: Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Disease Models, Animal; Humans; Melatonin; Mic

2014
Melatonin and metabolic regulation: a review.
    Food & function, 2014, Volume: 5, Issue:11

    Topics: Animals; Blood Pressure; Diabetes Mellitus, Type 2; Disease Models, Animal; Humans; Hyperglycemia; M

2014
Experimental and clinical aspects of melatonin and clock genes in diabetes.
    Journal of pineal research, 2015, Volume: 59, Issue:1

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Gluc

2015
The role of melatonin in diabetes: therapeutic implications.
    Archives of endocrinology and metabolism, 2015, Volume: 59, Issue:5

    Topics: Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Glucose; Humans; Insulin; Insulin Secretion; I

2015
Circadian System and Glucose Metabolism: Implications for Physiology and Disease.
    Trends in endocrinology and metabolism: TEM, 2016, Volume: 27, Issue:5

    Topics: Animals; Circadian Rhythm; Diabetes Mellitus, Type 2; Glucose; Humans; Melatonin; Sleep

2016
Melatonin and the pathologies of weakened or dysregulated circadian oscillators.
    Journal of pineal research, 2017, Volume: 62, Issue:1

    Topics: Animals; Biological Clocks; Circadian Rhythm; Diabetes Mellitus, Type 2; Humans; Insulin Resistance;

2017
Chronomedicine and type 2 diabetes: shining some light on melatonin.
    Diabetologia, 2017, Volume: 60, Issue:5

    Topics: Circadian Rhythm; Diabetes Mellitus, Type 2; Glucose; Humans; Melatonin; Sleep

2017
[Melatonin and oxidative stress in elderly patients with type 2 diabetes].
    Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 2010, Volume: 28, Issue:167

    Topics: Aged; Aging; Antioxidants; Diabetes Mellitus, Type 2; Free Radicals; Humans; Melatonin; Oxidative St

2010
Genetic variants in MTNR1B affecting insulin secretion.
    Annals of medicine, 2010, Volume: 42, Issue:6

    Topics: Animals; Diabetes Mellitus, Type 2; Genetic Variation; Humans; Insulin; Insulin Secretion; Insulin-S

2010
Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state.
    Molecular and cellular endocrinology, 2012, Feb-26, Volume: 349, Issue:2

    Topics: Adipocytes; Animals; Anti-Inflammatory Agents; Antioxidants; Blood Glucose; Diabetes Mellitus, Type

2012
Tired of diabetes genetics? Circadian rhythms and diabetes: the MTNR1B story?
    Current diabetes reports, 2012, Volume: 12, Issue:6

    Topics: Circadian Rhythm; Diabetes Mellitus, Type 2; Female; Genetic Variation; Humans; Insulin; Insulin Sec

2012
GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus.
    Prostaglandins, leukotrienes, and essential fatty acids, 1999, Volume: 60, Issue:1

    Topics: Caenorhabditis elegans Proteins; Diabetes Mellitus, Type 2; Fatty Acids, Essential; Glucose; Glucose

1999

Trials

11 trials available for melatonin and Diabetes Mellitus, Type 2

ArticleYear
Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial.
    Diabetes care, 2022, 03-01, Volume: 45, Issue:3

    Topics: Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Eating; Genotype; Glucose; Humans; Ins

2022
Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial.
    Diabetes care, 2022, 03-01, Volume: 45, Issue:3

    Topics: Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Eating; Genotype; Glucose; Humans; Ins

2022
Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial.
    Diabetes care, 2022, 03-01, Volume: 45, Issue:3

    Topics: Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Eating; Genotype; Glucose; Humans; Ins

2022
Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial.
    Diabetes care, 2022, 03-01, Volume: 45, Issue:3

    Topics: Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Eating; Genotype; Glucose; Humans; Ins

2022
Three months of melatonin treatment reduces insulin sensitivity in patients with type 2 diabetes-A randomized placebo-controlled crossover trial.
    Journal of pineal research, 2022, Volume: 73, Issue:1

    Topics: Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Double-Blind Method; Glucose; Humans;

2022
Glycemic Variability in Patients with Type 2 Diabetes Mellitus (T2DM): The Role of Melatonin in a Crossover, Double-Blind, Placebo-Controlled, Randomized Study.
    Nutrients, 2023, Aug-10, Volume: 15, Issue:16

    Topics: Blood Glucose; Diabetes Mellitus, Type 2; Double-Blind Method; Humans; Melatonin; Prospective Studie

2023
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
Study on the Effects of Melatonin on Glycemic Control and Periodontal Parameters in Patients with Type II Diabetes Mellitus and Periodontal Disease.
    Medicina (Kaunas, Lithuania), 2021, Feb-05, Volume: 57, Issue:2

    Topics: Diabetes Mellitus, Type 2; Glycated Hemoglobin; Glycemic Control; Humans; Melatonin; Root Planing

2021
Consumption of melatonin supplement improves cardiovascular disease risk factors and anthropometric indices in type 2 diabetes mellitus patients: a double-blind, randomized, placebo-controlled trial.
    Trials, 2021, Mar-25, Volume: 22, Issue:1

    Topics: Body Mass Index; Cardiovascular Diseases; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Dietar

2021
Adjuvant use of melatonin for relieving symptoms of painful diabetic neuropathy: results of a randomized, double-blinded, controlled trial.
    European journal of clinical pharmacology, 2021, Volume: 77, Issue:11

    Topics: Aged; Analgesics; Central Nervous System Depressants; Comorbidity; Diabetes Mellitus, Type 2; Diabet

2021
Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial.
    Clinical nutrition (Edinburgh, Scotland), 2019, Volume: 38, Issue:1

    Topics: Aged; Aged, 80 and over; Antioxidants; Biomarkers; Blood Glucose; Blood Pressure; C-Reactive Protein

2019
The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled t
    Inflammopharmacology, 2019, Volume: 27, Issue:1

    Topics: Biomarkers; C-Reactive Protein; Chronic Periodontitis; Dental Plaque Index; Diabetes Mellitus, Type

2019
The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled t
    Inflammopharmacology, 2019, Volume: 27, Issue:1

    Topics: Biomarkers; C-Reactive Protein; Chronic Periodontitis; Dental Plaque Index; Diabetes Mellitus, Type

2019
The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled t
    Inflammopharmacology, 2019, Volume: 27, Issue:1

    Topics: Biomarkers; C-Reactive Protein; Chronic Periodontitis; Dental Plaque Index; Diabetes Mellitus, Type

2019
The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled t
    Inflammopharmacology, 2019, Volume: 27, Issue:1

    Topics: Biomarkers; C-Reactive Protein; Chronic Periodontitis; Dental Plaque Index; Diabetes Mellitus, Type

2019
Effects of melatonin and zinc on lipid profile and renal function in type 2 diabetic patients poorly controlled with metformin.
    Journal of pineal research, 2006, Volume: 41, Issue:2

    Topics: Adult; Albuminuria; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Diabetes Mellitus, Type 2; Drug

2006
Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin.
    Saudi medical journal, 2006, Volume: 27, Issue:10

    Topics: Adult; Antioxidants; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Glycated Hemoglobin; Hu

2006

Other Studies

89 other studies available for melatonin and Diabetes Mellitus, Type 2

ArticleYear
Neu-P11 - a novel melatonin receptor agonist, could improve the features of type-2 diabetes mellitus in rats.
    Endokrynologia Polska, 2021, Volume: 72, Issue:6

    Topics: Animals; Blood Glucose; C-Peptide; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet,

2021
No association between a common type 2 diabetes risk gene variant in the melatonin receptor gene (MTNR1B) and mortality among type 2 diabetes patients.
    Journal of pineal research, 2022, Volume: 72, Issue:2

    Topics: Alleles; Blood Glucose; Child; Diabetes Mellitus, Type 2; Humans; Melatonin; Polymorphism, Single Nu

2022
Daily injection of melatonin inhibits insulin resistance induced by chronic mealtime shift.
    Physiological reports, 2022, Volume: 10, Issue:6

    Topics: Animals; Diabetes Mellitus, Type 2; Insulin Resistance; Meals; Melatonin; Mice; Reactive Oxygen Spec

2022
Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway.
    Stem cell research & therapy, 2022, 04-12, Volume: 13, Issue:1

    Topics: Animals; bcl-2-Associated X Protein; Diabetes Mellitus, Type 2; Humans; Insulin Resistance; Melatoni

2022
Effects of circadian rhythm disruption on retinal physiopathology: Considerations from a consensus of experts.
    European journal of ophthalmology, 2022, Volume: 32, Issue:5

    Topics: Animals; Circadian Rhythm; Consensus; Diabetes Mellitus, Type 2; Humans; Melatonin; Mice; Retina

2022
Digital histological morphometry of the human pineal gland in a postmortem study, with endocrine and neurological clinical implications.
    Anatomia, histologia, embryologia, 2023, Volume: 52, Issue:1

    Topics: Adenoma; Animals; Diabetes Mellitus, Type 2; Female; Humans; Male; Melatonin; Pineal Gland; Retrospe

2023
Gut microbiota mediate melatonin signalling in association with type 2 diabetes.
    Diabetologia, 2022, Volume: 65, Issue:10

    Topics: Biomarkers; Case-Control Studies; Chromatography, Liquid; Cross-Sectional Studies; Diabetes Mellitus

2022
Melatonin Inhibits hIAPP Oligomerization by Preventing β-Sheet and Hydrogen Bond Formation of the Amyloidogenic Region Revealed by Replica-Exchange Molecular Dynamics Simulation.
    International journal of molecular sciences, 2022, Sep-06, Volume: 23, Issue:18

    Topics: Amyloid; Amyloidogenic Proteins; Diabetes Mellitus, Type 2; Humans; Hydrogen Bonding; Islet Amyloid

2022
Inhibition of miR-146a-5p and miR-8114 in Insulin-Secreting Cells Contributes to the Protection of Melatonin against Stearic Acid-Induced Cellular Senescence by Targeting Mafa.
    Endocrinology and metabolism (Seoul, Korea), 2022, Volume: 37, Issue:6

    Topics: Animals; Cellular Senescence; Diabetes Mellitus, Type 2; Insulin-Secreting Cells; Maf Transcription

2022
Inhibition of miR-146a-5p and miR-8114 in Insulin-Secreting Cells Contributes to the Protection of Melatonin against Stearic Acid-Induced Cellular Senescence by Targeting Mafa.
    Endocrinology and metabolism (Seoul, Korea), 2022, Volume: 37, Issue:6

    Topics: Animals; Cellular Senescence; Diabetes Mellitus, Type 2; Insulin-Secreting Cells; Maf Transcription

2022
Inhibition of miR-146a-5p and miR-8114 in Insulin-Secreting Cells Contributes to the Protection of Melatonin against Stearic Acid-Induced Cellular Senescence by Targeting Mafa.
    Endocrinology and metabolism (Seoul, Korea), 2022, Volume: 37, Issue:6

    Topics: Animals; Cellular Senescence; Diabetes Mellitus, Type 2; Insulin-Secreting Cells; Maf Transcription

2022
Inhibition of miR-146a-5p and miR-8114 in Insulin-Secreting Cells Contributes to the Protection of Melatonin against Stearic Acid-Induced Cellular Senescence by Targeting Mafa.
    Endocrinology and metabolism (Seoul, Korea), 2022, Volume: 37, Issue:6

    Topics: Animals; Cellular Senescence; Diabetes Mellitus, Type 2; Insulin-Secreting Cells; Maf Transcription

2022
A novel combination of sitagliptin and melatonin ameliorates T2D manifestations: studies on experimental diabetic models.
    Journal of endocrinological investigation, 2023, Volume: 46, Issue:8

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucose; Hypo

2023
Melatonin Mitigates iNOS-Related Effects of HEMA and Camphorquinone in Human Dental Pulp Cells: Relevance for Postoperative Sensitivity Mechanism in Type 2 Diabetes.
    International journal of molecular sciences, 2023, Jan-29, Volume: 24, Issue:3

    Topics: Antioxidants; Dental Pulp; Diabetes Mellitus, Type 2; Humans; Melatonin; Methacrylates; Nitric Oxide

2023
Melatonin/nicotinamide mononucleotide/ubiquinol: a cocktail providing superior cardioprotection against ischemia/reperfusion injury in a common co-morbidities modelled rat.
    Molecular biology reports, 2023, Volume: 50, Issue:4

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Infarction; Ischemia; Male; Mel

2023
In-vitro antiplatelet effect of melatonin in healthy individuals and patients with type 2 diabetes mellitus.
    Journal of endocrinological investigation, 2023, Volume: 46, Issue:12

    Topics: Adenosine Diphosphate; Blood Platelets; Diabetes Mellitus, Type 2; Humans; Melatonin; Myocardial Inf

2023
Melatonin receptor 1A (MTNR1A) gene linkage and association to type 2 diabetes in Italian families.
    European review for medical and pharmacological sciences, 2023, Volume: 27, Issue:10

    Topics: Diabetes Mellitus, Type 2; Genotype; Humans; Melatonin; Polymorphism, Single Nucleotide; Receptor, M

2023
Melatonin attenuates lung ischemia-reperfusion injury through SIRT3 signaling-dependent mitophagy in type 2 diabetic rats.
    Experimental lung research, 2023, Volume: 49, Issue:1

    Topics: Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Lung; Melatonin; Mit

2023
Nocturnal melatonin increases glucose uptake via insulin-independent action in the goldfish brain.
    Frontiers in endocrinology, 2023, Volume: 14

    Topics: Animals; Brain; Diabetes Mellitus, Type 2; Glucose; Goldfish; Melatonin

2023
[Mechanism of melatonin-mediated antihyperglycemic effect of transcutaneous auricular vagus nerve stimulation].
    Zhen ci yan jiu = Acupuncture research, 2023, Aug-25, Volume: 48, Issue:8

    Topics: Animals; Diabetes Mellitus, Type 2; Hypoglycemic Agents; Male; Melatonin; Rats; Rats, Zucker; Recept

2023
Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings.
    International journal of environmental research and public health, 2023, 09-07, Volume: 20, Issue:18

    Topics: Computational Biology; Dental Pulp; Diabetes Mellitus, Type 2; Glial Cell Line-Derived Neurotrophic

2023
Melatonin alleviates renal injury in diabetic rats by regulating autophagy.
    Molecular medicine reports, 2023, Volume: 28, Issue:5

    Topics: AMP-Activated Protein Kinases; Animals; Autophagy; Diabetes Mellitus, Experimental; Diabetes Mellitu

2023
Melatonin ameliorates SGLT2 inhibitor-induced diabetic ketoacidosis by inhibiting lipolysis and hepatic ketogenesis in type 2 diabetic mice.
    Journal of pineal research, 2020, Volume: 68, Issue:2

    Topics: Animals; Benzhydryl Compounds; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic

2020
Relationship between Intrinsically Photosensitive Ganglion Cell Function and Circadian Regulation in Diabetic Retinopathy.
    Scientific reports, 2020, 01-31, Volume: 10, Issue:1

    Topics: Adie Syndrome; Aged; Cells, Cultured; Circadian Clocks; Cross-Sectional Studies; Diabetes Mellitus,

2020
Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression.
    Life sciences, 2020, Apr-15, Volume: 247

    Topics: Acetylcholinesterase; Animals; Anti-Inflammatory Agents; Antioxidants; Cytokines; Diabetes Mellitus,

2020
Sleep variability, 6-sulfatoxymelatonin, and diabetic retinopathy.
    Sleep & breathing = Schlaf & Atmung, 2021, Volume: 25, Issue:2

    Topics: Adult; Case-Control Studies; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Female; Humans; Male;

2021
    Journal of clinical orthopaedics and trauma, 2021, Volume: 12, Issue:1

    Topics: Acute Coronary Syndrome; Adolescent; Adsorption; Adult; Aged; Animals; Aspergillus; Aspergillus oryz

2021
Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6.
    Journal of pineal research, 2021, Volume: 70, Issue:1

    Topics: AMP-Activated Protein Kinases; Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2;

2021
Associations between urinary 6-sulfatoxymelatonin excretion and diabetic vascular complications or arteriosclerosis in patients with type 2 diabetes.
    Journal of diabetes investigation, 2021, Volume: 12, Issue:4

    Topics: Adult; Aged; Arteriosclerosis; Coronary Disease; Diabetes Mellitus, Type 2; Diabetic Angiopathies; F

2021
Supplemental light exposure improves sleep architecture in people with type 2 diabetes.
    Acta diabetologica, 2021, Volume: 58, Issue:9

    Topics: Circadian Rhythm; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Humans; Melatonin; Sleep

2021
Presence of Peripheral Neuropathy Does Not Affect Urine 6-Sulfatoxymelatonin Levels in Type 2 Diabetics.
    Neuro endocrinology letters, 2021, Volume: 42, Issue:1

    Topics: Diabetes Mellitus, Type 2; Diabetic Neuropathies; Humans; Melatonin; Oxidative Stress

2021
Possible role of exogenous melatonin in preventing more serious COVID-19 infection in patients with type 2 diabetes mellitus.
    Revista da Associacao Medica Brasileira (1992), 2021, Volume: 67Suppl 1, Issue:Suppl 1

    Topics: COVID-19; Diabetes Mellitus, Type 2; Humans; Hyperglycemia; Melatonin; SARS-CoV-2

2021
The case for too little melatonin signalling in increased diabetes risk.
    Diabetologia, 2017, Volume: 60, Issue:5

    Topics: Diabetes Mellitus, Type 2; Genome-Wide Association Study; Humans; Melatonin; Polymorphism, Single Nu

2017
Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.
    Diabetologia, 2017, Volume: 60, Issue:7

    Topics: Animals; Blood Glucose; Brain; Circadian Rhythm; Diabetes Mellitus, Type 2; Glucose Tolerance Test;

2017
Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 92

    Topics: Animals; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Fatigue; Hypertension; I

2017
Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf‑1/ERK signaling pathway.
    International journal of molecular medicine, 2018, Volume: 41, Issue:2

    Topics: Animals; Butadienes; Diabetes Mellitus, Type 2; Disease Models, Animal; Gene Expression Regulation;

2018
Diabetic Status Influences the Storage of Melatonin in Human Salivary Glands.
    Anatomical record (Hoboken, N.J. : 2007), 2018, Volume: 301, Issue:4

    Topics: Aged; Diabetes Mellitus, Type 2; Humans; Immunohistochemistry; Male; Melatonin; Salivary Glands

2018
FEATURES OF EXCRETION OF MELATONIN IN URINE IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND NON-ALCOHOLIC FATTY LIVER DISEASE WITH MANIFESTATIONS OF FIBROSIS AND ITS RELATIONSHIP WITH CERTAIN METABOLIC AND IMMUNOLOGICAL INDICATORS.
    Georgian medical news, 2018, Issue:274

    Topics: Adolescent; Adult; Albuminuria; Biomarkers; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes;

2018
Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions.
    International endodontic journal, 2018, Volume: 51, Issue:10

    Topics: Aged; Case-Control Studies; Dental Pulp; Diabetes Mellitus, Type 2; Enzyme-Linked Immunosorbent Assa

2018
Association of melatonin &MTNR1B variants with type 2 diabetes in Gujarat population.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, Volume: 103

    Topics: Adult; Aged; Circadian Rhythm; Diabetes Mellitus, Type 2; Female; Genetic Association Studies; Genet

2018
Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study.
    Hormone molecular biology and clinical investigation, 2018, May-29, Volume: 35, Issue:2

    Topics: Adiposity; Adult; Blood Pressure; Cross-Sectional Studies; Cryptochromes; Diabetes Mellitus, Type 2;

2018
[Effects of aerobic exercise combined with melatonin on osteoporosis of type II diabetic rats].
    Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 2017, Mar-08, Volume: 33, Issue:3

    Topics: Animals; Antioxidants; Bone Density; Calcium; Diabetes Mellitus, Experimental; Diabetes Mellitus, Ty

2017
Type 2 diabetes-associated variants of the MT
    Science signaling, 2018, 08-28, Volume: 11, Issue:545

    Topics: Antioxidants; beta-Arrestin 2; Diabetes Mellitus, Type 2; Extracellular Signal-Regulated MAP Kinases

2018
XFEL structures of the human MT
    Nature, 2019, Volume: 569, Issue:7755

    Topics: Crystallization; Diabetes Mellitus, Type 2; Electrons; Humans; Indenes; Lasers; Ligands; Melatonin;

2019
[In-depth analysis of the relationship between the MT
    Medecine sciences : M/S, 2019, Volume: 35, Issue:5

    Topics: Animals; beta-Arrestins; Circadian Rhythm; Computational Biology; Diabetes Mellitus, Type 2; Drug Ev

2019
Melatonin secretion and the incidence of type 2 diabetes.
    JAMA, 2013, Apr-03, Volume: 309, Issue:13

    Topics: Aged; Case-Control Studies; Cohort Studies; Creatinine; Diabetes Mellitus, Type 2; Female; Humans; I

2013
Low melatonin secretion is a risk factor for type 2 diabetes.
    BMJ (Clinical research ed.), 2013, Apr-10, Volume: 346

    Topics: Diabetes Mellitus, Type 2; Female; Humans; Melatonin; Risk Factors

2013
Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice.
    Cell and tissue research, 2013, Volume: 353, Issue:3

    Topics: Animals; Basic Helix-Loop-Helix Transcription Factors; Diabetes Mellitus, Type 1; Diabetes Mellitus,

2013
Melatonin level and risk for type 2 diabetes.
    JAMA, 2013, Aug-07, Volume: 310, Issue:5

    Topics: Diabetes Mellitus, Type 2; Female; Humans; Melatonin

2013
Melatonin level and risk for type 2 diabetes--in reply.
    JAMA, 2013, Aug-07, Volume: 310, Issue:5

    Topics: Diabetes Mellitus, Type 2; Female; Humans; Melatonin

2013
[Melatonin secretion is associated with diabetes risk].
    Medizinische Monatsschrift fur Pharmazeuten, 2013, Volume: 36, Issue:9

    Topics: Case-Control Studies; Circadian Rhythm; Diabetes Mellitus, Type 2; Female; Humans; Melatonin; Prospe

2013
Melatonin administration in diabetes: regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats.
    Food & function, 2014, Volume: 5, Issue:3

    Topics: Animals; Chromium; Diabetes Mellitus, Type 2; Diet, High-Fat; Humans; Insulin; Magnesium; Male; Mela

2014
Antioxidant effect of immediate- versus sustained-release melatonin in type 2 diabetes mellitus and healthy controls.
    Drug delivery, 2016, Volume: 23, Issue:3

    Topics: Antioxidants; Case-Control Studies; Delayed-Action Preparations; Diabetes Mellitus, Type 2; Erythroc

2016
Activity of the glutathione antioxidant system and NADPH-generating enzymes in blood serum of rats with type 2 diabetes mellitus after administration of melatonin-correcting drugs.
    Bulletin of experimental biology and medicine, 2014, Volume: 157, Issue:2

    Topics: Animals; Antioxidants; Diabetes Mellitus, Type 2; Enzyme Activation; Glucosephosphate Dehydrogenase;

2014
Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes.
    International journal of clinical and experimental pathology, 2014, Volume: 7, Issue:7

    Topics: Aged; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Enzyme-Linked Immunosorbent Assay; Female; Hu

2014
Melatonin receptors in diabetes: a potential new therapeutical target?
    European journal of pharmacology, 2014, Dec-05, Volume: 744

    Topics: Animals; Diabetes Mellitus, Type 2; Genetic Variation; Humans; Insulin; Insulin-Secreting Cells; Mam

2014
Activation of Melatonin Signaling Promotes β-Cell Survival and Function.
    Molecular endocrinology (Baltimore, Md.), 2015, Volume: 29, Issue:5

    Topics: Animals; Cell Line, Tumor; Cell Survival; Diabetes Mellitus, Type 2; Humans; Insulin-Secreting Cells

2015
Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats.
    PloS one, 2015, Volume: 10, Issue:4

    Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Eating; Male

2015
Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats.
    Food & function, 2015, Volume: 6, Issue:8

    Topics: Adipose Tissue, White; Animals; Calcium; Diabetes Mellitus, Type 2; Humans; Insulin; Liver; Male; Me

2015
Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans.
    Metabolism: clinical and experimental, 2015, Volume: 64, Issue:12

    Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Female; Genotype; Glucose Tolerance Test; Humans; M

2015
Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats.
    Redox biology, 2016, Volume: 8

    Topics: Animals; Antioxidants; Carnitine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet,

2016
Impact of Common Diabetes Risk Variant in MTNR1B on Sleep, Circadian, and Melatonin Physiology.
    Diabetes, 2016, Volume: 65, Issue:6

    Topics: Adult; Alleles; Blood Glucose; Circadian Rhythm; Cross-Sectional Studies; Diabetes Mellitus, Type 2;

2016
Ameliorative effect of melatonin against increased intestinal permeability in diabetic rats: possible involvement of MLCK-dependent MLC phosphorylation.
    Molecular and cellular biochemistry, 2016, Volume: 416, Issue:1-2

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Extracellular Signal-Regulated

2016
[EFFECTS OF MELATONIN ON THE ACONITATE HYDRATASE ACTIVITY, CONTENT OF LIPID PEROXIDATION PRODUCTS AND SOME NON-ENZYMATIC ANTIOXIDANTS IN THE BLOOD OF PATIENTS WITH TYPE 2 DIABETES MELLITUS COMPLICATED BY STEATOHEPATITIS].
    Eksperimental'naia i klinicheskaia farmakologiia, 2015, Volume: 78, Issue:12

    Topics: Aconitate Hydratase; Adult; Aged; alpha-Tocopherol; Antioxidants; Citric Acid; Diabetes Mellitus, Ty

2015
Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes.
    Cell metabolism, 2016, 06-14, Volume: 23, Issue:6

    Topics: Animals; Cyclic AMP; Diabetes Mellitus, Type 2; Genetic Predisposition to Disease; Glucose; Heterozy

2016
Risk Factors: Melatonin signalling implicated in the risk of T2DM.
    Nature reviews. Endocrinology, 2016, Volume: 12, Issue:7

    Topics: Diabetes Mellitus, Type 2; Humans; Melatonin; Risk Factors

2016
Melatonin suppresses autophagy in type 2 diabetic osteoporosis.
    Oncotarget, 2016, Aug-09, Volume: 7, Issue:32

    Topics: Animals; Autophagy; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Humans; Male; MAP Ki

2016
A Wake-up Call for Type 2 Diabetes?
    The New England journal of medicine, 2016, Sep-15, Volume: 375, Issue:11

    Topics: Animals; Diabetes Mellitus, Type 2; Genetic Predisposition to Disease; Genetic Variation; Humans; In

2016
Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus.
    Bulletin of experimental biology and medicine, 2016, Volume: 162, Issue:2

    Topics: Aluminum Oxide; Animals; Antioxidants; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Ani

2016
Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C
    Journal of applied physiology (Bethesda, Md. : 1985), 2017, Apr-01, Volume: 122, Issue:4

    Topics: Animals; Antioxidants; Cell Line; Cell Respiration; Diabetes Mellitus, Type 2; Electron Transport; M

2017
Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes.
    Chronobiology international, 2017, Volume: 34, Issue:3

    Topics: Adult; Aged; Blood Glucose; Circadian Rhythm; Creatinine; Diabetes Mellitus, Type 2; Diabetic Retino

2017
Melatonin signalling and type 2 diabetes risk: too little, too much or just right?
    Diabetologia, 2017, Volume: 60, Issue:5

    Topics: Adult; Diabetes Mellitus, Type 2; Female; Humans; Male; Melatonin; Middle Aged; Sedentary Behavior;

2017
Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients.
    Journal of pineal research, 2009, Volume: 46, Issue:3

    Topics: Aged; Aged, 80 and over; Analysis of Variance; Antioxidants; Diabetes Mellitus, Type 2; Dietary Supp

2009
Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats.
    Life sciences, 2009, Sep-23, Volume: 85, Issue:13-14

    Topics: Animals; Animals, Genetically Modified; Diabetes Mellitus, Type 2; Disease Models, Animal; Down-Regu

2009
Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats.
    Endocrinology, 2010, Volume: 151, Issue:6

    Topics: Animals; Blood Glucose; Body Weight; Chromatography, High Pressure Liquid; Circadian Rhythm; Diabete

2010
Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats.
    Journal of pineal research, 2010, Volume: 49, Issue:4

    Topics: Administration, Oral; Analysis of Variance; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Gluca

2010
No effect by the common gene variant rs10830963 of the melatonin receptor 1B on the association between sleep disturbances and type 2 diabetes: results from the Nord-Trøndelag Health Study.
    Diabetologia, 2011, Volume: 54, Issue:6

    Topics: Adult; Aged; Aged, 80 and over; Alleles; Case-Control Studies; Comorbidity; Diabetes Mellitus, Type

2011
Recognition and assessment of shift work disorder.
    The Journal of clinical psychiatry, 2011, Volume: 72, Issue:2

    Topics: Animals; Biological Clocks; Circadian Rhythm; Diabetes Mellitus, Type 2; Energy Metabolism; Hormones

2011
Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats.
    Journal of pineal research, 2012, Volume: 52, Issue:2

    Topics: Animals; Antioxidants; Diabetes Mellitus, Type 2; Disease Models, Animal; Fatty Acids, Nonesterified

2012
Catecholamines are the key for explaining the biological relevance of insulin-melatonin antagonisms in type 1 and type 2 diabetes.
    Journal of pineal research, 2012, Volume: 52, Issue:4

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitu

2012
Daily rhythms of plasma melatonin, but not plasma leptin or leptin mRNA, vary between lean, obese and type 2 diabetic men.
    PloS one, 2012, Volume: 7, Issue:5

    Topics: Analysis of Variance; Circadian Rhythm; Diabetes Mellitus, Type 2; DNA Primers; Gene Expression Prof

2012
Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats.
    Journal of pineal research, 2013, Volume: 54, Issue:2

    Topics: Animals; Catalase; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Electroretinography; Glucose; Im

2013
The effect of melatonin on antioxidant enzymes in human diabetic skin fibroblasts.
    Cellular & molecular biology letters, 2003, Volume: 8, Issue:2

    Topics: Antioxidants; Catalase; Diabetes Mellitus, Type 2; Fibroblasts; Glutathione; Humans; Melatonin; Supe

2003
Relationship between salivary melatonin levels and periodontal status in diabetic patients.
    Journal of pineal research, 2003, Volume: 35, Issue:4

    Topics: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Female; Humans; Interleukin-2; Male; Melatonin

2003
Orally administered tryptophan and experimental type 2 diabetes.
    Molecular and cellular biochemistry, 2004, Volume: 261, Issue:1-2

    Topics: Administration, Oral; Animals; Antioxidants; Blood Glucose; Body Weight; Catalase; Diabetes Mellitus

2004
Melatonin levels decrease in type 2 diabetic patients with cardiac autonomic neuropathy.
    Journal of pineal research, 2005, Volume: 39, Issue:1

    Topics: Autonomic Nervous System Diseases; Blood Pressure; Circadian Rhythm; Diabetes Mellitus, Type 2; Diab

2005
Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status.
    Journal of pineal research, 2006, Volume: 40, Issue:2

    Topics: Animals; Arylalkylamine N-Acetyltransferase; Circadian Rhythm; Diabetes Mellitus, Type 2; Humans; In

2006
Melatonin and type 2 diabetes - a possible link?
    Journal of pineal research, 2007, Volume: 42, Issue:4

    Topics: Adult; Aged; Base Sequence; Case-Control Studies; Diabetes Mellitus, Type 2; DNA Primers; DNA-Bindin

2007
Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells.
    Journal of pineal research, 2008, Volume: 45, Issue:3

    Topics: 1-Methyl-3-isobutylxanthine; Animals; Brain; Cell Line, Tumor; Colforsin; Cyclic GMP; Cyclic Nucleot

2008
Can "resetting" hormonal rhythms treat illness?
    Science (New York, N.Y.), 1995, Sep-01, Volume: 269, Issue:5228

    Topics: Animals; Bromocriptine; Circadian Rhythm; Clinical Trials, Phase III as Topic; Darkness; Diabetes Me

1995
GLUT-4, tumour necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus, and longevity.
    The Journal of the Association of Physicians of India, 1999, Volume: 47, Issue:4

    Topics: Diabetes Mellitus, Type 2; Fatty Acids, Essential; Glucose; Glucose Transporter Type 4; Humans; Insu

1999
Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity.
    Journal of pineal research, 2002, Volume: 32, Issue:1

    Topics: Animals; Blood Glucose; Cholesterol; Delta-5 Fatty Acid Desaturase; Diabetes Mellitus, Type 2; Fatty

2002