melatonin has been researched along with Brain Ischemia in 105 studies
Brain Ischemia: Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.
Excerpt | Relevance | Reference |
---|---|---|
"We explored the potential efficacy of melatonin in the treatment of patients with acute ischemic stroke." | 9.51 | Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. ( Ahmadimoghaddam, D; Khazaie, M; Mazdeh, M; Mehrpooya, M; Rahmani, E, 2022) |
"This review summarizes the numerous reports that have documented the neuroprotective actions of melatonin in experimental models of ischemia/reperfusion injury (stroke)." | 8.82 | Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. ( Lopez-Burillo, S; Manchester, LC; Mayo, JC; Reiter, RJ; Sainz, RM; Tan, DX, 2003) |
"To investigate the mechanism of electroacupuncture in alleviating cerebral ischemia injury in cerebral ischemia-reperfusion rats by regulating melatonin - NOD-like receptor protein 3 (NLRP3) mediated pyroptosis." | 8.31 | [Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis]. ( Chen, B; Liang, H; Liu, JJ; Luo, J; Ruan, S; Wang, F; Wang, YX; Yan, NW; Zhong, XY, 2023) |
"The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region." | 8.31 | Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. ( Gul, M; Gul, S; Koc, A; Sandal, S; Tanbek, K; Yilmaz, U, 2023) |
" Melatonin is neuroprotective against cerebral ischemia-reperfusion injury (CIRI) in non-DM, normoglycemic animals through anti-oxidant effect, anti-inflammation, and anti-apoptosis." | 8.31 | Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects. ( Cheung, RTF; Xu, Q, 2023) |
" In this study, the neuroprotective effects of melatonin (Mel) on a rat model of cerebral ischemia/reperfusion injury (CIRI) were assessed by multi-parametric MRI combined with histopathological techniques for longitudinal monitoring of the lesion microenvironment." | 8.31 | Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury. ( An, L; Bi, F; Gong, P; Li, C; Li, Z; Song, X; Wang, X; Xiao, P; Yu, M; Zhang, M, 2023) |
"To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway." | 8.12 | Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway. ( Chen, X; Deng, Y; Lai, J; Ou, Y; Peng, X; Shen, X; Wu, H; Wu, L; Yao, Z; Zhu, H, 2022) |
"To observe the effect of electroacupuncture(EA)at "Baihui"(GV20) and "Shenting" (GV24) on the expression of melatonin synthesis rate-limiting enzyme-arylalkylamine N-acetyltransferase(AANAT)in pineal gland of rats with focal cerebral ischemia-reperfusion injury, so as to explore the mechanism of EA underlying improving ischemia-reperfusion injury." | 8.12 | [Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes]. ( Chen, B; Liang, H; Luo, J; Ruan, S; Wang, F; Wang, YX; Zhong, XY, 2022) |
"Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention." | 8.12 | Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. ( Altug-Tasa, B; Beker, M; Beker, MC; Caglayan, AB; Elibol, B; Kilic, E; Kilic, U; Uysal, O; Yilmaz, B, 2022) |
"Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke." | 8.12 | Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke. ( Cambiaghi, M; Cherchi, L; Comai, S, 2022) |
" Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown." | 8.02 | Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. ( Cao, Q; Gao, W; Li, BY; Liu, L; Xia, Z; Zeng, C; Zhao, B, 2021) |
"Melatonin treatment following AGCI reduces pro-inflammatory factors, Gal-3, motility, and anxiety, therefore it should be considered as supplementary treatment following ischemic stroke." | 8.02 | Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. ( Cervantes, M; Fenton-Navarro, B; Garduño Ríos, D; Letechipía-Vallejo, G; Torner, L, 2021) |
"Consecutive patients admitted to the Tübingen University Stroke Unit, Tübingen, Germany, with acute ischemic stroke (AIS), who underwent standard care between August 2017 and December 2017, and patients who additionally received prophylactic melatonin (2 mg per day at night) within 24 h of symptom onset between August 2018 and December 2018 were included." | 8.02 | Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis. ( Boßelmann, C; Brendel, B; Fleischmann, R; Meisel, A; Mengel, A; Poli, S; Sartor-Pfeiffer, J; Stadler, V; Stefanou, MI; Ziemann, U; Zurloh, J, 2021) |
"Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury." | 7.91 | Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. ( Chen, H; Jin, J; Li, G; Liu, L; Tang, Z; Yin, P; Zhong, D, 2019) |
"The article studies the effect of melatonin on the intensity of free radical oxidation, the functioning of the enzymatic components of the antioxidant system and their transcriptional regulation in rats with experimental cerebral ischemia/reperfusion of the brain." | 7.91 | Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. ( de Carvalho, MAP; Kryl'skii, ED; Popova, TN; Razuvaev, GA; Safonova, OA; Stolyarova, AO, 2019) |
"Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice." | 7.85 | Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. ( Beker, MC; Caglayan, AB; Caglayan, B; Gunal, MY; Gundogdu, RZ; Kelestemur, T; Kerman, BE; Kilic, E; Kilic, U; Yalcin, E; Yılmaz, B; Yulug, B, 2017) |
" In this study, we examined diurnal rhythmicity in different stages of Huntington (HD) disease and in patients with acute moderate ischemic stroke (AIS) outside the retinohypothalamic pathway by evaluating serum concentrations of melatonin and cortisol at twelve timepoints." | 7.85 | Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke. ( Adamczak-Ratajczak, A; Checinska-Maciejewska, Z; Gibas-Dorna, M; Krauss, H; Kupsz, J; Michalak, S; Owecki, M; Sowinska, A; Zielonka, D, 2017) |
"Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema." | 7.80 | Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. ( Bhattacharya, P; Pandey, AK; Patnaik, R; Paul, S, 2014) |
"Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood." | 7.78 | Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. ( Chern, CM; Liao, JF; Shen, YC; Wang, YH, 2012) |
"The results of the multicenter open-label observational study of the efficacy and safety of the Melaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia are presented." | 7.78 | [The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia]. ( Bel'skaia, GN; Boĭko, AN; Doronin, BM; Gustov, AV; Iakupov, EZ; Levin, IaI; Poluéktov, MG; Poverennova, IE; Skoromets, AA; Spirin, NN, 2012) |
"Quantitative data on melatonin in stroke patients are scarce." | 7.75 | Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis. ( Atanassova, PA; Dimitrov, BD; Terzieva, DD, 2009) |
" We tested the sensitivity of PT to preconditioning with hypobaric hypoxia and to pretreatment with melatonin." | 7.74 | Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion. ( Bernášková, K; Krýsl, D; Mares, J; Matějovská, I, 2008) |
"Melatonin reduces pyramidal neuronal death in the hippocampus and prevents the impairment of place learning and memory in the Morris water maze, otherwise occurring following global cerebral ischemia." | 7.74 | Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. ( Cervantes, M; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2007) |
"Melatonin attenuates the short-term consequences of brain ischemia in several animal models." | 7.74 | Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome. ( de Butte, M; Fréchette, M; Pappas, BA; Rennie, K, 2008) |
" melatonin (4 + 4 mg/kg, after induction of ischemia and at reperfusion onset) administered either alone or in combination with the thrombolytic tissue-plasminogen activator (t-PA, 10 mg/kg), on cerebral laser Doppler flow (LDF) and ischemic injury were studied after 30 min of middle cerebral artery (MCA) thread occlusion in male C57BL/6 mice." | 7.72 | Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. ( Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Yulug, B, 2004) |
"To investigate the effects of melatonin (MT) on histology and behavioral tests during global cerebral ischemia-reperfusion in gerbils." | 7.71 | [The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. ( Dai, TJ; Gu, SL; Guo, JD; Xing, SH; Zhang, J, 2002) |
"Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes." | 6.53 | The antioxidative property of melatonin against brain ischemia. ( Cordaro, M; Cuzzocrea, S; Esposito, E; Paterniti, I, 2016) |
"On the other hand, cerebral ischemia is a major cause of human disability all over the world." | 6.50 | The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia. ( Colín-González, AL; Escribano, BM; Santamaría, A; Túnez, I, 2014) |
" Special attention has been paid to the advantageous characteristics of melatonin as a neuroprotective drug: bioavailability into brain cells and cellular organelles targeted by morpho-functional derangement; effectiveness in exerting several neuroprotective actions, which can be amplified and prolonged by its metabolites, through direct and indirect antioxidant activity; prevention and reversal of mitochondrial malfunction, reducing inflammation, derangement of cytoskeleton organization, and pro-apoptotic cell signaling; lack of interference with thrombolytic and neuroprotective actions of other drugs; and an adequate safety profile." | 6.44 | Melatonin and ischemia-reperfusion injury of the brain. ( Cervantes, M; Letechipía-Vallejo, G; Moralí, G, 2008) |
"Melatonin is a promising neuroprotective agent that can regulate microglial polarization in central nervous system (CNS) diseases." | 5.91 | Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice. ( He, T; Li, D; Liu, J; Wang, D; Wang, Q; Yuan, Y; Zhang, S; Zhang, Y; Zhao, H, 2023) |
"Obesity is well-established as a common comorbidity in ischemic stroke." | 5.91 | Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. ( Govitrapong, P; Sengking, J; Tocharus, C; Tocharus, J; Yawoot, N, 2023) |
"Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts." | 5.62 | Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. ( Cao, Q; Gao, W; Li, B; Liu, L; Xia, Z; Zhao, B, 2021) |
"Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice." | 5.56 | The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. ( Ai, L; Gao, L; Gao, Y; Petersen, L; Pu, J; Qin, Z; Tong, R; Yan, Y; Zang, M; Zhao, Y; Zhong, F; Zhu, C, 2020) |
"We explored the potential efficacy of melatonin in the treatment of patients with acute ischemic stroke." | 5.51 | Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. ( Ahmadimoghaddam, D; Khazaie, M; Mazdeh, M; Mehrpooya, M; Rahmani, E, 2022) |
"Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain." | 5.51 | Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. ( Ding, ZT; Gao, FH; Gong, WJ; Liu, ZJ; Qie, SY; Ran, YY; Xi, JN, 2019) |
"Melatonin has demonstrated a potential protective effect in central nervous system." | 5.46 | Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. ( Abraham, N; Dong, Y; Feng, D; Huang, L; Qu, Y; Shi, W; Tao, K; Wang, B; Wang, L, 2017) |
"Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors." | 5.42 | Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. ( Buendia, I; Egea, J; Gameiro, I; Gómez-Rangel, V; González-Lafuente, L; Laudon, M; León, R; López, MG; Michalska, P; Parada, E, 2015) |
"Global cerebral ischemia induces alterations of working memory, as evidenced in the eight-arm radial maze, in the absence of significant changes of pyramidal neuron population in the prefrontal cortex." | 5.35 | Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats. ( Cervantes, M; García-Chávez, D; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2008) |
"Melatonin and aMT6S were measured by radioimmunoassay." | 5.35 | Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. ( Berthiller, J; Brun, J; Cho, TH; Claustrat, B; Derex, L; Nighoghossian, N; Ritzenthaler, T; Schott, AM; Trouillas, P, 2009) |
"Melatonin is a potent antioxidant with neuroprotective activity in animal models of ischemic stroke, which based on its lack of serious toxicity has raised hopes that it might be used for human stroke treatment in the future." | 5.35 | Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. ( Abdallah, NB; Bacigaluppi, M; Bassetti, CL; Guo, Z; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Wolfer, DP, 2008) |
"Melatonin-treated animals also had significantly reduced immunopositive reactions for 8-OHdG and 4-HNE by 53% (P<0." | 5.33 | Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. ( Chang, GL; Chen, HY; Chen, ST; Hsu, YS; Lee, EJ; Lee, MY; Wu, TS, 2005) |
"Treatment with melatonin at 1." | 5.32 | Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. ( Cheung, RT; Fung, PC; Pei, Z, 2003) |
"Treatment with melatonin significantly reduced the infarct size by approximately 30-35%, independent of whether the indole was given prophylactically before or acutely after ischemia." | 5.32 | Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2004) |
"The data on the role of epiphysis and its key hormone melatonin in the natural mechanisms of brain protection from stroke are reviewed." | 4.85 | [Stroke and epiphysis]. ( Arushanian, EB; Naumov, SS, 2009) |
"This review summarizes the numerous reports that have documented the neuroprotective actions of melatonin in experimental models of ischemia/reperfusion injury (stroke)." | 4.82 | Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. ( Lopez-Burillo, S; Manchester, LC; Mayo, JC; Reiter, RJ; Sainz, RM; Tan, DX, 2003) |
"To investigate the mechanism of electroacupuncture in alleviating cerebral ischemia injury in cerebral ischemia-reperfusion rats by regulating melatonin - NOD-like receptor protein 3 (NLRP3) mediated pyroptosis." | 4.31 | [Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis]. ( Chen, B; Liang, H; Liu, JJ; Luo, J; Ruan, S; Wang, F; Wang, YX; Yan, NW; Zhong, XY, 2023) |
"The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region." | 4.31 | Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. ( Gul, M; Gul, S; Koc, A; Sandal, S; Tanbek, K; Yilmaz, U, 2023) |
" Melatonin is neuroprotective against cerebral ischemia-reperfusion injury (CIRI) in non-DM, normoglycemic animals through anti-oxidant effect, anti-inflammation, and anti-apoptosis." | 4.31 | Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects. ( Cheung, RTF; Xu, Q, 2023) |
" In this study, the neuroprotective effects of melatonin (Mel) on a rat model of cerebral ischemia/reperfusion injury (CIRI) were assessed by multi-parametric MRI combined with histopathological techniques for longitudinal monitoring of the lesion microenvironment." | 4.31 | Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury. ( An, L; Bi, F; Gong, P; Li, C; Li, Z; Song, X; Wang, X; Xiao, P; Yu, M; Zhang, M, 2023) |
"Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634)." | 4.21 | ( Abbasi, S; Abd El-Wahab, A; Abdallah, M; Abebe, G; Aca-Aca, G; Adama, S; Adefegha, SA; Adidigue-Ndiome, R; Adiseshaiah, P; Adrario, E; Aghajanian, C; Agnese, W; Ahmad, A; Ahmad, I; Ahmed, MFE; Akcay, OF; Akinmoladun, AC; Akutagawa, T; Alakavuklar, MA; Álava-Rabasa, S; Albaladejo-Florín, MJ; Alexandra, AJE; Alfawares, R; Alferiev, IS; Alghamdi, HS; Ali, I; Allard, B; Allen, JD; Almada, E; Alobaid, A; Alonso, GL; Alqahtani, YS; Alqarawi, W; Alsaleh, H; Alyami, BA; Amaral, BPD; Amaro, JT; Amin, SAW; Amodio, E; Amoo, ZA; Andia Biraro, I; Angiolella, L; Anheyer, D; Anlay, DZ; Annex, BH; Antonio-Aguirre, B; Apple, S; Arbuznikov, AV; Arinsoy, T; Armstrong, DK; Ash, S; Aslam, M; Asrie, F; Astur, DC; Atzrodt, J; Au, DW; Aucoin, M; Auerbach, EJ; Azarian, S; Ba, D; Bai, Z; Baisch, PRM; Balkissou, AD; Baltzopoulos, V; Banaszewski, M; Banerjee, S; Bao, Y; Baradwan, A; Barandika, JF; Barger, PM; Barion, MRL; Barrett, CD; Basudan, AM; Baur, LE; Baz-Rodríguez, SA; Beamer, P; Beaulant, A; Becker, DF; Beckers, C; Bedel, J; Bedlack, R; Bermúdez de Castro, JM; Berry, JD; Berthier, C; Bhattacharya, D; Biadgo, B; Bianco, G; Bianco, M; Bibi, S; Bigliardi, AP; Billheimer, D; Birnie, DH; Biswas, K; Blair, HC; Bognetti, P; Bolan, PJ; Bolla, JR; Bolze, A; Bonnaillie, P; Borlimi, R; Bórquez, J; Bottari, NB; Boulleys-Nana, JR; Brighetti, G; Brodeur, GM; Budnyak, T; Budnyk, S; Bukirwa, VD; Bulman, DM; Burm, R; Busman-Sahay, K; Butcher, TW; Cai, C; Cai, H; Cai, L; Cairati, M; Calvano, CD; Camacho-Ordóñez, A; Camela, E; Cameron, T; Campbell, BS; Cansian, RL; Cao, Y; Caporale, AS; Carciofi, AC; Cardozo, V; Carè, J; Carlos, AF; Carozza, R; Carroll, CJW; Carsetti, A; Carubelli, V; Casarotta, E; Casas, M; Caselli, G; Castillo-Lora, J; Cataldi, TRI; Cavalcante, ELB; Cavaleiro, A; Cayci, Z; Cebrián-Tarancón, C; Cedrone, E; Cella, D; Cereda, C; Ceretti, A; Ceroni, M; Cha, YH; Chai, X; Chang, EF; Chang, TS; Chanteux, H; Chao, M; Chaplin, BP; Chaturvedi, S; Chaturvedi, V; Chaudhary, DK; Chen, A; Chen, C; Chen, HY; Chen, J; Chen, JJ; Chen, K; Chen, L; Chen, Q; Chen, R; Chen, SY; Chen, TY; Chen, WM; Chen, X; Chen, Y; Cheng, G; Cheng, GJ; Cheng, J; Cheng, YH; Cheon, HG; Chew, KW; Chhoker, S; Chiu, WN; Choi, ES; Choi, MJ; Choi, SD; Chokshi, S; Chorny, M; Chu, KI; Chu, WJ; Church, AL; Cirrincione, A; Clamp, AR; Cleff, MB; Cohen, M; Coleman, RL; Collins, SL; Colombo, N; Conduit, N; Cong, WL; Connelly, MA; Connor, J; Cooley, K; Correa Ramos Leal, I; Cose, S; Costantino, C; Cottrell, M; Cui, L; Cundall, J; Cutaia, C; Cutler, CW; Cuypers, ML; da Silva Júnior, FMR; Dahal, RH; Damiani, E; Damtie, D; Dan-Li, W; Dang, Z; Dasa, SSK; Davin, A; Davis, DR; de Andrade, CM; de Jong, PL; de Oliveira, D; de Paula Dorigam, JC; Dean, A; Deepa, M; Delatour, C; Dell'Aiera, S; Delley, MF; den Boer, RB; Deng, L; Deng, Q; Depner, RM; Derdau, V; Derici, U; DeSantis, AJ; Desmarini, D; Diffo-Sonkoue, L; Divizia, M; Djenabou, A; Djordjevic, JT; Dobrovolskaia, MA; Domizi, R; Donati, A; Dong, Y; Dos Santos, M; Dos Santos, MP; Douglas, RG; Duarte, PF; Dullaart, RPF; Duscha, BD; Edwards, LA; Edwards, TE; Eichenwald, EC; El-Baba, TJ; Elashiry, M; Elashiry, MM; Elashry, SH; Elliott, A; Elsayed, R; Emerson, MS; Emmanuel, YO; Emory, TH; Endale-Mangamba, LM; Enten, GA; Estefanía-Fernández, K; Estes, JD; Estrada-Mena, FJ; Evans, S; Ezra, L; Faria de, RO; Farraj, AK; Favre, C; Feng, B; Feng, J; Feng, L; Feng, W; Feng, X; Feng, Z; Fernandes, CLF; Fernández-Cuadros, ME; Fernie, AR; Ferrari, D; Florindo, PR; Fong, PC; Fontes, EPB; Fontinha, D; Fornari, VJ; Fox, NP; Fu, Q; Fujitaka, Y; Fukuhara, K; Fumeaux, T; Fuqua, C; Fustinoni, S; Gabbanelli, V; Gaikwad, S; Gall, ET; Galli, A; Gancedo, MA; Gandhi, MM; Gao, D; Gao, K; Gao, M; Gao, Q; Gao, X; Gao, Y; Gaponenko, V; Garber, A; Garcia, EM; García-Campos, C; García-Donas, J; García-Pérez, AL; Gasparri, F; Ge, C; Ge, D; Ge, JB; Ge, X; George, I; George, LA; Germani, G; Ghassemi Tabrizi, S; Gibon, Y; Gillent, E; Gillies, RS; Gilmour, MI; Goble, S; Goh, JC; Goiri, F; Goldfinger, LE; Golian, M; Gómez, MA; Gonçalves, J; Góngora-García, OR; Gonul, I; González, MA; Govers, TM; Grant, PC; Gray, EH; Gray, JE; Green, MS; Greenwald, I; Gregory, MJ; Gretzke, D; Griffin-Nolan, RJ; Griffith, DC; Gruppen, EG; Guaita, A; Guan, P; Guan, X; Guerci, P; Guerrero, DT; Guo, M; Guo, P; Guo, R; Guo, X; Gupta, J; Guz, G; Hajizadeh, N; Hamada, H; Haman-Wabi, AB; Han, TT; Hannan, N; Hao, S; Harjola, VP; Harmon, M; Hartmann, MSM; Hartwig, JF; Hasani, M; Hawthorne, WJ; Haykal-Coates, N; Hazari, MS; He, DL; He, P; He, SG; Héau, C; Hebbar Kannur, K; Helvaci, O; Heuberger, DM; Hidalgo, F; Hilty, MP; Hirata, K; Hirsch, A; Hoffman, AM; Hoffmann, JF; Holloway, RW; Holmes, RK; Hong, S; Hongisto, M; Hopf, NB; Hörlein, R; Hoshino, N; Hou, Y; Hoven, NF; Hsieh, YY; Hsu, CT; Hu, CW; Hu, JH; Hu, MY; Hu, Y; Hu, Z; Huang, C; Huang, D; Huang, DQ; Huang, L; Huang, Q; Huang, R; Huang, S; Huang, SC; Huang, W; Huang, Y; Huffman, KM; Hung, CH; Hung, CT; Huurman, R; Hwang, SM; Hyun, S; Ibrahim, AM; Iddi-Faical, A; Immordino, P; Isla, MI; Jacquemond, V; Jacques, T; Jankowska, E; Jansen, JA; Jäntti, T; Jaque-Fernandez, F; Jarvis, GA; Jatt, LP; Jeon, JW; Jeong, SH; Jhunjhunwala, R; Ji, F; Jia, X; Jia, Y; Jian-Bo, Z; Jiang, GD; Jiang, L; Jiang, W; Jiang, WD; Jiang, Z; Jiménez-Hoyos, CA; Jin, S; Jobling, MG; John, CM; John, T; Johnson, CB; Jones, KI; Jones, WS; Joseph, OO; Ju, C; Judeinstein, P; Junges, A; Junnarkar, M; Jurkko, R; Kaleka, CC; Kamath, AV; Kang, X; Kantsadi, AL; Kapoor, M; Karim, Z; Kashuba, ADM; Kassa, E; Kasztura, M; Kataja, A; Katoh, T; Kaufman, JS; Kaupp, M; Kehinde, O; Kehrenberg, C; Kemper, N; Kerr, CW; Khan, AU; Khan, MF; Khan, ZUH; Khojasteh, SC; Kilburn, S; Kim, CG; Kim, DU; Kim, DY; Kim, HJ; Kim, J; Kim, OH; Kim, YH; King, C; Klein, A; Klingler, L; Knapp, AK; Ko, TK; Kodavanti, UP; Kolla, V; Kong, L; Kong, RY; Kong, X; Kore, S; Kortz, U; Korucu, B; Kovacs, A; Krahnert, I; Kraus, WE; Kuang, SY; Kuehn-Hajder, JE; Kurz, M; Kuśtrowski, P; Kwak, YD; Kyttaris, VC; Laga, SM; Laguerre, A; Laloo, A; Langaro, MC; Langham, MC; Lao, X; Larocca, MC; Lassus, J; Lattimer, TA; Lazar, S; Le, MH; Leal, DB; Leal, M; Leary, A; Ledermann, JA; Lee, JF; Lee, MV; Lee, NH; Leeds, CM; Leeds, JS; Lefrandt, JD; Leicht, AS; Leonard, M; Lev, S; Levy, K; Li, B; Li, C; Li, CM; Li, DH; Li, H; Li, J; Li, L; Li, LJ; Li, N; Li, P; Li, T; Li, X; Li, XH; Li, XQ; Li, XX; Li, Y; Li, Z; Li, ZY; Liao, YF; Lin, CC; Lin, MH; Lin, Y; Ling, Y; Links, TP; Lira-Romero, E; Liu, C; Liu, D; Liu, H; Liu, J; Liu, L; Liu, LP; Liu, M; Liu, T; Liu, W; Liu, X; Liu, XH; Liu, Y; Liuwantara, D; Ljumanovic, N; Lobo, L; Lokhande, K; Lopes, A; Lopes, RMRM; López-Gutiérrez, JC; López-Muñoz, MJ; López-Santamaría, M; Lorenzo, C; Lorusso, D; Losito, I; Lu, C; Lu, H; Lu, HZ; Lu, SH; Lu, SN; Lu, Y; Lu, ZY; Luboga, F; Luo, JJ; Luo, KL; Luo, Y; Lutomski, CA; Lv, W; M Piedade, MF; Ma, J; Ma, JQ; Ma, JX; Ma, N; Ma, P; Ma, S; Maciel, M; Madureira, M; Maganaris, C; Maginn, EJ; Mahnashi, MH; Maierhofer, M; Majetschak, M; Malla, TR; Maloney, L; Mann, DL; Mansuri, A; Marelli, E; Margulis, CJ; Marrella, A; Martin, BL; Martín-Francés, L; Martínez de Pinillos, M; Martínez-Navarro, EM; Martinez-Quintanilla Jimenez, D; Martínez-Velasco, A; Martínez-Villaseñor, L; Martinón-Torres, M; Martins, BA; Massongo, M; Mathew, AP; Mathews, D; Matsui, J; Matsumoto, KI; Mau, T; Maves, RC; Mayclin, SJ; Mayer, JM; Maynard, ND; Mayr, T; Mboowa, MG; McEvoy, MP; McIntyre, RC; McKay, JA; McPhail, MJW; McVeigh, AL; Mebazaa, A; Medici, V; Medina, DN; Mehmood, T; Mei-Li, C; Melku, M; Meloncelli, S; Mendes, GC; Mendoza-Velásquez, C; Mercadante, R; Mercado, MI; Merenda, MEZ; Meunier, J; Mi, SL; Michels, M; Mijatovic, V; Mikhailov, V; Milheiro, SA; Miller, DC; Ming, F; Mitsuishi, M; Miyashita, T; Mo, J; Mo, S; Modesto-Mata, M; Moeller, S; Monte, A; Monteiro, L; Montomoli, J; Moore, EE; Moore, HB; Moore, PK; Mor, MK; Moratalla-López, N; Moratilla Lapeña, L; Moreira, R; Moreno, MA; Mörk, AC; Morton, M; Mosier, JM; Mou, LH; Mougharbel, AS; Muccillo-Baisch, AL; Muñoz-Serrano, AJ; Mustafa, B; Nair, GM; Nakanishi, I; Nakanjako, D; Naraparaju, K; Nawani, N; Neffati, R; Neil, EC; Neilipovitz, D; Neira-Borrajo, I; Nelson, MT; Nery, PB; Nese, M; Nguyen, F; Nguyen, MH; Niazy, AA; Nicolaï, J; Nogueira, F; Norbäck, D; Novaretti, JV; O'Donnell, T; O'Dowd, A; O'Malley, DM; Oaknin, A; Ogata, K; Ohkubo, K; Ojha, M; Olaleye, MT; Olawande, B; Olomo, EJ; Ong, EWY; Ono, A; Onwumere, J; Ortiz Bibriesca, DM; Ou, X; Oza, AM; Ozturk, K; Özütemiz, C; Palacio-Pastrana, C; Palaparthi, A; Palevsky, PM; Pan, K; Pantanetti, S; Papachristou, DJ; Pariani, A; Parikh, CR; Parissis, J; Paroul, N; Parry, S; Patel, N; Patel, SM; Patel, VC; Pawar, S; Pefura-Yone, EW; Peixoto Andrade, BCO; Pelepenko, LE; Peña-Lora, D; Peng, S; Pérez-Moro, OS; Perez-Ortiz, AC; Perry, LM; Peter, CM; Phillips, NJ; Phillips, P; Pia Tek, J; Piner, LW; Pinto, EA; Pinto, SN; Piyachaturawat, P; Poka-Mayap, V; Polledri, E; Poloni, TE; Ponessa, G; Poole, ST; Post, AK; Potter, TM; Pressly, BB; Prouty, MG; Prudêncio, M; Pulkki, K; Pupier, C; Qian, H; Qian, ZP; Qiu, Y; Qu, G; Rahimi, S; Rahman, AU; Ramadan, H; Ramanna, S; Ramirez, I; Randolph, GJ; Rasheed, A; Rault, J; Raviprakash, V; Reale, E; Redpath, C; Rema, V; Remucal, CK; Remy, D; Ren, T; Ribeiro, LB; Riboli, G; Richards, J; Rieger, V; Rieusset, J; Riva, A; Rivabella Maknis, T; Robbins, JL; Robinson, CV; Roche-Campo, F; Rodriguez, R; Rodríguez-de-Cía, J; Rollenhagen, JE; Rosen, EP; Rub, D; Rubin, N; Rubin, NT; Ruurda, JP; Saad, O; Sabell, T; Saber, SE; Sabet, M; Sadek, MM; Saejio, A; Salinas, RM; Saliu, IO; Sande, D; Sang, D; Sangenito, LS; Santos, ALSD; Sarmiento Caldas, MC; Sassaroli, S; Sassi, V; Sato, J; Sauaia, A; Saunders, K; Saunders, PR; Savarino, SJ; Scambia, G; Scanlon, N; Schetinger, MR; Schinkel, AFL; Schladweiler, MC; Schofield, CJ; Schuepbach, RA; Schulz, J; Schwartz, N; Scorcella, C; Seeley, J; Seemann, F; Seinige, D; Sengoku, T; Seravalli, J; Sgromo, B; Shaheen, MY; Shan, L; Shanmugam, S; Shao, H; Sharma, S; Shaw, KJ; Shen, BQ; Shen, CH; Shen, P; Shen, S; Shen, Y; Shen, Z; Shi, J; Shi-Li, L; Shimoda, K; Shoji, Y; Shun, C; Silva, MA; Silva-Cardoso, J; Simas, NK; Simirgiotis, MJ; Sincock, SA; Singh, MP; Sionis, A; Siu, J; Sivieri, EM; Sjerps, MJ; Skoczen, SL; Slabon, A; Slette, IJ; Smith, MD; Smith, S; Smith, TG; Snapp, KS; Snow, SJ; Soares, MCF; Soberman, D; Solares, MD; Soliman, I; Song, J; Sorooshian, A; Sorrell, TC; Spinar, J; Staudt, A; Steinhart, C; Stern, ST; Stevens, DM; Stiers, KM; Stimming, U; Su, YG; Subbian, V; Suga, H; Sukhija-Cohen, A; Suksamrarn, A; Suksen, K; Sun, J; Sun, M; Sun, P; Sun, W; Sun, XF; Sun, Y; Sundell, J; Susan, LF; Sutjarit, N; Swamy, KV; Swisher, EM; Sykes, C; Takahashi, JA; Talmor, DS; Tan, B; Tan, ZK; Tang, L; Tang, S; Tanner, JJ; Tanwar, M; Tarazi, Z; Tarvasmäki, T; Tay, FR; Teketel, A; Temitayo, GI; Thersleff, T; Thiessen Philbrook, H; Thompson, LC; Thongon, N; Tian, B; Tian, F; Tian, Q; Timothy, AT; Tingle, MD; Titze, IR; Tolppanen, H; Tong, W; Toyoda, H; Tronconi, L; Tseng, CH; Tu, H; Tu, YJ; Tung, SY; Turpault, S; Tuynman, JB; Uemoto, AT; Ugurlu, M; Ullah, S; Underwood, RS; Ungell, AL; Usandizaga-Elio, I; Vakonakis, I; van Boxel, GI; van den Beucken, JJJP; van der Boom, T; van Slegtenhorst, MA; Vanni, JR; Vaquera, A; Vasconcellos, RS; Velayos, M; Vena, R; Ventura, G; Verso, MG; Vincent, RP; Vitale, F; Vitali, S; Vlek, SL; Vleugels, MPH; Volkmann, N; Vukelic, M; Wagner Mackenzie, B; Wairagala, P; Waller, SB; Wan, J; Wan, MT; Wan, Y; Wang, CC; Wang, H; Wang, J; Wang, JF; Wang, K; Wang, L; Wang, M; Wang, S; Wang, WM; Wang, X; Wang, Y; Wang, YD; Wang, YF; Wang, Z; Wang, ZG; Warriner, K; Weberpals, JI; Weerachayaphorn, J; Wehrli, FW; Wei, J; Wei, KL; Weinheimer, CJ; Weisbord, SD; Wen, S; Wendel Garcia, PD; Williams, JW; Williams, R; Winkler, C; Wirman, AP; Wong, S; Woods, CM; Wu, B; Wu, C; Wu, F; Wu, P; Wu, S; Wu, Y; Wu, YN; Wu, ZH; Wurtzel, JGT; Xia, L; Xia, Z; Xia, ZZ; Xiao, H; Xie, C; Xin, ZM; Xing, Y; Xing, Z; Xu, S; Xu, SB; Xu, T; Xu, X; Xu, Y; Xue, L; Xun, J; Yaffe, MB; Yalew, A; Yamamoto, S; Yan, D; Yan, H; Yan, S; Yan, X; Yang, AD; Yang, E; Yang, H; Yang, J; Yang, JL; Yang, K; Yang, M; Yang, P; Yang, Q; Yang, S; Yang, W; Yang, X; Yang, Y; Yao, JC; Yao, WL; Yao, Y; Yaqub, TB; Ye, J; Ye, W; Yen, CW; Yeter, HH; Yin, C; Yip, V; Yong-Yi, J; Yu, HJ; Yu, MF; Yu, S; Yu, W; Yu, WW; Yu, X; Yuan, P; Yuan, Q; Yue, XY; Zaia, AA; Zakhary, SY; Zalwango, F; Zamalloa, A; Zamparo, P; Zampini, IC; Zani, JL; Zeitoun, R; Zeng, N; Zenteno, JC; Zepeda-Palacio, C; Zhai, C; Zhang, B; Zhang, G; Zhang, J; Zhang, K; Zhang, Q; Zhang, R; Zhang, T; Zhang, X; Zhang, Y; Zhang, YY; Zhao, B; Zhao, D; Zhao, G; Zhao, H; Zhao, Q; Zhao, R; Zhao, S; Zhao, T; Zhao, X; Zhao, XA; Zhao, Y; Zhao, Z; Zheng, Z; Zhi-Min, G; Zhou, CL; Zhou, HD; Zhou, J; Zhou, W; Zhou, XQ; Zhou, Z; Zhu, C; Zhu, H; Zhu, L; Zhu, Y; Zitzmann, N; Zou, L; Zou, Y, 2022) |
"To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway." | 4.12 | Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway. ( Chen, X; Deng, Y; Lai, J; Ou, Y; Peng, X; Shen, X; Wu, H; Wu, L; Yao, Z; Zhu, H, 2022) |
"To observe the effect of electroacupuncture(EA)at "Baihui"(GV20) and "Shenting" (GV24) on the expression of melatonin synthesis rate-limiting enzyme-arylalkylamine N-acetyltransferase(AANAT)in pineal gland of rats with focal cerebral ischemia-reperfusion injury, so as to explore the mechanism of EA underlying improving ischemia-reperfusion injury." | 4.12 | [Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes]. ( Chen, B; Liang, H; Luo, J; Ruan, S; Wang, F; Wang, YX; Zhong, XY, 2022) |
"Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention." | 4.12 | Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. ( Altug-Tasa, B; Beker, M; Beker, MC; Caglayan, AB; Elibol, B; Kilic, E; Kilic, U; Uysal, O; Yilmaz, B, 2022) |
"Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke." | 4.12 | Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke. ( Cambiaghi, M; Cherchi, L; Comai, S, 2022) |
" Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown." | 4.02 | Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. ( Cao, Q; Gao, W; Li, BY; Liu, L; Xia, Z; Zeng, C; Zhao, B, 2021) |
"Melatonin treatment following AGCI reduces pro-inflammatory factors, Gal-3, motility, and anxiety, therefore it should be considered as supplementary treatment following ischemic stroke." | 4.02 | Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. ( Cervantes, M; Fenton-Navarro, B; Garduño Ríos, D; Letechipía-Vallejo, G; Torner, L, 2021) |
"Consecutive patients admitted to the Tübingen University Stroke Unit, Tübingen, Germany, with acute ischemic stroke (AIS), who underwent standard care between August 2017 and December 2017, and patients who additionally received prophylactic melatonin (2 mg per day at night) within 24 h of symptom onset between August 2018 and December 2018 were included." | 4.02 | Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis. ( Boßelmann, C; Brendel, B; Fleischmann, R; Meisel, A; Mengel, A; Poli, S; Sartor-Pfeiffer, J; Stadler, V; Stefanou, MI; Ziemann, U; Zurloh, J, 2021) |
"Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury." | 3.91 | Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. ( Chen, H; Jin, J; Li, G; Liu, L; Tang, Z; Yin, P; Zhong, D, 2019) |
"The article studies the effect of melatonin on the intensity of free radical oxidation, the functioning of the enzymatic components of the antioxidant system and their transcriptional regulation in rats with experimental cerebral ischemia/reperfusion of the brain." | 3.91 | Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. ( de Carvalho, MAP; Kryl'skii, ED; Popova, TN; Razuvaev, GA; Safonova, OA; Stolyarova, AO, 2019) |
" Melatonin, a potent free radical scavenger and broad spectrum antioxidant, has been shown to counteract inflammation and apoptosis in brain injury." | 3.88 | Comparison of the Effect of Melatonin Treatment before and after Brain Ischemic Injury in the Inflammatory and Apoptotic Response in Aged Rats. ( Calvo-Soto, M; García, C; González, P; Hyacinthe, B; Paredes, SD; Rancan, L; Rodríguez-Bobada, C; Tresguerres, JAF; Vara, E, 2018) |
"Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice." | 3.85 | Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. ( Beker, MC; Caglayan, AB; Caglayan, B; Gunal, MY; Gundogdu, RZ; Kelestemur, T; Kerman, BE; Kilic, E; Kilic, U; Yalcin, E; Yılmaz, B; Yulug, B, 2017) |
" In this study, we examined diurnal rhythmicity in different stages of Huntington (HD) disease and in patients with acute moderate ischemic stroke (AIS) outside the retinohypothalamic pathway by evaluating serum concentrations of melatonin and cortisol at twelve timepoints." | 3.85 | Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke. ( Adamczak-Ratajczak, A; Checinska-Maciejewska, Z; Gibas-Dorna, M; Krauss, H; Kupsz, J; Michalak, S; Owecki, M; Sowinska, A; Zielonka, D, 2017) |
"Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema." | 3.80 | Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. ( Bhattacharya, P; Pandey, AK; Patnaik, R; Paul, S, 2014) |
"Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood." | 3.78 | Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. ( Chern, CM; Liao, JF; Shen, YC; Wang, YH, 2012) |
"The results of the multicenter open-label observational study of the efficacy and safety of the Melaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia are presented." | 3.78 | [The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia]. ( Bel'skaia, GN; Boĭko, AN; Doronin, BM; Gustov, AV; Iakupov, EZ; Levin, IaI; Poluéktov, MG; Poverennova, IE; Skoromets, AA; Spirin, NN, 2012) |
"We demonstrate that methazolamide and melatonin are neuroprotective against cerebral ischemia and provide evidence of the effectiveness of a mitochondrial-based drug screen in identifying neuroprotective drugs." | 3.75 | Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. ( Day, AL; Figueroa, BE; Friedlander, RM; Kristal, BS; Sirianni, AC; Stavrovskaya, IG; Wang, X; Zhang, Y; Zhu, S, 2009) |
"Quantitative data on melatonin in stroke patients are scarce." | 3.75 | Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis. ( Atanassova, PA; Dimitrov, BD; Terzieva, DD, 2009) |
" Melatonin has protective effects against cerebral ischemia/reperfusion injury." | 3.75 | Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. ( Barut, F; Ozacmak, HS; Ozacmak, VH, 2009) |
" We tested the sensitivity of PT to preconditioning with hypobaric hypoxia and to pretreatment with melatonin." | 3.74 | Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion. ( Bernášková, K; Krýsl, D; Mares, J; Matějovská, I, 2008) |
"Melatonin reduces pyramidal neuronal death in the hippocampus and prevents the impairment of place learning and memory in the Morris water maze, otherwise occurring following global cerebral ischemia." | 3.74 | Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. ( Cervantes, M; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2007) |
"Melatonin attenuates the short-term consequences of brain ischemia in several animal models." | 3.74 | Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome. ( de Butte, M; Fréchette, M; Pappas, BA; Rennie, K, 2008) |
" melatonin (4 + 4 mg/kg, after induction of ischemia and at reperfusion onset) administered either alone or in combination with the thrombolytic tissue-plasminogen activator (t-PA, 10 mg/kg), on cerebral laser Doppler flow (LDF) and ischemic injury were studied after 30 min of middle cerebral artery (MCA) thread occlusion in male C57BL/6 mice." | 3.72 | Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. ( Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Yulug, B, 2004) |
"To investigate the effects of melatonin (MT) on histology and behavioral tests during global cerebral ischemia-reperfusion in gerbils." | 3.71 | [The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. ( Dai, TJ; Gu, SL; Guo, JD; Xing, SH; Zhang, J, 2002) |
"To investigate whether melatonin reduces the susceptibility of the fetal rat brain to oxidative damage of lipids and DNA, we created a model of fetal ischemia/reperfusion using rats at day 19 of pregnancy." | 3.70 | Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. ( Ikenoue, N; Izumiya, C; Okatani, Y; Wakatsuki, A, 1999) |
"To study the protective effect of melatonin against neuronal injury and the possible roles of alteration in the expression of bcl-2 and bax following brain ischemia." | 3.70 | Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. ( Li, XJ; Ling, X; Lu, SD; Sun, FY; Zhang, LM, 1999) |
"Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes." | 2.53 | The antioxidative property of melatonin against brain ischemia. ( Cordaro, M; Cuzzocrea, S; Esposito, E; Paterniti, I, 2016) |
"On the other hand, cerebral ischemia is a major cause of human disability all over the world." | 2.50 | The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia. ( Colín-González, AL; Escribano, BM; Santamaría, A; Túnez, I, 2014) |
" Special attention has been paid to the advantageous characteristics of melatonin as a neuroprotective drug: bioavailability into brain cells and cellular organelles targeted by morpho-functional derangement; effectiveness in exerting several neuroprotective actions, which can be amplified and prolonged by its metabolites, through direct and indirect antioxidant activity; prevention and reversal of mitochondrial malfunction, reducing inflammation, derangement of cytoskeleton organization, and pro-apoptotic cell signaling; lack of interference with thrombolytic and neuroprotective actions of other drugs; and an adequate safety profile." | 2.44 | Melatonin and ischemia-reperfusion injury of the brain. ( Cervantes, M; Letechipía-Vallejo, G; Moralí, G, 2008) |
"Melatonin is a promising neuroprotective agent that can regulate microglial polarization in central nervous system (CNS) diseases." | 1.91 | Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice. ( He, T; Li, D; Liu, J; Wang, D; Wang, Q; Yuan, Y; Zhang, S; Zhang, Y; Zhao, H, 2023) |
"Obesity is well-established as a common comorbidity in ischemic stroke." | 1.91 | Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. ( Govitrapong, P; Sengking, J; Tocharus, C; Tocharus, J; Yawoot, N, 2023) |
"Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts." | 1.62 | Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. ( Cao, Q; Gao, W; Li, B; Liu, L; Xia, Z; Zhao, B, 2021) |
"Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice." | 1.56 | The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. ( Ai, L; Gao, L; Gao, Y; Petersen, L; Pu, J; Qin, Z; Tong, R; Yan, Y; Zang, M; Zhao, Y; Zhong, F; Zhu, C, 2020) |
"By day 28 after IS, the brain infarct area (BIA) was lowest in group 1, highest in group 2, significantly higher in groups 3 and 4 than in group 5, but not different between groups 3 and 4." | 1.51 | Combined Therapy With Hyperbaric Oxygen and Melatonin Effectively Reduce Brain Infarct Volume and Preserve Neurological Function After Acute Ischemic Infarct in Rat. ( Chen, KH; Chen, YL; Ko, SF; Lee, MS; Lin, KC; Wallace, CG; Yip, HK, 2019) |
"Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain." | 1.51 | Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. ( Ding, ZT; Gao, FH; Gong, WJ; Liu, ZJ; Qie, SY; Ran, YY; Xi, JN, 2019) |
"Melatonin has demonstrated a potential protective effect in central nervous system." | 1.46 | Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. ( Abraham, N; Dong, Y; Feng, D; Huang, L; Qu, Y; Shi, W; Tao, K; Wang, B; Wang, L, 2017) |
"Melatonin treatment did not show a protective effect on neuronal metabolism." | 1.43 | No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat. ( Berger, HR; Brubakk, AM; Morken, TS; Sonnewald, U; Vettukattil, R; Widerøe, M, 2016) |
"Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors." | 1.42 | Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. ( Buendia, I; Egea, J; Gameiro, I; Gómez-Rangel, V; González-Lafuente, L; Laudon, M; León, R; López, MG; Michalska, P; Parada, E, 2015) |
"Melatonin is a highly potent free radical scavenger that protects against ischemic stroke." | 1.42 | Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation. ( Beker, MC; Caglayan, AB; Caglayan, B; Hermann, DM; Kelestemur, T; Kilic, E; Kilic, U; Yalcin, E; Yulug, B, 2015) |
"Melatonin treatment attenuated injury-induced reductions in PP2A subunit B levels." | 1.38 | Melatonin attenuates decrease of protein phosphatase 2A subunit B in ischemic brain injury. ( Koh, PO, 2012) |
"Melatonin treatment significantly attenuated MMP-9 activity and expression at 24, 48, and 72 h after ischemic injury." | 1.38 | Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. ( Jang, JW; Kim, HS; Kim, SH; Lee, JK; Lee, MC; Piao, MS, 2012) |
"Melatonin pretreatment prevented the ischemic injury-induced reduction in PEA-15 levels." | 1.37 | Melatonin prevents down-regulation of astrocytic phosphoprotein PEA-15 in ischemic brain injury. ( Koh, PO, 2011) |
"Global cerebral ischemia induces alterations of working memory, as evidenced in the eight-arm radial maze, in the absence of significant changes of pyramidal neuron population in the prefrontal cortex." | 1.35 | Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats. ( Cervantes, M; García-Chávez, D; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2008) |
"Melatonin and aMT6S were measured by radioimmunoassay." | 1.35 | Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. ( Berthiller, J; Brun, J; Cho, TH; Claustrat, B; Derex, L; Nighoghossian, N; Ritzenthaler, T; Schott, AM; Trouillas, P, 2009) |
"Melatonin is a potent antioxidant with neuroprotective activity in animal models of ischemic stroke, which based on its lack of serious toxicity has raised hopes that it might be used for human stroke treatment in the future." | 1.35 | Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. ( Abdallah, NB; Bacigaluppi, M; Bassetti, CL; Guo, Z; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Wolfer, DP, 2008) |
"Melatonin-treated animals also had significantly reduced immunopositive reactions for 8-OHdG and 4-HNE by 53% (P<0." | 1.33 | Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. ( Chang, GL; Chen, HY; Chen, ST; Hsu, YS; Lee, EJ; Lee, MY; Wu, TS, 2005) |
"Co-treatment with melatonin restored phosphorylated Akt levels, increased Bcl-X(L) expression and reduced caspase-3 activity." | 1.33 | Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2005) |
"Treatment with melatonin at 1." | 1.32 | Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. ( Cheung, RT; Fung, PC; Pei, Z, 2003) |
"Melatonin was administered twice (6." | 1.32 | Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging. ( Kondoh, T; Nishino, H; Torii, K; Uneyama, H, 2004) |
"Treatment with melatonin significantly reduced the infarct size by approximately 30-35%, independent of whether the indole was given prophylactically before or acutely after ischemia." | 1.32 | Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2004) |
"Melatonin treatment increased survival and reduced hyperactivity linked to neurodegeneration induced by cerebral ischemia and reperfusion." | 1.31 | Protective effects of melatonin in ischemic brain injury. ( Barberi, I; Caputi, AP; Cordaro, S; Costantino, G; Cuzzocrea, S; De Sarro, A; Fulia, F; Gitto, E; Mazzon, E; Serraino, I, 2000) |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 5 (4.76) | 18.2507 |
2000's | 29 (27.62) | 29.6817 |
2010's | 42 (40.00) | 24.3611 |
2020's | 29 (27.62) | 2.80 |
Authors | Studies |
---|---|
Samadi, A | 1 |
Soriano, E | 1 |
Revuelta, J | 1 |
Valderas, C | 1 |
Chioua, M | 1 |
Garrido, I | 1 |
Bartolomé, B | 1 |
Tomassolli, I | 1 |
Ismaili, L | 1 |
González-Lafuente, L | 2 |
Villarroya, M | 2 |
García, AG | 1 |
Oset-Gasque, MJ | 1 |
Marco-Contelles, J | 2 |
Tenti, G | 1 |
Parada, E | 3 |
León, R | 3 |
Egea, J | 4 |
Martínez-Revelles, S | 1 |
Briones, AM | 1 |
Sridharan, V | 1 |
López, MG | 3 |
Ramos, MT | 1 |
Menéndez, JC | 1 |
Monjas, L | 1 |
Arce, MP | 1 |
Pérez, C | 1 |
Gil, C | 1 |
Conde, S | 1 |
Rodríguez-Franco, MI | 1 |
Kilic, U | 11 |
Elibol, B | 2 |
Beker, M | 2 |
Altug-Tasa, B | 2 |
Caglayan, AB | 5 |
Beker, MC | 5 |
Yilmaz, B | 4 |
Kilic, E | 11 |
Hu, J | 1 |
Tan, X | 1 |
Wang, D | 2 |
Li, Y | 7 |
Liang, H | 4 |
Peng, J | 1 |
Li, F | 1 |
Zhou, Q | 1 |
Geng, P | 1 |
Wang, S | 3 |
Yu, Y | 1 |
Liu, J | 4 |
Liu, L | 6 |
Cao, Q | 2 |
Gao, W | 2 |
Li, BY | 1 |
Zeng, C | 1 |
Xia, Z | 3 |
Zhao, B | 3 |
Yawoot, N | 2 |
Sengking, J | 2 |
Wicha, P | 1 |
Govitrapong, P | 3 |
Tocharus, C | 3 |
Tocharus, J | 3 |
Chen, X | 3 |
Shen, X | 1 |
Lai, J | 1 |
Yao, Z | 1 |
Peng, X | 1 |
Wu, L | 1 |
Ou, Y | 1 |
Wu, H | 2 |
Zhu, H | 3 |
Deng, Y | 1 |
Zhong, XY | 2 |
Ruan, S | 3 |
Wang, F | 3 |
Chen, B | 3 |
Luo, J | 2 |
Wang, YX | 2 |
Thangwong, P | 1 |
Jearjaroen, P | 1 |
Zhong, X | 1 |
Li, Z | 4 |
Lin, R | 1 |
Tao, J | 1 |
Uysal, O | 1 |
Bseiso, EA | 2 |
Abd El-Aal, SA | 1 |
Nasr, M | 2 |
Sammour, OA | 2 |
Abd El Gawad, NA | 1 |
AbdEl-Aal, SA | 1 |
El Gawad, NAA | 1 |
Cambiaghi, M | 1 |
Cherchi, L | 1 |
Comai, S | 1 |
Lu, D | 1 |
Liu, Y | 4 |
Huang, H | 1 |
Hu, M | 1 |
Li, T | 3 |
Shen, S | 2 |
Wu, R | 1 |
Cai, W | 1 |
Lu, T | 1 |
Lu, Z | 1 |
Mehrpooya, M | 1 |
Mazdeh, M | 1 |
Rahmani, E | 1 |
Khazaie, M | 1 |
Ahmadimoghaddam, D | 1 |
Yan, NW | 1 |
Liu, JJ | 1 |
Li, D | 1 |
He, T | 1 |
Zhang, Y | 6 |
Zhao, H | 2 |
Wang, Q | 1 |
Yuan, Y | 1 |
Zhang, S | 1 |
Yilmaz, U | 1 |
Tanbek, K | 1 |
Gul, S | 1 |
Gul, M | 1 |
Koc, A | 1 |
Sandal, S | 1 |
Xu, Q | 1 |
Cheung, RTF | 1 |
Gong, P | 1 |
Zhang, M | 1 |
Li, C | 3 |
Xiao, P | 1 |
Yu, M | 1 |
Wang, X | 9 |
An, L | 1 |
Bi, F | 1 |
Song, X | 1 |
Azedi, F | 1 |
Mehrpour, M | 1 |
Talebi, S | 1 |
Zendedel, A | 1 |
Kazemnejad, S | 1 |
Mousavizadeh, K | 1 |
Beyer, C | 1 |
Zarnani, AH | 1 |
Joghataei, MT | 1 |
Lin, KC | 2 |
Chen, KH | 1 |
Wallace, CG | 1 |
Chen, YL | 2 |
Ko, SF | 1 |
Lee, MS | 1 |
Yip, HK | 2 |
Chen, H | 1 |
Jin, J | 1 |
Tang, Z | 1 |
Yin, P | 1 |
Zhong, D | 1 |
Li, G | 1 |
Liu, ZJ | 1 |
Ran, YY | 1 |
Qie, SY | 1 |
Gong, WJ | 1 |
Gao, FH | 1 |
Ding, ZT | 1 |
Xi, JN | 1 |
Caglayan, B | 3 |
Kelestemur, T | 3 |
Yalcin, E | 3 |
Caglayan, A | 1 |
Baykal, AT | 1 |
Reiter, RJ | 10 |
Zang, M | 1 |
Zhao, Y | 4 |
Gao, L | 1 |
Zhong, F | 1 |
Qin, Z | 1 |
Tong, R | 1 |
Ai, L | 1 |
Petersen, L | 1 |
Yan, Y | 1 |
Gao, Y | 2 |
Zhu, C | 2 |
Pu, J | 1 |
Nese, M | 1 |
Riboli, G | 1 |
Brighetti, G | 1 |
Sassi, V | 1 |
Camela, E | 1 |
Caselli, G | 1 |
Sassaroli, S | 1 |
Borlimi, R | 1 |
Aucoin, M | 1 |
Cooley, K | 1 |
Saunders, PR | 1 |
Carè, J | 1 |
Anheyer, D | 1 |
Medina, DN | 1 |
Cardozo, V | 1 |
Remy, D | 1 |
Hannan, N | 1 |
Garber, A | 1 |
Velayos, M | 1 |
Muñoz-Serrano, AJ | 1 |
Estefanía-Fernández, K | 1 |
Sarmiento Caldas, MC | 1 |
Moratilla Lapeña, L | 1 |
López-Santamaría, M | 1 |
López-Gutiérrez, JC | 1 |
Li, J | 3 |
Zhang, J | 3 |
Zhang, B | 2 |
Yu, WW | 1 |
Toyoda, H | 1 |
Huang, DQ | 1 |
Le, MH | 1 |
Nguyen, MH | 1 |
Huang, R | 1 |
Zhu, L | 1 |
Wang, J | 7 |
Xue, L | 1 |
Yan, X | 2 |
Huang, S | 1 |
Xu, T | 1 |
Ji, F | 1 |
Ming, F | 1 |
Cheng, J | 1 |
Wang, Y | 4 |
Hong, S | 1 |
Chen, K | 2 |
Zhao, XA | 1 |
Zou, L | 1 |
Sang, D | 1 |
Shao, H | 1 |
Guan, X | 1 |
Chen, Y | 4 |
Wei, J | 1 |
Wu, C | 1 |
Moore, HB | 1 |
Barrett, CD | 1 |
Moore, EE | 1 |
Jhunjhunwala, R | 1 |
McIntyre, RC | 1 |
Moore, PK | 1 |
Hajizadeh, N | 1 |
Talmor, DS | 1 |
Sauaia, A | 1 |
Yaffe, MB | 1 |
Liu, C | 4 |
Lin, Y | 1 |
Dong, Y | 3 |
Wu, Y | 1 |
Bao, Y | 1 |
Yan, H | 2 |
Ma, J | 1 |
Fernández-Cuadros, ME | 1 |
Albaladejo-Florín, MJ | 1 |
Álava-Rabasa, S | 1 |
Usandizaga-Elio, I | 1 |
Martinez-Quintanilla Jimenez, D | 1 |
Peña-Lora, D | 1 |
Neira-Borrajo, I | 1 |
López-Muñoz, MJ | 1 |
Rodríguez-de-Cía, J | 1 |
Pérez-Moro, OS | 1 |
Abdallah, M | 1 |
Alsaleh, H | 1 |
Baradwan, A | 1 |
Alfawares, R | 1 |
Alobaid, A | 1 |
Rasheed, A | 1 |
Soliman, I | 1 |
Wendel Garcia, PD | 1 |
Fumeaux, T | 1 |
Guerci, P | 1 |
Heuberger, DM | 1 |
Montomoli, J | 2 |
Roche-Campo, F | 1 |
Schuepbach, RA | 1 |
Hilty, MP | 1 |
Poloni, TE | 1 |
Carlos, AF | 1 |
Cairati, M | 1 |
Cutaia, C | 1 |
Medici, V | 1 |
Marelli, E | 1 |
Ferrari, D | 1 |
Galli, A | 1 |
Bognetti, P | 1 |
Davin, A | 1 |
Cirrincione, A | 1 |
Ceretti, A | 1 |
Cereda, C | 1 |
Ceroni, M | 1 |
Tronconi, L | 1 |
Vitali, S | 1 |
Guaita, A | 1 |
Leeds, JS | 1 |
Raviprakash, V | 1 |
Jacques, T | 1 |
Scanlon, N | 1 |
Cundall, J | 1 |
Leeds, CM | 1 |
Riva, A | 1 |
Gray, EH | 1 |
Azarian, S | 1 |
Zamalloa, A | 1 |
McPhail, MJW | 1 |
Vincent, RP | 1 |
Williams, R | 1 |
Chokshi, S | 1 |
Patel, VC | 1 |
Edwards, LA | 1 |
Alqarawi, W | 1 |
Birnie, DH | 1 |
Golian, M | 1 |
Nair, GM | 1 |
Nery, PB | 1 |
Klein, A | 1 |
Davis, DR | 1 |
Sadek, MM | 1 |
Neilipovitz, D | 1 |
Johnson, CB | 1 |
Green, MS | 1 |
Redpath, C | 1 |
Miller, DC | 1 |
Beamer, P | 1 |
Billheimer, D | 1 |
Subbian, V | 1 |
Sorooshian, A | 1 |
Campbell, BS | 1 |
Mosier, JM | 1 |
Novaretti, JV | 1 |
Astur, DC | 1 |
Cavalcante, ELB | 1 |
Kaleka, CC | 1 |
Amaro, JT | 1 |
Cohen, M | 1 |
Huang, W | 1 |
Ling, Y | 1 |
Qian, ZP | 1 |
Zhang, YY | 1 |
Huang, D | 1 |
Xu, SB | 1 |
Liu, XH | 1 |
Xia, L | 1 |
Yang, Y | 4 |
Lu, SH | 1 |
Lu, HZ | 1 |
Zhang, R | 2 |
Ma, JX | 1 |
Tang, S | 1 |
Li, CM | 1 |
Wan, J | 1 |
Wang, JF | 1 |
Ma, JQ | 1 |
Luo, JJ | 1 |
Chen, HY | 4 |
Mi, SL | 1 |
Chen, SY | 1 |
Su, YG | 1 |
Ge, JB | 1 |
Milheiro, SA | 1 |
Gonçalves, J | 1 |
Lopes, RMRM | 1 |
Madureira, M | 1 |
Lobo, L | 1 |
Lopes, A | 1 |
Nogueira, F | 1 |
Fontinha, D | 1 |
Prudêncio, M | 1 |
M Piedade, MF | 1 |
Pinto, SN | 1 |
Florindo, PR | 1 |
Moreira, R | 1 |
Castillo-Lora, J | 1 |
Delley, MF | 1 |
Laga, SM | 1 |
Mayer, JM | 1 |
Sutjarit, N | 1 |
Thongon, N | 1 |
Weerachayaphorn, J | 1 |
Piyachaturawat, P | 1 |
Suksamrarn, A | 1 |
Suksen, K | 1 |
Papachristou, DJ | 1 |
Blair, HC | 1 |
Hu, Y | 1 |
Shen, P | 1 |
Zeng, N | 1 |
Wang, L | 4 |
Yan, D | 1 |
Cui, L | 1 |
Yang, K | 2 |
Zhai, C | 1 |
Yang, M | 1 |
Lao, X | 1 |
Sun, J | 1 |
Ma, N | 1 |
Ye, W | 2 |
Guo, P | 1 |
Rahimi, S | 1 |
Singh, MP | 1 |
Gupta, J | 1 |
Nakanishi, I | 1 |
Ohkubo, K | 1 |
Shoji, Y | 1 |
Fujitaka, Y | 1 |
Shimoda, K | 1 |
Matsumoto, KI | 1 |
Fukuhara, K | 1 |
Hamada, H | 1 |
van der Boom, T | 1 |
Gruppen, EG | 1 |
Lefrandt, JD | 1 |
Connelly, MA | 1 |
Links, TP | 1 |
Dullaart, RPF | 1 |
Berry, JD | 1 |
Bedlack, R | 1 |
Mathews, D | 1 |
Agnese, W | 1 |
Apple, S | 1 |
Meloncelli, S | 1 |
Divizia, M | 1 |
Germani, G | 1 |
Adefegha, SA | 1 |
Bottari, NB | 1 |
Leal, DB | 1 |
de Andrade, CM | 1 |
Schetinger, MR | 1 |
Martínez-Velasco, A | 1 |
Perez-Ortiz, AC | 1 |
Antonio-Aguirre, B | 1 |
Martínez-Villaseñor, L | 1 |
Lira-Romero, E | 1 |
Palacio-Pastrana, C | 1 |
Zenteno, JC | 1 |
Ramirez, I | 1 |
Zepeda-Palacio, C | 1 |
Mendoza-Velásquez, C | 1 |
Camacho-Ordóñez, A | 1 |
Ortiz Bibriesca, DM | 1 |
Estrada-Mena, FJ | 1 |
Martin, BL | 1 |
Thompson, LC | 1 |
Kim, YH | 2 |
Snow, SJ | 1 |
Schladweiler, MC | 1 |
Phillips, P | 1 |
Harmon, M | 1 |
King, C | 1 |
Richards, J | 1 |
George, I | 1 |
Haykal-Coates, N | 1 |
Gilmour, MI | 1 |
Kodavanti, UP | 1 |
Hazari, MS | 1 |
Farraj, AK | 1 |
Shen, Z | 1 |
Zou, Y | 1 |
Gao, K | 1 |
Lazar, S | 1 |
Wurtzel, JGT | 1 |
Ma, P | 1 |
Goldfinger, LE | 1 |
Vukelic, M | 1 |
Laloo, A | 1 |
Kyttaris, VC | 1 |
Chen, R | 1 |
Chen, J | 2 |
Xun, J | 1 |
Hu, Z | 1 |
Huang, Q | 2 |
Steinhart, C | 1 |
Shen, Y | 1 |
Lu, H | 1 |
Mansuri, A | 1 |
Lokhande, K | 1 |
Kore, S | 1 |
Gaikwad, S | 1 |
Nawani, N | 1 |
Swamy, KV | 1 |
Junnarkar, M | 1 |
Pawar, S | 1 |
Shaheen, MY | 1 |
Basudan, AM | 1 |
Niazy, AA | 1 |
van den Beucken, JJJP | 1 |
Jansen, JA | 1 |
Alghamdi, HS | 1 |
Gao, Q | 2 |
Guo, X | 1 |
Cao, Y | 1 |
Jia, X | 1 |
Xu, S | 1 |
Lu, C | 3 |
Melku, M | 1 |
Abebe, G | 1 |
Teketel, A | 1 |
Asrie, F | 1 |
Yalew, A | 1 |
Biadgo, B | 1 |
Kassa, E | 1 |
Damtie, D | 1 |
Anlay, DZ | 1 |
Ahmed, MFE | 1 |
Ramadan, H | 1 |
Seinige, D | 1 |
Kehrenberg, C | 1 |
Abd El-Wahab, A | 1 |
Volkmann, N | 1 |
Kemper, N | 1 |
Schulz, J | 1 |
Hu, MY | 1 |
Wu, YN | 1 |
McEvoy, MP | 1 |
Wang, YF | 1 |
Cong, WL | 1 |
Liu, LP | 1 |
Li, XX | 1 |
Zhou, CL | 1 |
Chen, WM | 1 |
Wei, KL | 1 |
Tung, SY | 1 |
Shen, CH | 1 |
Chang, TS | 1 |
Yen, CW | 1 |
Hsieh, YY | 1 |
Chiu, WN | 1 |
Hu, JH | 1 |
Lu, SN | 1 |
Hung, CH | 1 |
Alakavuklar, MA | 1 |
Fuqua, C | 1 |
Luo, KL | 1 |
Underwood, RS | 1 |
Greenwald, I | 1 |
Elashiry, MM | 1 |
Elashiry, M | 1 |
Zeitoun, R | 1 |
Elsayed, R | 1 |
Tian, F | 2 |
Saber, SE | 1 |
Elashry, SH | 1 |
Tay, FR | 1 |
Cutler, CW | 1 |
O'Dowd, A | 1 |
Maciel, M | 1 |
Poole, ST | 1 |
Jobling, MG | 1 |
Rollenhagen, JE | 1 |
Woods, CM | 1 |
Sincock, SA | 1 |
McVeigh, AL | 1 |
Gregory, MJ | 1 |
Maves, RC | 1 |
Prouty, MG | 1 |
Holmes, RK | 1 |
Savarino, SJ | 1 |
Mor, MK | 1 |
Palevsky, PM | 1 |
Kaufman, JS | 1 |
Thiessen Philbrook, H | 1 |
Weisbord, SD | 1 |
Parikh, CR | 1 |
John, CM | 1 |
Phillips, NJ | 1 |
Jarvis, GA | 1 |
Zhu, Y | 1 |
Kilburn, S | 1 |
Kapoor, M | 1 |
Chaturvedi, S | 1 |
Shaw, KJ | 1 |
Chaturvedi, V | 1 |
Kong, X | 1 |
Zhang, T | 1 |
Xiao, H | 1 |
Feng, X | 1 |
Tu, H | 1 |
Feng, J | 1 |
Sabet, M | 1 |
Tarazi, Z | 1 |
Griffith, DC | 1 |
Nguyen, F | 1 |
Guan, P | 1 |
Guerrero, DT | 1 |
Kolla, V | 1 |
Naraparaju, K | 1 |
Perry, LM | 1 |
Soberman, D | 1 |
Pressly, BB | 1 |
Alferiev, IS | 1 |
Chorny, M | 1 |
Brodeur, GM | 1 |
Gao, X | 2 |
Cheng, YH | 1 |
Enten, GA | 1 |
DeSantis, AJ | 1 |
Gaponenko, V | 1 |
Majetschak, M | 1 |
Kim, DY | 1 |
Choi, MJ | 1 |
Ko, TK | 1 |
Lee, NH | 1 |
Kim, OH | 1 |
Cheon, HG | 1 |
Cai, H | 1 |
Yip, V | 1 |
Lee, MV | 1 |
Wong, S | 1 |
Saad, O | 1 |
Ma, S | 1 |
Ljumanovic, N | 1 |
Khojasteh, SC | 1 |
Kamath, AV | 1 |
Shen, BQ | 1 |
Cuypers, ML | 1 |
Chanteux, H | 1 |
Gillent, E | 1 |
Bonnaillie, P | 1 |
Saunders, K | 1 |
Beckers, C | 1 |
Delatour, C | 1 |
Dell'Aiera, S | 1 |
Ungell, AL | 1 |
Nicolaï, J | 1 |
Knapp, AK | 1 |
Chen, A | 1 |
Griffin-Nolan, RJ | 1 |
Baur, LE | 1 |
Carroll, CJW | 1 |
Gray, JE | 1 |
Hoffman, AM | 1 |
Li, X | 4 |
Post, AK | 1 |
Slette, IJ | 1 |
Collins, SL | 1 |
Luo, Y | 1 |
Smith, MD | 1 |
Temitayo, GI | 1 |
Olawande, B | 1 |
Emmanuel, YO | 1 |
Timothy, AT | 1 |
Kehinde, O | 1 |
Susan, LF | 1 |
Ezra, L | 1 |
Joseph, OO | 1 |
Lev, S | 1 |
Desmarini, D | 1 |
Liuwantara, D | 1 |
Sorrell, TC | 1 |
Hawthorne, WJ | 1 |
Djordjevic, JT | 1 |
Verso, MG | 1 |
Costantino, C | 1 |
Marrella, A | 1 |
Immordino, P | 1 |
Vitale, F | 1 |
Amodio, E | 1 |
Wang, YD | 1 |
Yao, WL | 1 |
Xin, ZM | 1 |
Han, TT | 1 |
Wang, ZG | 1 |
Chen, L | 2 |
Cai, C | 1 |
Ba, D | 1 |
Wen, S | 1 |
Tian, Q | 1 |
Lv, W | 1 |
Cheng, G | 1 |
Li, N | 1 |
Yue, XY | 1 |
Chu, WJ | 1 |
Chen, Q | 1 |
Choi, ES | 1 |
Zhao, X | 3 |
Zhou, HD | 1 |
Sun, XF | 1 |
Sharma, S | 2 |
Chhoker, S | 1 |
Xie, C | 1 |
Ong, EWY | 1 |
Tan, ZK | 1 |
Evans, S | 1 |
Weinheimer, CJ | 1 |
Kovacs, A | 1 |
Williams, JW | 1 |
Randolph, GJ | 1 |
Jiang, W | 1 |
Barger, PM | 1 |
Mann, DL | 1 |
Huang, Y | 1 |
Kong, L | 1 |
Yu, X | 1 |
Feng, B | 1 |
Liu, D | 2 |
Mendes, GC | 1 |
Yuan, P | 1 |
Ge, D | 1 |
Wang, WM | 1 |
Fontes, EPB | 1 |
Li, P | 1 |
Shan, L | 1 |
He, P | 1 |
Katoh, T | 1 |
Sengoku, T | 1 |
Hirata, K | 1 |
Ogata, K | 1 |
Suga, H | 1 |
Shun, C | 1 |
Yong-Yi, J | 1 |
Mei-Li, C | 1 |
Shi-Li, L | 1 |
Jian-Bo, Z | 1 |
Dan-Li, W | 1 |
Zhi-Min, G | 1 |
Ibrahim, AM | 1 |
Zakhary, SY | 1 |
Amin, SAW | 1 |
Ugurlu, M | 1 |
Fornari, VJ | 1 |
Hartmann, MSM | 1 |
Vanni, JR | 1 |
Rodriguez, R | 1 |
Langaro, MC | 1 |
Pelepenko, LE | 1 |
Zaia, AA | 1 |
Nakanjako, D | 1 |
Zalwango, F | 1 |
Wairagala, P | 1 |
Luboga, F | 1 |
Andia Biraro, I | 1 |
Bukirwa, VD | 1 |
Mboowa, MG | 1 |
Cose, S | 1 |
Seeley, J | 1 |
Elliott, A | 1 |
Zhao, G | 1 |
Sun, P | 1 |
Hao, S | 1 |
Qu, G | 1 |
Xing, Y | 1 |
Xu, X | 1 |
Maierhofer, M | 1 |
Rieger, V | 1 |
Mayr, T | 1 |
Zhang, Q | 1 |
Bigliardi, AP | 1 |
Fernandes, CLF | 1 |
Pinto, EA | 1 |
Dos Santos, M | 1 |
Garcia, EM | 1 |
Baisch, PRM | 1 |
Soares, MCF | 1 |
Muccillo-Baisch, AL | 1 |
da Silva Júnior, FMR | 1 |
Yu, W | 1 |
Ju, C | 1 |
Wang, K | 1 |
Zheng, Z | 1 |
Liu, H | 1 |
Martínez-Navarro, EM | 1 |
Cebrián-Tarancón, C | 1 |
Moratalla-López, N | 1 |
Lorenzo, C | 1 |
Alonso, GL | 1 |
Salinas, RM | 1 |
Bermúdez de Castro, JM | 1 |
Modesto-Mata, M | 1 |
Martín-Francés, L | 1 |
García-Campos, C | 1 |
Martínez de Pinillos, M | 1 |
Martinón-Torres, M | 1 |
Hasani, M | 1 |
Wu, F | 2 |
Warriner, K | 1 |
Kurz, M | 1 |
Gretzke, D | 1 |
Hörlein, R | 1 |
Turpault, S | 1 |
Atzrodt, J | 1 |
Derdau, V | 1 |
Yao, Y | 1 |
Ou, X | 1 |
Zhao, S | 1 |
Tian, B | 1 |
Jin, S | 1 |
Jiang, Z | 1 |
Zhou, Z | 1 |
Liu, M | 2 |
Jiang, GD | 1 |
Mou, LH | 1 |
Chen, JJ | 1 |
Li, ZY | 1 |
He, SG | 1 |
Reale, E | 1 |
Fustinoni, S | 1 |
Mercadante, R | 1 |
Polledri, E | 1 |
Hopf, NB | 1 |
Grant, PC | 1 |
Levy, K | 1 |
Lattimer, TA | 1 |
Depner, RM | 1 |
Kerr, CW | 1 |
Sato, J | 1 |
Merenda, MEZ | 1 |
Uemoto, AT | 1 |
Dos Santos, MP | 1 |
Barion, MRL | 1 |
Carciofi, AC | 1 |
de Paula Dorigam, JC | 1 |
Ribeiro, LB | 1 |
Vasconcellos, RS | 1 |
Waller, SB | 1 |
Peter, CM | 1 |
Hoffmann, JF | 1 |
Cleff, MB | 1 |
Faria de, RO | 1 |
Zani, JL | 1 |
Martins, BA | 1 |
Sande, D | 1 |
Solares, MD | 1 |
Takahashi, JA | 1 |
Yang, S | 2 |
Jia, Y | 1 |
Yin, C | 1 |
Zhao, R | 1 |
Ojha, M | 1 |
Wu, B | 1 |
Deepa, M | 1 |
Mo, J | 1 |
Au, DW | 1 |
Wan, MT | 1 |
Shi, J | 1 |
Zhang, G | 1 |
Winkler, C | 1 |
Kong, RY | 1 |
Seemann, F | 1 |
Bianco, M | 1 |
Calvano, CD | 1 |
Ventura, G | 1 |
Bianco, G | 1 |
Losito, I | 1 |
Cataldi, TRI | 1 |
Angiolella, L | 1 |
Staudt, A | 1 |
Duarte, PF | 1 |
Amaral, BPD | 1 |
Peixoto Andrade, BCO | 1 |
Simas, NK | 1 |
Correa Ramos Leal, I | 1 |
Sangenito, LS | 1 |
Santos, ALSD | 1 |
de Oliveira, D | 1 |
Junges, A | 1 |
Cansian, RL | 1 |
Paroul, N | 1 |
Siu, J | 1 |
Klingler, L | 1 |
Hung, CT | 1 |
Jeong, SH | 1 |
Smith, S | 1 |
Tingle, MD | 1 |
Wagner Mackenzie, B | 1 |
Biswas, K | 1 |
Douglas, RG | 1 |
Oza, AM | 1 |
Lorusso, D | 1 |
Aghajanian, C | 1 |
Oaknin, A | 1 |
Dean, A | 1 |
Colombo, N | 1 |
Weberpals, JI | 1 |
Clamp, AR | 1 |
Scambia, G | 1 |
Leary, A | 1 |
Holloway, RW | 1 |
Gancedo, MA | 1 |
Fong, PC | 1 |
Goh, JC | 1 |
O'Malley, DM | 1 |
Armstrong, DK | 1 |
Banerjee, S | 1 |
García-Donas, J | 1 |
Swisher, EM | 1 |
Cella, D | 1 |
Meunier, J | 1 |
Goble, S | 1 |
Cameron, T | 1 |
Maloney, L | 1 |
Mörk, AC | 1 |
Bedel, J | 1 |
Ledermann, JA | 1 |
Coleman, RL | 1 |
Vlek, SL | 1 |
Burm, R | 1 |
Govers, TM | 1 |
Vleugels, MPH | 1 |
Tuynman, JB | 1 |
Mijatovic, V | 1 |
Leicht, AS | 1 |
Connor, J | 1 |
Conduit, N | 1 |
Vaquera, A | 1 |
Gómez, MA | 1 |
McKay, JA | 1 |
Church, AL | 1 |
Rubin, N | 1 |
Emory, TH | 1 |
Hoven, NF | 1 |
Kuehn-Hajder, JE | 1 |
Nelson, MT | 1 |
Ramanna, S | 1 |
Auerbach, EJ | 1 |
Moeller, S | 1 |
Bolan, PJ | 1 |
Fox, NP | 1 |
Leonard, M | 1 |
Sjerps, MJ | 1 |
Chang, EF | 1 |
Hyun, S | 1 |
Saejio, A | 1 |
Shanmugam, S | 1 |
Liu, X | 1 |
Sun, M | 1 |
Bai, Z | 1 |
Jaque-Fernandez, F | 1 |
Beaulant, A | 1 |
Berthier, C | 1 |
Monteiro, L | 1 |
Allard, B | 1 |
Casas, M | 1 |
Rieusset, J | 1 |
Jacquemond, V | 1 |
Góngora-García, OR | 1 |
Aca-Aca, G | 1 |
Baz-Rodríguez, SA | 1 |
Monte, A | 1 |
Maganaris, C | 1 |
Baltzopoulos, V | 1 |
Zamparo, P | 1 |
Wang, Z | 3 |
Hou, Y | 1 |
Cai, L | 1 |
Tu, YJ | 1 |
Tan, B | 1 |
Jiang, L | 1 |
Wu, ZH | 1 |
Yu, HJ | 1 |
Li, XQ | 1 |
Yang, AD | 1 |
Titze, IR | 1 |
Palaparthi, A | 1 |
Mau, T | 1 |
González, MA | 1 |
Goiri, F | 1 |
Barandika, JF | 1 |
García-Pérez, AL | 1 |
Jatt, LP | 1 |
Gandhi, MM | 1 |
Guo, R | 1 |
Sukhija-Cohen, A | 1 |
Bhattacharya, D | 1 |
Tseng, CH | 1 |
Chew, KW | 1 |
Onwumere, J | 1 |
Pia Tek, J | 1 |
Budnyak, T | 1 |
Budnyk, S | 1 |
Karim, Z | 1 |
Thersleff, T | 1 |
Kuśtrowski, P | 1 |
Mathew, AP | 1 |
Slabon, A | 1 |
Guo, M | 1 |
Zhao, T | 1 |
Xing, Z | 1 |
Qiu, Y | 1 |
Pan, K | 1 |
Zhou, W | 1 |
Ghassemi Tabrizi, S | 1 |
Arbuznikov, AV | 1 |
Jiménez-Hoyos, CA | 1 |
Kaupp, M | 1 |
Lin, MH | 2 |
Bulman, DM | 1 |
Remucal, CK | 1 |
Chaplin, BP | 1 |
Laguerre, A | 1 |
George, LA | 1 |
Gall, ET | 1 |
Emerson, MS | 1 |
Wang, H | 4 |
Maginn, EJ | 1 |
Margulis, CJ | 1 |
Li, H | 3 |
Feng, W | 1 |
Kang, X | 2 |
Yan, S | 1 |
Chao, M | 1 |
Mo, S | 1 |
Sun, W | 1 |
Lu, Y | 1 |
Chen, C | 1 |
Stevens, DM | 1 |
Adiseshaiah, P | 1 |
Dasa, SSK | 1 |
Potter, TM | 1 |
Skoczen, SL | 1 |
Snapp, KS | 1 |
Cedrone, E | 1 |
Patel, N | 1 |
Busman-Sahay, K | 1 |
Rosen, EP | 1 |
Sykes, C | 1 |
Cottrell, M | 1 |
Dobrovolskaia, MA | 1 |
Estes, JD | 1 |
Kashuba, ADM | 1 |
Stern, ST | 1 |
Özütemiz, C | 1 |
Neil, EC | 1 |
Tanwar, M | 1 |
Rubin, NT | 1 |
Ozturk, K | 1 |
Cayci, Z | 1 |
Duscha, BD | 1 |
Kraus, WE | 1 |
Jones, WS | 1 |
Robbins, JL | 1 |
Piner, LW | 1 |
Huffman, KM | 1 |
Allen, JD | 1 |
Annex, BH | 1 |
Mehmood, T | 1 |
Ahmad, I | 1 |
Bibi, S | 1 |
Mustafa, B | 1 |
Ali, I | 1 |
Dahal, RH | 1 |
Chaudhary, DK | 1 |
Kim, DU | 1 |
Kim, J | 2 |
Yeter, HH | 1 |
Gonul, I | 1 |
Guz, G | 1 |
Helvaci, O | 1 |
Korucu, B | 1 |
Akcay, OF | 1 |
Derici, U | 1 |
Arinsoy, T | 1 |
Neffati, R | 1 |
Judeinstein, P | 1 |
Rault, J | 1 |
Xu, Y | 1 |
Chai, X | 1 |
Ren, T | 1 |
Yu, S | 1 |
Fu, Q | 2 |
Ye, J | 1 |
Ge, X | 1 |
Song, J | 1 |
Yang, H | 2 |
El-Baba, TJ | 1 |
Lutomski, CA | 1 |
Kantsadi, AL | 1 |
Malla, TR | 1 |
John, T | 1 |
Mikhailov, V | 1 |
Bolla, JR | 1 |
Schofield, CJ | 1 |
Zitzmann, N | 1 |
Vakonakis, I | 1 |
Robinson, CV | 1 |
Langham, MC | 1 |
Caporale, AS | 1 |
Wehrli, FW | 1 |
Parry, S | 1 |
Schwartz, N | 1 |
den Boer, RB | 1 |
Jones, KI | 1 |
Ash, S | 1 |
van Boxel, GI | 1 |
Gillies, RS | 1 |
O'Donnell, T | 1 |
Ruurda, JP | 1 |
Sgromo, B | 1 |
Silva, MA | 1 |
Maynard, ND | 1 |
Sivieri, EM | 1 |
Eichenwald, EC | 1 |
Rub, D | 1 |
Abbasi, S | 1 |
Krahnert, I | 1 |
Bolze, A | 1 |
Gibon, Y | 1 |
Fernie, AR | 1 |
Huang, L | 2 |
Wan, Y | 1 |
Dang, Z | 1 |
Yang, P | 1 |
Yang, Q | 1 |
Wu, S | 2 |
Lin, CC | 1 |
Hsu, CT | 1 |
Liu, W | 2 |
Huang, SC | 1 |
Kortz, U | 1 |
Mougharbel, AS | 1 |
Chen, TY | 3 |
Hu, CW | 1 |
Lee, JF | 1 |
Wang, CC | 1 |
Liao, YF | 1 |
Li, LJ | 1 |
Li, L | 1 |
Peng, S | 1 |
Stimming, U | 1 |
Hebbar Kannur, K | 1 |
Yaqub, TB | 1 |
Pupier, C | 1 |
Héau, C | 1 |
Cavaleiro, A | 1 |
Yamamoto, S | 1 |
Ono, A | 1 |
Matsui, J | 1 |
Hoshino, N | 1 |
Akutagawa, T | 1 |
Miyashita, T | 1 |
Mitsuishi, M | 1 |
Patel, SM | 1 |
Smith, TG | 1 |
Morton, M | 1 |
Stiers, KM | 1 |
Seravalli, J | 1 |
Mayclin, SJ | 1 |
Edwards, TE | 1 |
Tanner, JJ | 1 |
Becker, DF | 1 |
Butcher, TW | 1 |
Yang, JL | 1 |
Hartwig, JF | 1 |
Yu, MF | 1 |
Xia, ZZ | 1 |
Yao, JC | 1 |
Feng, Z | 1 |
Li, DH | 1 |
Liu, T | 1 |
Cheng, GJ | 1 |
He, DL | 1 |
Li, XH | 1 |
Huurman, R | 1 |
Schinkel, AFL | 1 |
de Jong, PL | 1 |
van Slegtenhorst, MA | 1 |
Hirsch, A | 1 |
Michels, M | 1 |
Kataja, A | 1 |
Tarvasmäki, T | 1 |
Lassus, J | 1 |
Sionis, A | 1 |
Mebazaa, A | 1 |
Pulkki, K | 1 |
Banaszewski, M | 1 |
Carubelli, V | 1 |
Hongisto, M | 1 |
Jankowska, E | 1 |
Jurkko, R | 1 |
Jäntti, T | 1 |
Kasztura, M | 1 |
Parissis, J | 1 |
Sabell, T | 1 |
Silva-Cardoso, J | 1 |
Spinar, J | 1 |
Tolppanen, H | 1 |
Harjola, VP | 1 |
Carsetti, A | 1 |
Damiani, E | 1 |
Casarotta, E | 1 |
Scorcella, C | 1 |
Domizi, R | 1 |
Gasparri, F | 1 |
Gabbanelli, V | 1 |
Pantanetti, S | 1 |
Carozza, R | 1 |
Adrario, E | 1 |
Donati, A | 1 |
Almada, E | 1 |
Pariani, A | 1 |
Rivabella Maknis, T | 1 |
Hidalgo, F | 1 |
Vena, R | 1 |
Favre, C | 1 |
Larocca, MC | 1 |
Lu, ZY | 1 |
Jiang, WD | 1 |
Wu, P | 1 |
Kuang, SY | 1 |
Tang, L | 1 |
Yang, J | 1 |
Zhou, XQ | 1 |
Feng, L | 1 |
Leal, M | 1 |
Zampini, IC | 1 |
Mercado, MI | 1 |
Moreno, MA | 1 |
Simirgiotis, MJ | 1 |
Bórquez, J | 1 |
Ponessa, G | 1 |
Isla, MI | 1 |
Saliu, IO | 1 |
Amoo, ZA | 1 |
Khan, MF | 1 |
Olaleye, MT | 1 |
Rema, V | 1 |
Akinmoladun, AC | 1 |
Khan, AU | 1 |
Rahman, AU | 1 |
Yuan, Q | 1 |
Ahmad, A | 1 |
Khan, ZUH | 1 |
Mahnashi, MH | 1 |
Alyami, BA | 1 |
Alqahtani, YS | 1 |
Ullah, S | 1 |
Wirman, AP | 1 |
Gao, M | 1 |
Deng, L | 1 |
Zhang, K | 1 |
Wang, M | 1 |
Gao, D | 1 |
Balkissou, AD | 1 |
Poka-Mayap, V | 1 |
Massongo, M | 1 |
Djenabou, A | 1 |
Endale-Mangamba, LM | 1 |
Olomo, EJ | 1 |
Boulleys-Nana, JR | 1 |
Diffo-Sonkoue, L | 1 |
Adidigue-Ndiome, R | 1 |
Alexandra, AJE | 1 |
Haman-Wabi, AB | 1 |
Adama, S | 1 |
Iddi-Faical, A | 1 |
Pefura-Yone, EW | 1 |
Zhao, Q | 1 |
Tong, W | 1 |
Ge, C | 1 |
Zhao, D | 1 |
Norbäck, D | 1 |
Li, B | 2 |
Zhao, Z | 2 |
Huang, C | 1 |
Zhang, X | 1 |
Qian, H | 1 |
Yang, X | 2 |
Sun, Y | 1 |
Sundell, J | 1 |
Deng, Q | 1 |
Kim, HJ | 1 |
Jeon, JW | 1 |
Hwang, SM | 1 |
Chu, KI | 1 |
Cha, YH | 1 |
Kwak, YD | 1 |
Choi, SD | 1 |
Aslam, M | 1 |
Kim, CG | 1 |
Zhou, J | 1 |
Yang, E | 1 |
Yang, W | 1 |
Fenton-Navarro, B | 1 |
Garduño Ríos, D | 1 |
Torner, L | 1 |
Letechipía-Vallejo, G | 5 |
Cervantes, M | 5 |
Mengel, A | 1 |
Zurloh, J | 1 |
Boßelmann, C | 1 |
Brendel, B | 1 |
Stadler, V | 1 |
Sartor-Pfeiffer, J | 1 |
Meisel, A | 1 |
Fleischmann, R | 1 |
Ziemann, U | 1 |
Poli, S | 1 |
Stefanou, MI | 1 |
Shao, A | 1 |
Gao, S | 1 |
Xu, W | 1 |
Pan, Y | 2 |
Fang, Y | 1 |
Dubey, NK | 1 |
Sung, PH | 1 |
Chiang, JY | 1 |
Chu, YC | 1 |
Huang, CR | 1 |
Deng, YH | 1 |
Cheng, HC | 1 |
Deng, WP | 1 |
Tuncer, M | 1 |
Pehlivanoglu, B | 1 |
Sürücü, SH | 1 |
Isbir, T | 1 |
Nasoni, MG | 1 |
Carloni, S | 2 |
Canonico, B | 1 |
Burattini, S | 1 |
Cesarini, E | 1 |
Papa, S | 1 |
Pagliarini, M | 1 |
Ambrogini, P | 1 |
Balduini, W | 2 |
Luchetti, F | 1 |
Gunal, MY | 1 |
Gundogdu, RZ | 1 |
Yulug, B | 3 |
Kerman, BE | 1 |
Riparini, G | 1 |
Buonocore, G | 1 |
Suofu, Y | 1 |
Li, W | 1 |
Jean-Alphonse, FG | 1 |
Jia, J | 1 |
Khattar, NK | 1 |
Baranov, SV | 1 |
Leronni, D | 1 |
Mihalik, AC | 1 |
He, Y | 1 |
Cecon, E | 1 |
Wehbi, VL | 1 |
Heath, BE | 1 |
Baranova, OV | 1 |
Gable, MJ | 1 |
Kretz, ES | 1 |
Di Benedetto, G | 1 |
Lezon, TR | 1 |
Ferrando, LM | 1 |
Larkin, TM | 1 |
Sullivan, M | 1 |
Yablonska, S | 1 |
Minnigh, MB | 1 |
Guillaumet, G | 1 |
Suzenet, F | 1 |
Richardson, RM | 1 |
Poloyac, SM | 1 |
Stolz, DB | 1 |
Jockers, R | 1 |
Witt-Enderby, PA | 1 |
Carlisle, DL | 1 |
Vilardaga, JP | 1 |
Friedlander, RM | 2 |
Adamczak-Ratajczak, A | 1 |
Kupsz, J | 1 |
Owecki, M | 1 |
Zielonka, D | 1 |
Sowinska, A | 1 |
Checinska-Maciejewska, Z | 1 |
Krauss, H | 1 |
Michalak, S | 1 |
Gibas-Dorna, M | 1 |
Rancan, L | 1 |
Paredes, SD | 1 |
García, C | 1 |
González, P | 1 |
Rodríguez-Bobada, C | 1 |
Calvo-Soto, M | 1 |
Hyacinthe, B | 1 |
Vara, E | 1 |
Tresguerres, JAF | 1 |
Wang, W | 1 |
Zeng, R | 1 |
Ni, L | 1 |
Lai, Z | 1 |
Hedayatpour, A | 1 |
Shiasi, M | 1 |
Famitafreshi, H | 1 |
Abolhassani, F | 1 |
Ebrahimnia, P | 1 |
Mokhtari, T | 1 |
Hassanzaeh, G | 1 |
Karimian, M | 1 |
Nazparvar, B | 1 |
Marefati, N | 1 |
Tarzjani, MD | 1 |
Wei, N | 1 |
Pu, Y | 1 |
Yang, Z | 1 |
Kryl'skii, ED | 1 |
Popova, TN | 1 |
Safonova, OA | 1 |
Stolyarova, AO | 1 |
Razuvaev, GA | 1 |
de Carvalho, MAP | 1 |
Chen, W | 1 |
Juan, WS | 1 |
Huang, SY | 1 |
Chang, CC | 1 |
Hung, YC | 1 |
Lin, YW | 1 |
Lee, AH | 1 |
Lee, AC | 1 |
Wu, TS | 3 |
Lee, EJ | 3 |
Bhattacharya, P | 1 |
Pandey, AK | 1 |
Paul, S | 1 |
Patnaik, R | 1 |
Feng, D | 2 |
Xu, M | 1 |
Gao, A | 1 |
Zhang, L | 1 |
Cui, Y | 1 |
Chen, G | 1 |
Escribano, BM | 1 |
Colín-González, AL | 1 |
Santamaría, A | 1 |
Túnez, I | 1 |
Jiang, S | 1 |
Fan, C | 1 |
Zhao, L | 1 |
Di, S | 1 |
Yue, L | 1 |
Liang, G | 1 |
Qu, Y | 2 |
Kulesh, AA | 1 |
Lapaeva, TV | 1 |
Shestakov, VV | 1 |
Buendia, I | 1 |
Gómez-Rangel, V | 1 |
Gameiro, I | 1 |
Michalska, P | 1 |
Laudon, M | 1 |
Hermann, DM | 7 |
Berger, HR | 1 |
Morken, TS | 1 |
Vettukattil, R | 1 |
Brubakk, AM | 1 |
Sonnewald, U | 1 |
Widerøe, M | 1 |
Paterniti, I | 1 |
Cordaro, M | 1 |
Esposito, E | 1 |
Cuzzocrea, S | 2 |
Ramos, E | 1 |
Patiño, P | 1 |
Gil-Martín, E | 1 |
de Los Rios, C | 1 |
Romero, A | 1 |
Wang, B | 1 |
Abraham, N | 1 |
Tao, K | 1 |
Shi, W | 1 |
Sarkar, S | 1 |
Mukherjee, A | 1 |
Das, N | 1 |
Swarnakar, S | 1 |
García-Chávez, D | 1 |
González-Burgos, I | 3 |
López-Loeza, E | 3 |
Moralí, G | 4 |
Koh, PO | 3 |
Figueroa, BE | 1 |
Stavrovskaya, IG | 1 |
Sirianni, AC | 1 |
Zhu, S | 1 |
Day, AL | 1 |
Kristal, BS | 1 |
Ritzenthaler, T | 1 |
Nighoghossian, N | 1 |
Berthiller, J | 1 |
Schott, AM | 1 |
Cho, TH | 1 |
Derex, L | 1 |
Brun, J | 1 |
Trouillas, P | 1 |
Claustrat, B | 1 |
Atanassova, PA | 1 |
Terzieva, DD | 1 |
Dimitrov, BD | 1 |
Ozacmak, VH | 1 |
Barut, F | 1 |
Ozacmak, HS | 1 |
Hamada, F | 1 |
Watanabe, K | 1 |
Wakatsuki, A | 2 |
Nagai, R | 1 |
Shinohara, K | 1 |
Hayashi, Y | 1 |
Imamura, R | 1 |
Fukaya, T | 1 |
Arushanian, EB | 1 |
Naumov, SS | 1 |
Han, F | 2 |
Tao, RR | 2 |
Zhang, GS | 2 |
Lu, YM | 2 |
Liu, LL | 1 |
Chen, YX | 2 |
Lou, YJ | 1 |
Fukunaga, K | 2 |
Hong, ZH | 1 |
Huang, JY | 1 |
Ji, YL | 1 |
Liao, MH | 1 |
Qin, ZH | 1 |
Ugur, M | 1 |
Yüksel, A | 1 |
Deykun, K | 1 |
Pometlova, M | 1 |
Schutova, B | 1 |
Mares, J | 2 |
Chern, CM | 1 |
Liao, JF | 1 |
Wang, YH | 1 |
Shen, YC | 1 |
Maslennikova, DV | 1 |
Gan'shina, TS | 1 |
Oleĭnikova, ON | 1 |
Kurdiumov, IN | 1 |
Mirzoian, RS | 1 |
Jang, JW | 1 |
Lee, JK | 1 |
Lee, MC | 1 |
Piao, MS | 1 |
Kim, SH | 1 |
Kim, HS | 1 |
Poluéktov, MG | 1 |
Levin, IaI | 1 |
Boĭko, AN | 1 |
Skoromets, AA | 1 |
Bel'skaia, GN | 1 |
Gustov, AV | 1 |
Doronin, BM | 1 |
Poverennova, IE | 1 |
Spirin, NN | 1 |
Iakupov, EZ | 1 |
Sun, FY | 3 |
Lin, X | 1 |
Mao, LZ | 1 |
Ge, WH | 1 |
Zhang, LM | 3 |
Huang, YL | 1 |
Gu, J | 2 |
Pei, Z | 1 |
Fung, PC | 1 |
Cheung, RT | 1 |
Guo, JD | 1 |
Xing, SH | 1 |
Gu, SL | 1 |
Dai, TJ | 1 |
Sainz, RM | 1 |
Lopez-Burillo, S | 1 |
Mayo, JC | 1 |
Manchester, LC | 1 |
Tan, DX | 1 |
Torii, K | 1 |
Uneyama, H | 1 |
Nishino, H | 2 |
Kondoh, T | 1 |
Gupta, S | 1 |
Kaul, CL | 1 |
Sharma, SS | 1 |
Bassetti, CL | 4 |
Kavakli, A | 1 |
Sahna, E | 1 |
Parlakpinar, H | 1 |
Yahsi, S | 1 |
Ogeturk, M | 1 |
Acet, A | 1 |
Lee, MY | 2 |
Hsu, YS | 1 |
Chen, ST | 1 |
Chang, GL | 1 |
Kuo, YL | 1 |
Lin, SC | 1 |
Espinoza-González, V | 1 |
Olvera-Cortés, ME | 1 |
Matějovská, I | 1 |
Bernášková, K | 1 |
Krýsl, D | 1 |
Bacigaluppi, M | 1 |
Guo, Z | 1 |
Abdallah, NB | 1 |
Wolfer, DP | 1 |
Rennie, K | 1 |
de Butte, M | 1 |
Fréchette, M | 1 |
Pappas, BA | 1 |
Fiorina, P | 2 |
Lattuada, G | 2 |
Ponari, O | 2 |
Silvestrini, C | 2 |
DallAglio, P | 1 |
Okatani, Y | 1 |
Izumiya, C | 1 |
Ikenoue, N | 1 |
Li, XJ | 2 |
Zhang, AZ | 1 |
Dall'Aglio, P | 1 |
Ling, X | 1 |
Lu, SD | 1 |
Borlongan, CV | 1 |
Yamamoto, M | 1 |
Takei, N | 1 |
Kumazaki, M | 1 |
Ungsuparkorn, C | 1 |
Hida, H | 1 |
Sanberg, PR | 1 |
Costantino, G | 1 |
Gitto, E | 1 |
Mazzon, E | 1 |
Fulia, F | 1 |
Serraino, I | 1 |
Cordaro, S | 1 |
Barberi, I | 1 |
De Sarro, A | 1 |
Caputi, AP | 1 |
Sinha, K | 1 |
Degaonkar, MN | 1 |
Jagannathan, NR | 1 |
Gupta, YK | 1 |
Trial | Phase | Enrollment | Study Type | Start Date | Status | ||
---|---|---|---|---|---|---|---|
Use of Melatonin for Neuroprotection in Term Infants With Hypoxic-ischaemic Encephalopathy[NCT03806816] | 100 participants (Anticipated) | Interventional | 2018-12-13 | Recruiting | |||
A Multicenter, Randomized, Double-blind, Placebo-controlled Study Evaluating the Efficacy and Safety of Agomelatine in the Prevention of Poststroke Depression[NCT05426304] | Phase 4 | 420 participants (Anticipated) | Interventional | 2022-10-01 | Not yet recruiting | ||
The Protective Effect of Melatonin in Patients Under Carotid Endarterectomy[NCT03115034] | Phase 4 | 60 participants (Actual) | Interventional | 2016-06-01 | Completed | ||
[information is prepared from clinicaltrials.gov, extracted Sep-2024] |
7 reviews available for melatonin and Brain Ischemia
Article | Year |
---|---|
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia.
Topics: Brain Ischemia; Disease Progression; Humans; Huntington Disease; Melatonin; Multiple Sclerosis | 2014 |
The antioxidative property of melatonin against brain ischemia.
Topics: Antioxidants; Brain Ischemia; Free Radicals; Humans; Kynuramine; Melatonin | 2016 |
Ischemic brain injury: New insights on the protective role of melatonin.
Topics: Antioxidants; Blood-Brain Barrier; Brain Ischemia; Calcium; Humans; Melatonin; Neuroprotective Agent | 2017 |
[Stroke and epiphysis].
Topics: Aged; Brain Ischemia; Circadian Rhythm; Humans; Melatonin; Pineal Gland; Stroke | 2009 |
Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke.
Topics: Animals; Antioxidants; Brain; Brain Ischemia; Disease Models, Animal; Humans; Melatonin; Neuroprotec | 2003 |
Melatonin and ischemia-reperfusion injury of the brain.
Topics: Animals; Brain; Brain Ischemia; Humans; Melatonin; Reperfusion Injury | 2008 |
4 trials available for melatonin and Brain Ischemia
Article | Year |
---|---|
Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study.
Topics: Brain Ischemia; Dietary Supplements; Double-Blind Method; Humans; Ischemic Stroke; Melatonin; Pilot | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain; | 2022 |
The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial.
Topics: Aged; Aged, 80 and over; Animals; Blotting, Western; Brain Ischemia; Enzyme-Linked Immunosorbent Ass | 2018 |
[Chronobiological characteristics of stroke and poststroke cognitive impairment].
Topics: Adult; Aged; Brain Ischemia; Circadian Rhythm; Cognition; Female; Humans; Male; Melatonin; Middle Ag | 2014 |
95 other studies available for melatonin and Brain Ischemia
Article | Year |
---|---|
Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia.
Topics: Antioxidants; Brain Ischemia; Cell Line, Tumor; Humans; Hydrogen Bonding; Hydroxyl Radical; Models, | 2011 |
New 5-unsubstituted dihydropyridines with improved CaV1.3 selectivity as potential neuroprotective agents against ischemic injury.
Topics: Animals; Brain Ischemia; Calcium; Calcium Channels, L-Type; Calcium Signaling; Cell Line, Tumor; Dih | 2014 |
Enzymatic and solid-phase synthesis of new donepezil-based L- and d-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia.
Topics: Alzheimer Disease; Animals; Brain Ischemia; Calcium Channel Blockers; Cholinesterase Inhibitors; Don | 2017 |
Inflammatory Cytokines are in Action: Brain Plasticity and Recovery after Brain Ischemia Due to Delayed Melatonin Administration.
Topics: Animals; Anti-Inflammatory Agents; Brain Ischemia; Cytokines; Inflammation; Melatonin; Mice; Neurona | 2021 |
A stepwise-targeting strategy for the treatment of cerebral ischemic stroke.
Topics: Animals; Antioxidants; Brain; Brain Ischemia; Cell Line; Drug Delivery Systems; Melatonin; Mice; Mic | 2021 |
Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway.
Topics: Animals; Antioxidants; ARNTL Transcription Factors; Autophagy; Brain Ischemia; Diabetes Mellitus, Ex | 2021 |
Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K.
Topics: Animals; Brain Ischemia; Gliosis; Glycogen Synthase Kinase 3 beta; Inflammation; Male; Melatonin; Ne | 2022 |
Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway.
Topics: Animals; Bcl-2-Like Protein 11; Behavior, Animal; Brain; Brain Ischemia; Computational Biology; Dise | 2022 |
[Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes].
Topics: Animals; Astrocytes; Brain Ischemia; Electroacupuncture; Melatonin; Rats; Rats, Sprague-Dawley; Repe | 2022 |
Melatonin improves cognitive function by suppressing endoplasmic reticulum stress and promoting synaptic plasticity during chronic cerebral hypoperfusion in rats.
Topics: Acetylcholinesterase; Animals; Brain Ischemia; Cognition; Disease Models, Animal; Endoplasmic Reticu | 2022 |
Electroacupuncture Ameliorates Cognitive Impairment Through the Inhibition of NLRP3 Inflammasome Activation by Regulating Melatonin-Mediated Mitophagy in Stroke Rats.
Topics: Animals; Brain Ischemia; Cognitive Dysfunction; Electroacupuncture; Infarction, Middle Cerebral Arte | 2022 |
Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice.
Topics: Animals; Brain Ischemia; Cell Survival; Melatonin; Mice; Proto-Oncogene Proteins c-akt; Signal Trans | 2022 |
Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia.
Topics: Animals; Antioxidants; Brain Ischemia; Melatonin; Nanocapsules; Oxidative Stress; Polymers; Rats; Sh | 2022 |
Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality.
Topics: Animals; Brain; Brain Ischemia; Ischemia; Lipids; Melatonin; Nanocapsules; Sheep | 2022 |
Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke.
Topics: Animals; Brain Injuries; Brain Ischemia; Disease Models, Animal; Humans; Ischemic Stroke; Melatonin; | 2022 |
Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule.
Topics: Animals; Brain; Brain Ischemia; Cerebral Infarction; Endothelial Cells; Ischemic Stroke; Melatonin; | 2023 |
[Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis].
Topics: Animals; Brain Injuries; Brain Ischemia; Caspase 1; Cerebral Infarction; Electroacupuncture; Melaton | 2023 |
Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice.
Topics: Animals; Brain Injuries; Brain Ischemia; Infarction, Middle Cerebral Artery; Ischemic Stroke; Melato | 2023 |
Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats.
Topics: Animals; Brain Ischemia; Inflammation; Male; Melatonin; Necroptosis; Neuroinflammatory Diseases; Obe | 2023 |
Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy.
Topics: Animals; Autophagy; Beclin-1; Brain Injuries; Brain Ischemia; Caspase 3; Infarction; Infarction, Mid | 2023 |
Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects.
Topics: Animals; Brain Ischemia; Cerebral Infarction; Diabetes Mellitus, Type 1; Hyperglycemia; Infarction, | 2023 |
Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury.
Topics: Amides; Animals; Brain Ischemia; Cerebral Infarction; Magnetic Resonance Imaging; Melatonin; Microgl | 2023 |
Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase.
Topics: Animals; Brain Ischemia; Inflammation; Ischemia; Male; Melatonin; Microglia; Neuroimmunomodulation; | 2019 |
Combined Therapy With Hyperbaric Oxygen and Melatonin Effectively Reduce Brain Infarct Volume and Preserve Neurological Function After Acute Ischemic Infarct in Rat.
Topics: Animals; Apoptosis; Brain; Brain Infarction; Brain Ischemia; Disease Models, Animal; Hyperbaric Oxyg | 2019 |
Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation.
Topics: Animals; Apoptosis; Brain Ischemia; Infarction, Middle Cerebral Artery; Male; Melatonin; Mice; Mice, | 2019 |
Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway.
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Brain Ischemia; Cell Hypoxia; Cell Line | 2019 |
Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival.
Topics: Animals; ARNTL Transcription Factors; Brain Ischemia; Cell Line; Cell Survival; Glucose; Male; Melat | 2019 |
The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin.
Topics: Animals; Antioxidants; Apoptosis; Brain Ischemia; Cerebral Infarction; Circadian Rhythm; Disease Mod | 2020 |
Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats.
Topics: Animals; Anxiety; Brain Ischemia; Cytokines; Galectin 3; Male; Melatonin; Motor Activity; Rats; Rats | 2021 |
Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis.
Topics: Brain Ischemia; Delirium; Humans; Ischemic Stroke; Melatonin; Propensity Score; Prospective Studies; | 2021 |
Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats.
Topics: Animals; Brain Ischemia; Hematoma, Subdural, Intracranial; Hyperglycemia; Male; Melatonin; NLR Famil | 2021 |
Melatonin rescues cerebral ischemic events through upregulated tunneling nanotube-mediated mitochondrial transfer and downregulated mitochondrial oxidative stress in rat brain.
Topics: Animals; Apoptosis; Brain; Brain Ischemia; Cell Line, Tumor; Hydrogen Peroxide; Male; Melatonin; Mic | 2021 |
Melatonin Improves Reduced Activities of Membrane ATPases and Preserves Ultrastructure of Gray and White Matter in the Rat Brain Ischemia/Reperfusion Model.
Topics: Adenosine Triphosphatases; Animals; Brain Ischemia; Disease Models, Animal; Gray Matter; Melatonin; | 2021 |
Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells.
Topics: Animals; Brain Ischemia; Cell Line; Cell Membrane Structures; Hippocampus; Melatonin; Mice; Mitochon | 2021 |
Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway.
Topics: Animals; Apoptosis; Brain Edema; Brain Ischemia; Cell Line; Cell Survival; Chromones; Diabetes Melli | 2021 |
Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice.
Topics: Animals; Antioxidants; Brain Ischemia; Disease Models, Animal; Gene Expression Regulation; Immunoglo | 2017 |
Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain.
Topics: Animals; Animals, Newborn; Brain Ischemia; Cell Death; Female; Glial Fibrillary Acidic Protein; Mela | 2017 |
Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release.
Topics: Animals; Brain Injuries; Brain Ischemia; Cytochromes c; Male; Melatonin; Mice; Mitochondria; Recepto | 2017 |
Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke.
Topics: Brain Ischemia; Circadian Rhythm; Humans; Huntington Disease; Hydrocortisone; Male; Melatonin; Middl | 2017 |
Comparison of the Effect of Melatonin Treatment before and after Brain Ischemic Injury in the Inflammatory and Apoptotic Response in Aged Rats.
Topics: Aging; Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Gene Expression Regulation; G | 2018 |
Co-Administration of Progesterone and Melatonin Attenuates Ischemia-Induced Hippocampal Damage in Rats.
Topics: Animals; Apoptosis; Brain Ischemia; Drug Therapy, Combination; Hippocampus; Male; Maze Learning; Mel | 2018 |
Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion.
Topics: Adaptor Proteins, Signal Transducing; Animals; Antioxidants; Brain Ischemia; Cell Cycle Proteins; Ce | 2019 |
Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions.
Topics: Animals; Antioxidants; Brain; Brain Ischemia; Free Radicals; Ischemia; Male; Melatonin; Nerve Tissue | 2019 |
Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-κB pathway.
Topics: Animals; Brain; Brain Ischemia; Diffusion Tensor Imaging; Disease Models, Animal; Infarction, Middle | 2019 |
Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral isch
Topics: Animals; Behavior, Animal; Brain; Brain Ischemia; Cells, Cultured; Disks Large Homolog 4 Protein; GA | 2014 |
Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia.
Topics: Animals; Antioxidants; Apoptosis; Aquaporin 4; Blotting, Western; Brain Edema; Brain Ischemia; Calci | 2014 |
Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin.
Topics: Animals; Blotting, Western; Brain; Brain Ischemia; In Situ Nick-End Labeling; Male; Melatonin; Membr | 2014 |
Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice.
Topics: Animals; Antioxidants; Brain Ischemia; Carbazoles; Cell Death; Male; Melatonin; Mice; Mitochondria; | 2015 |
Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models.
Topics: Animals; Antioxidants; Brain; Brain Ischemia; Cell Hypoxia; Cell Line, Tumor; Disease Models, Animal | 2015 |
Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation.
Topics: Animals; Antioxidants; bcl-2-Associated X Protein; bcl-X Protein; Blood-Brain Barrier; Brain; Brain | 2015 |
No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat.
Topics: Acetates; Animals; Animals, Newborn; Antioxidants; Astrocytes; Brain Injuries; Brain Ischemia; Disea | 2016 |
Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.
Topics: Animals; Autophagy; Brain Ischemia; eIF-2 Kinase; Endoplasmic Reticulum Stress; Male; Melatonin; Mem | 2017 |
Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators.
Topics: Aging; Animals; Antioxidants; Blood-Brain Barrier; Brain Ischemia; Disease Models, Animal; Female; M | 2017 |
Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats.
Topics: Analysis of Variance; Animals; Antioxidants; Brain Ischemia; Dendrites; Disease Models, Animal; Drug | 2008 |
Melatonin attenuates the cerebral ischemic injury via the MEK/ERK/p90RSK/bad signaling cascade.
Topics: Animals; bcl-Associated Death Protein; Brain Injuries; Brain Ischemia; Cell Death; Cerebral Infarcti | 2008 |
Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury.
Topics: Animals; Antioxidants; Blotting, Western; Brain Ischemia; Carbonic Anhydrase Inhibitors; Caspase 1; | 2009 |
Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke.
Topics: Adolescent; Age Factors; Aged; Brain Ischemia; Chi-Square Distribution; Circadian Rhythm; Female; Hu | 2009 |
Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis.
Topics: Brain Ischemia; Case-Control Studies; Creatinine; Cross-Sectional Studies; Female; Humans; Hydrocort | 2009 |
Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats.
Topics: Animals; Brain Ischemia; Chronic Disease; Female; Glutathione; Hippocampus; Histocytochemistry; HSP7 | 2009 |
Therapeutic effects of maternal melatonin administration on ischemia/reperfusion-induced oxidative cerebral damage in neonatal rats.
Topics: Animals; Animals, Newborn; Brain Ischemia; CA1 Region, Hippocampal; CA3 Region, Hippocampal; Female; | 2010 |
Melatonin ameliorates ischemic-like injury-evoked nitrosative stress: Involvement of HtrA2/PED pathways in endothelial cells.
Topics: Animals; Apoptosis Regulatory Proteins; Brain Ischemia; Cell Line; Cell Survival; Endothelial Cells; | 2011 |
Regulation of the ischemia-induced autophagy-lysosome processes by nitrosative stress in endothelial cells.
Topics: Animals; Autophagy; Brain; Brain Ischemia; Cell Line; Endothelial Cells; Glucose; Humans; Immunohist | 2011 |
Melatonin prevents down-regulation of astrocytic phosphoprotein PEA-15 in ischemic brain injury.
Topics: Animals; Apoptosis Regulatory Proteins; Astrocytes; Blotting, Western; Brain Ischemia; Cell Line; El | 2011 |
Melatonin attenuates decrease of protein phosphatase 2A subunit B in ischemic brain injury.
Topics: Analysis of Variance; Animals; Brain; Brain Chemistry; Brain Ischemia; Carrier Proteins; Cell Line; | 2012 |
Evidence that membrane-bound G protein-coupled melatonin receptors MT1 and MT2 are not involved in the neuroprotective effects of melatonin in focal cerebral ischemia.
Topics: Animals; Antioxidants; Blotting, Western; Brain Ischemia; Male; Melatonin; Mice; Mice, Knockout; Neu | 2012 |
Modulations of behavioral consequences of minor cortical ischemic lesion by application of free radicals scavengers.
Topics: Animals; Behavior, Animal; Brain Ischemia; Cognition; Cyclic N-Oxides; Feedback, Sensory; Free Radic | 2011 |
Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice.
Topics: Animals; Base Sequence; Brain Ischemia; DNA Primers; Immunohistochemistry; Melatonin; Mice; Neurogen | 2012 |
[GABAergic mechanism of the cerebrovascular effect of melatonin].
Topics: Animals; Blood Flow Velocity; Blood Pressure; Brain Ischemia; Central Nervous System Depressants; Ce | 2012 |
Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model.
Topics: Animals; Blood-Brain Barrier; Body Water; Brain Edema; Brain Ischemia; Disease Models, Animal; Drug | 2012 |
[The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia].
Topics: Brain Ischemia; Female; Humans; Male; Melatonin; Middle Aged; Sleep Initiation and Maintenance Disor | 2012 |
Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia.
Topics: Animals; Apoptosis; Brain Ischemia; Cerebral Arteries; Disease Models, Animal; DNA; DNA Damage; DNA | 2002 |
Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model.
Topics: Animals; Blood-Brain Barrier; Brain Ischemia; Disease Models, Animal; Electron Spin Resonance Spectr | 2003 |
[The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils].
Topics: Animals; Brain Ischemia; Female; Gerbillinae; Hippocampus; Learning; Male; Melatonin; Memory; Motor | 2002 |
Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging.
Topics: Animals; Brain Edema; Brain Ischemia; Corpus Striatum; Infarction, Middle Cerebral Artery; Magnetic | 2004 |
Neuroprotective effect of combination of poly (ADP-ribose) polymerase inhibitor and antioxidant in middle cerebral artery occlusion induced focal ischemia in rats.
Topics: Animals; Antioxidants; Benzamides; Brain Ischemia; Disease Models, Animal; Drug Combinations; Drug T | 2004 |
Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator.
Topics: Animals; Brain Ischemia; Caspase 3; Caspase Inhibitors; Cell Death; Coronary Disease; Corpus Striatu | 2004 |
Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1.
Topics: Animals; Antioxidants; Aspartic Acid Endopeptidases; Blotting, Western; Brain Ischemia; Endothelin-C | 2004 |
The effects of melatonin on focal cerebral ischemia-reperfusion model.
Topics: Animals; Brain Ischemia; Cell Survival; Cerebral Cortex; Disease Models, Animal; Infarction, Middle | 2004 |
Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia.
Topics: Animals; Brain; Brain Ischemia; DNA; Hydroxylation; Lipid Peroxidation; Male; Melatonin; Mice; Mice, | 2005 |
Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice.
Topics: Animals; Blotting, Western; Brain Ischemia; Female; Melatonin; Mice; Mice, Inbred C57BL; Mitogen-Act | 2005 |
Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt.
Topics: Animals; Blotting, Western; Brain Ischemia; Immunohistochemistry; Laser-Doppler Flowmetry; Male; Mel | 2005 |
Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice.
Topics: Animals; Blood-Brain Barrier; Brain Ischemia; Infarction, Middle Cerebral Artery; Intracranial Hemor | 2006 |
Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats.
Topics: Animals; Brain Ischemia; Male; Melatonin; Neuroprotective Agents; Rats | 2007 |
Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion.
Topics: Animals; Antioxidants; Atmospheric Pressure; Brain Ischemia; Cerebral Cortex; Endothelial Cells; Fre | 2008 |
Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats.
Topics: Animals; Brain Ischemia; Dendritic Spines; Maze Learning; Melatonin; Neuronal Plasticity; Neuroprote | 2007 |
Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice.
Topics: Animals; Antioxidants; Anxiety; Brain Ischemia; Cell Survival; Doublecortin Domain Proteins; Hyperki | 2008 |
Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome.
Topics: Animals; Behavior, Animal; Brain Ischemia; Cell Count; Cell Differentiation; Disease Models, Animal; | 2008 |
Impaired nocturnal melatonin excretion and changes of immunological status in ischaemic stroke patients.
Topics: Brain Ischemia; Female; Humans; Immunity, Cellular; Male; Melatonin; Middle Aged | 1996 |
Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain.
Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Brain; Brain Ischemia; Deoxyguanosine; DNA; DNA Damage; Female | 1999 |
Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion.
Topics: Animals; Brain Ischemia; Free Radical Scavengers; Gentisates; Hydroxyl Radical; Male; Melatonin; Rat | 1997 |
Disruption of nocturnal melatonin rhythm and immunological involvement in ischaemic stroke patients.
Topics: B-Lymphocytes; Brain Ischemia; CD3 Complex; CD4-Positive T-Lymphocytes; Female; Humans; Hydrocortiso | 1999 |
Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression.
Topics: Animals; bcl-2-Associated X Protein; Brain; Brain Ischemia; Male; Melatonin; Neurons; Neuroprotectiv | 1999 |
Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia.
Topics: Animals; Brain Ischemia; Cell Death; Cell Survival; Cerebral Infarction; Free Radical Scavengers; Gl | 2000 |
Protective effects of melatonin in ischemic brain injury.
Topics: Animals; Brain; Brain Edema; Brain Ischemia; Enzyme-Linked Immunosorbent Assay; Free Radical Scaveng | 2000 |
Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats.
Topics: Animals; Antioxidants; Brain; Brain Ischemia; Glutathione; Infarction, Middle Cerebral Artery; Injec | 2001 |