Page last updated: 2024-10-19

melatonin and Brain Ischemia

melatonin has been researched along with Brain Ischemia in 105 studies

Brain Ischemia: Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.

Research Excerpts

ExcerptRelevanceReference
"We explored the potential efficacy of melatonin in the treatment of patients with acute ischemic stroke."9.51Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. ( Ahmadimoghaddam, D; Khazaie, M; Mazdeh, M; Mehrpooya, M; Rahmani, E, 2022)
"This review summarizes the numerous reports that have documented the neuroprotective actions of melatonin in experimental models of ischemia/reperfusion injury (stroke)."8.82Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. ( Lopez-Burillo, S; Manchester, LC; Mayo, JC; Reiter, RJ; Sainz, RM; Tan, DX, 2003)
"To investigate the mechanism of electroacupuncture in alleviating cerebral ischemia injury in cerebral ischemia-reperfusion rats by regulating melatonin - NOD-like receptor protein 3 (NLRP3) mediated pyroptosis."8.31[Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis]. ( Chen, B; Liang, H; Liu, JJ; Luo, J; Ruan, S; Wang, F; Wang, YX; Yan, NW; Zhong, XY, 2023)
"The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region."8.31Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. ( Gul, M; Gul, S; Koc, A; Sandal, S; Tanbek, K; Yilmaz, U, 2023)
" Melatonin is neuroprotective against cerebral ischemia-reperfusion injury (CIRI) in non-DM, normoglycemic animals through anti-oxidant effect, anti-inflammation, and anti-apoptosis."8.31Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects. ( Cheung, RTF; Xu, Q, 2023)
" In this study, the neuroprotective effects of melatonin (Mel) on a rat model of cerebral ischemia/reperfusion injury (CIRI) were assessed by multi-parametric MRI combined with histopathological techniques for longitudinal monitoring of the lesion microenvironment."8.31Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury. ( An, L; Bi, F; Gong, P; Li, C; Li, Z; Song, X; Wang, X; Xiao, P; Yu, M; Zhang, M, 2023)
"To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway."8.12Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway. ( Chen, X; Deng, Y; Lai, J; Ou, Y; Peng, X; Shen, X; Wu, H; Wu, L; Yao, Z; Zhu, H, 2022)
"To observe the effect of electroacupuncture(EA)at "Baihui"(GV20) and "Shenting" (GV24) on the expression of melatonin synthesis rate-limiting enzyme-arylalkylamine N-acetyltransferase(AANAT)in pineal gland of rats with focal cerebral ischemia-reperfusion injury, so as to explore the mechanism of EA underlying improving ischemia-reperfusion injury."8.12[Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes]. ( Chen, B; Liang, H; Luo, J; Ruan, S; Wang, F; Wang, YX; Zhong, XY, 2022)
"Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention."8.12Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. ( Altug-Tasa, B; Beker, M; Beker, MC; Caglayan, AB; Elibol, B; Kilic, E; Kilic, U; Uysal, O; Yilmaz, B, 2022)
"Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke."8.12Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke. ( Cambiaghi, M; Cherchi, L; Comai, S, 2022)
" Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown."8.02Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. ( Cao, Q; Gao, W; Li, BY; Liu, L; Xia, Z; Zeng, C; Zhao, B, 2021)
"Melatonin treatment following AGCI reduces pro-inflammatory factors, Gal-3, motility, and anxiety, therefore it should be considered as supplementary treatment following ischemic stroke."8.02Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. ( Cervantes, M; Fenton-Navarro, B; Garduño Ríos, D; Letechipía-Vallejo, G; Torner, L, 2021)
"Consecutive patients admitted to the Tübingen University Stroke Unit, Tübingen, Germany, with acute ischemic stroke (AIS), who underwent standard care between August 2017 and December 2017, and patients who additionally received prophylactic melatonin (2 mg per day at night) within 24 h of symptom onset between August 2018 and December 2018 were included."8.02Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis. ( Boßelmann, C; Brendel, B; Fleischmann, R; Meisel, A; Mengel, A; Poli, S; Sartor-Pfeiffer, J; Stadler, V; Stefanou, MI; Ziemann, U; Zurloh, J, 2021)
"Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury."7.91Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. ( Chen, H; Jin, J; Li, G; Liu, L; Tang, Z; Yin, P; Zhong, D, 2019)
"The article studies the effect of melatonin on the intensity of free radical oxidation, the functioning of the enzymatic components of the antioxidant system and their transcriptional regulation in rats with experimental cerebral ischemia/reperfusion of the brain."7.91Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. ( de Carvalho, MAP; Kryl'skii, ED; Popova, TN; Razuvaev, GA; Safonova, OA; Stolyarova, AO, 2019)
"Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice."7.85Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. ( Beker, MC; Caglayan, AB; Caglayan, B; Gunal, MY; Gundogdu, RZ; Kelestemur, T; Kerman, BE; Kilic, E; Kilic, U; Yalcin, E; Yılmaz, B; Yulug, B, 2017)
" In this study, we examined diurnal rhythmicity in different stages of Huntington (HD) disease and in patients with acute moderate ischemic stroke (AIS) outside the retinohypothalamic pathway by evaluating serum concentrations of melatonin and cortisol at twelve timepoints."7.85Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke. ( Adamczak-Ratajczak, A; Checinska-Maciejewska, Z; Gibas-Dorna, M; Krauss, H; Kupsz, J; Michalak, S; Owecki, M; Sowinska, A; Zielonka, D, 2017)
"Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema."7.80Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. ( Bhattacharya, P; Pandey, AK; Patnaik, R; Paul, S, 2014)
"Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood."7.78Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. ( Chern, CM; Liao, JF; Shen, YC; Wang, YH, 2012)
"The results of the multicenter open-label observational study of the efficacy and safety of the Melaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia are presented."7.78[The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia]. ( Bel'skaia, GN; Boĭko, AN; Doronin, BM; Gustov, AV; Iakupov, EZ; Levin, IaI; Poluéktov, MG; Poverennova, IE; Skoromets, AA; Spirin, NN, 2012)
"Quantitative data on melatonin in stroke patients are scarce."7.75Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis. ( Atanassova, PA; Dimitrov, BD; Terzieva, DD, 2009)
" We tested the sensitivity of PT to preconditioning with hypobaric hypoxia and to pretreatment with melatonin."7.74Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion. ( Bernášková, K; Krýsl, D; Mares, J; Matějovská, I, 2008)
"Melatonin reduces pyramidal neuronal death in the hippocampus and prevents the impairment of place learning and memory in the Morris water maze, otherwise occurring following global cerebral ischemia."7.74Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. ( Cervantes, M; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2007)
"Melatonin attenuates the short-term consequences of brain ischemia in several animal models."7.74Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome. ( de Butte, M; Fréchette, M; Pappas, BA; Rennie, K, 2008)
" melatonin (4 + 4 mg/kg, after induction of ischemia and at reperfusion onset) administered either alone or in combination with the thrombolytic tissue-plasminogen activator (t-PA, 10 mg/kg), on cerebral laser Doppler flow (LDF) and ischemic injury were studied after 30 min of middle cerebral artery (MCA) thread occlusion in male C57BL/6 mice."7.72Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. ( Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Yulug, B, 2004)
"To investigate the effects of melatonin (MT) on histology and behavioral tests during global cerebral ischemia-reperfusion in gerbils."7.71[The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. ( Dai, TJ; Gu, SL; Guo, JD; Xing, SH; Zhang, J, 2002)
"Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes."6.53The antioxidative property of melatonin against brain ischemia. ( Cordaro, M; Cuzzocrea, S; Esposito, E; Paterniti, I, 2016)
"On the other hand, cerebral ischemia is a major cause of human disability all over the world."6.50The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia. ( Colín-González, AL; Escribano, BM; Santamaría, A; Túnez, I, 2014)
" Special attention has been paid to the advantageous characteristics of melatonin as a neuroprotective drug: bioavailability into brain cells and cellular organelles targeted by morpho-functional derangement; effectiveness in exerting several neuroprotective actions, which can be amplified and prolonged by its metabolites, through direct and indirect antioxidant activity; prevention and reversal of mitochondrial malfunction, reducing inflammation, derangement of cytoskeleton organization, and pro-apoptotic cell signaling; lack of interference with thrombolytic and neuroprotective actions of other drugs; and an adequate safety profile."6.44Melatonin and ischemia-reperfusion injury of the brain. ( Cervantes, M; Letechipía-Vallejo, G; Moralí, G, 2008)
"Melatonin is a promising neuroprotective agent that can regulate microglial polarization in central nervous system (CNS) diseases."5.91Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice. ( He, T; Li, D; Liu, J; Wang, D; Wang, Q; Yuan, Y; Zhang, S; Zhang, Y; Zhao, H, 2023)
"Obesity is well-established as a common comorbidity in ischemic stroke."5.91Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. ( Govitrapong, P; Sengking, J; Tocharus, C; Tocharus, J; Yawoot, N, 2023)
"Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts."5.62Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. ( Cao, Q; Gao, W; Li, B; Liu, L; Xia, Z; Zhao, B, 2021)
"Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice."5.56The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. ( Ai, L; Gao, L; Gao, Y; Petersen, L; Pu, J; Qin, Z; Tong, R; Yan, Y; Zang, M; Zhao, Y; Zhong, F; Zhu, C, 2020)
"We explored the potential efficacy of melatonin in the treatment of patients with acute ischemic stroke."5.51Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. ( Ahmadimoghaddam, D; Khazaie, M; Mazdeh, M; Mehrpooya, M; Rahmani, E, 2022)
"Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain."5.51Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. ( Ding, ZT; Gao, FH; Gong, WJ; Liu, ZJ; Qie, SY; Ran, YY; Xi, JN, 2019)
"Melatonin has demonstrated a potential protective effect in central nervous system."5.46Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. ( Abraham, N; Dong, Y; Feng, D; Huang, L; Qu, Y; Shi, W; Tao, K; Wang, B; Wang, L, 2017)
"Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors."5.42Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. ( Buendia, I; Egea, J; Gameiro, I; Gómez-Rangel, V; González-Lafuente, L; Laudon, M; León, R; López, MG; Michalska, P; Parada, E, 2015)
"Global cerebral ischemia induces alterations of working memory, as evidenced in the eight-arm radial maze, in the absence of significant changes of pyramidal neuron population in the prefrontal cortex."5.35Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats. ( Cervantes, M; García-Chávez, D; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2008)
"Melatonin and aMT6S were measured by radioimmunoassay."5.35Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. ( Berthiller, J; Brun, J; Cho, TH; Claustrat, B; Derex, L; Nighoghossian, N; Ritzenthaler, T; Schott, AM; Trouillas, P, 2009)
"Melatonin is a potent antioxidant with neuroprotective activity in animal models of ischemic stroke, which based on its lack of serious toxicity has raised hopes that it might be used for human stroke treatment in the future."5.35Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. ( Abdallah, NB; Bacigaluppi, M; Bassetti, CL; Guo, Z; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Wolfer, DP, 2008)
"Melatonin-treated animals also had significantly reduced immunopositive reactions for 8-OHdG and 4-HNE by 53% (P<0."5.33Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. ( Chang, GL; Chen, HY; Chen, ST; Hsu, YS; Lee, EJ; Lee, MY; Wu, TS, 2005)
"Treatment with melatonin at 1."5.32Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. ( Cheung, RT; Fung, PC; Pei, Z, 2003)
"Treatment with melatonin significantly reduced the infarct size by approximately 30-35%, independent of whether the indole was given prophylactically before or acutely after ischemia."5.32Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2004)
"The data on the role of epiphysis and its key hormone melatonin in the natural mechanisms of brain protection from stroke are reviewed."4.85[Stroke and epiphysis]. ( Arushanian, EB; Naumov, SS, 2009)
"This review summarizes the numerous reports that have documented the neuroprotective actions of melatonin in experimental models of ischemia/reperfusion injury (stroke)."4.82Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. ( Lopez-Burillo, S; Manchester, LC; Mayo, JC; Reiter, RJ; Sainz, RM; Tan, DX, 2003)
"To investigate the mechanism of electroacupuncture in alleviating cerebral ischemia injury in cerebral ischemia-reperfusion rats by regulating melatonin - NOD-like receptor protein 3 (NLRP3) mediated pyroptosis."4.31[Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis]. ( Chen, B; Liang, H; Liu, JJ; Luo, J; Ruan, S; Wang, F; Wang, YX; Yan, NW; Zhong, XY, 2023)
"The aim of this study was to investigate how melatonin administration for 3 days or 7 days following cerebral ischemia (CI) injury would affect autophagy and, therefore, survival in neurons of the penumbra region."4.31Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy. ( Gul, M; Gul, S; Koc, A; Sandal, S; Tanbek, K; Yilmaz, U, 2023)
" Melatonin is neuroprotective against cerebral ischemia-reperfusion injury (CIRI) in non-DM, normoglycemic animals through anti-oxidant effect, anti-inflammation, and anti-apoptosis."4.31Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects. ( Cheung, RTF; Xu, Q, 2023)
" In this study, the neuroprotective effects of melatonin (Mel) on a rat model of cerebral ischemia/reperfusion injury (CIRI) were assessed by multi-parametric MRI combined with histopathological techniques for longitudinal monitoring of the lesion microenvironment."4.31Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury. ( An, L; Bi, F; Gong, P; Li, C; Li, Z; Song, X; Wang, X; Xiao, P; Yu, M; Zhang, M, 2023)
"Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634)."4.21 ( Abbasi, S; Abd El-Wahab, A; Abdallah, M; Abebe, G; Aca-Aca, G; Adama, S; Adefegha, SA; Adidigue-Ndiome, R; Adiseshaiah, P; Adrario, E; Aghajanian, C; Agnese, W; Ahmad, A; Ahmad, I; Ahmed, MFE; Akcay, OF; Akinmoladun, AC; Akutagawa, T; Alakavuklar, MA; Álava-Rabasa, S; Albaladejo-Florín, MJ; Alexandra, AJE; Alfawares, R; Alferiev, IS; Alghamdi, HS; Ali, I; Allard, B; Allen, JD; Almada, E; Alobaid, A; Alonso, GL; Alqahtani, YS; Alqarawi, W; Alsaleh, H; Alyami, BA; Amaral, BPD; Amaro, JT; Amin, SAW; Amodio, E; Amoo, ZA; Andia Biraro, I; Angiolella, L; Anheyer, D; Anlay, DZ; Annex, BH; Antonio-Aguirre, B; Apple, S; Arbuznikov, AV; Arinsoy, T; Armstrong, DK; Ash, S; Aslam, M; Asrie, F; Astur, DC; Atzrodt, J; Au, DW; Aucoin, M; Auerbach, EJ; Azarian, S; Ba, D; Bai, Z; Baisch, PRM; Balkissou, AD; Baltzopoulos, V; Banaszewski, M; Banerjee, S; Bao, Y; Baradwan, A; Barandika, JF; Barger, PM; Barion, MRL; Barrett, CD; Basudan, AM; Baur, LE; Baz-Rodríguez, SA; Beamer, P; Beaulant, A; Becker, DF; Beckers, C; Bedel, J; Bedlack, R; Bermúdez de Castro, JM; Berry, JD; Berthier, C; Bhattacharya, D; Biadgo, B; Bianco, G; Bianco, M; Bibi, S; Bigliardi, AP; Billheimer, D; Birnie, DH; Biswas, K; Blair, HC; Bognetti, P; Bolan, PJ; Bolla, JR; Bolze, A; Bonnaillie, P; Borlimi, R; Bórquez, J; Bottari, NB; Boulleys-Nana, JR; Brighetti, G; Brodeur, GM; Budnyak, T; Budnyk, S; Bukirwa, VD; Bulman, DM; Burm, R; Busman-Sahay, K; Butcher, TW; Cai, C; Cai, H; Cai, L; Cairati, M; Calvano, CD; Camacho-Ordóñez, A; Camela, E; Cameron, T; Campbell, BS; Cansian, RL; Cao, Y; Caporale, AS; Carciofi, AC; Cardozo, V; Carè, J; Carlos, AF; Carozza, R; Carroll, CJW; Carsetti, A; Carubelli, V; Casarotta, E; Casas, M; Caselli, G; Castillo-Lora, J; Cataldi, TRI; Cavalcante, ELB; Cavaleiro, A; Cayci, Z; Cebrián-Tarancón, C; Cedrone, E; Cella, D; Cereda, C; Ceretti, A; Ceroni, M; Cha, YH; Chai, X; Chang, EF; Chang, TS; Chanteux, H; Chao, M; Chaplin, BP; Chaturvedi, S; Chaturvedi, V; Chaudhary, DK; Chen, A; Chen, C; Chen, HY; Chen, J; Chen, JJ; Chen, K; Chen, L; Chen, Q; Chen, R; Chen, SY; Chen, TY; Chen, WM; Chen, X; Chen, Y; Cheng, G; Cheng, GJ; Cheng, J; Cheng, YH; Cheon, HG; Chew, KW; Chhoker, S; Chiu, WN; Choi, ES; Choi, MJ; Choi, SD; Chokshi, S; Chorny, M; Chu, KI; Chu, WJ; Church, AL; Cirrincione, A; Clamp, AR; Cleff, MB; Cohen, M; Coleman, RL; Collins, SL; Colombo, N; Conduit, N; Cong, WL; Connelly, MA; Connor, J; Cooley, K; Correa Ramos Leal, I; Cose, S; Costantino, C; Cottrell, M; Cui, L; Cundall, J; Cutaia, C; Cutler, CW; Cuypers, ML; da Silva Júnior, FMR; Dahal, RH; Damiani, E; Damtie, D; Dan-Li, W; Dang, Z; Dasa, SSK; Davin, A; Davis, DR; de Andrade, CM; de Jong, PL; de Oliveira, D; de Paula Dorigam, JC; Dean, A; Deepa, M; Delatour, C; Dell'Aiera, S; Delley, MF; den Boer, RB; Deng, L; Deng, Q; Depner, RM; Derdau, V; Derici, U; DeSantis, AJ; Desmarini, D; Diffo-Sonkoue, L; Divizia, M; Djenabou, A; Djordjevic, JT; Dobrovolskaia, MA; Domizi, R; Donati, A; Dong, Y; Dos Santos, M; Dos Santos, MP; Douglas, RG; Duarte, PF; Dullaart, RPF; Duscha, BD; Edwards, LA; Edwards, TE; Eichenwald, EC; El-Baba, TJ; Elashiry, M; Elashiry, MM; Elashry, SH; Elliott, A; Elsayed, R; Emerson, MS; Emmanuel, YO; Emory, TH; Endale-Mangamba, LM; Enten, GA; Estefanía-Fernández, K; Estes, JD; Estrada-Mena, FJ; Evans, S; Ezra, L; Faria de, RO; Farraj, AK; Favre, C; Feng, B; Feng, J; Feng, L; Feng, W; Feng, X; Feng, Z; Fernandes, CLF; Fernández-Cuadros, ME; Fernie, AR; Ferrari, D; Florindo, PR; Fong, PC; Fontes, EPB; Fontinha, D; Fornari, VJ; Fox, NP; Fu, Q; Fujitaka, Y; Fukuhara, K; Fumeaux, T; Fuqua, C; Fustinoni, S; Gabbanelli, V; Gaikwad, S; Gall, ET; Galli, A; Gancedo, MA; Gandhi, MM; Gao, D; Gao, K; Gao, M; Gao, Q; Gao, X; Gao, Y; Gaponenko, V; Garber, A; Garcia, EM; García-Campos, C; García-Donas, J; García-Pérez, AL; Gasparri, F; Ge, C; Ge, D; Ge, JB; Ge, X; George, I; George, LA; Germani, G; Ghassemi Tabrizi, S; Gibon, Y; Gillent, E; Gillies, RS; Gilmour, MI; Goble, S; Goh, JC; Goiri, F; Goldfinger, LE; Golian, M; Gómez, MA; Gonçalves, J; Góngora-García, OR; Gonul, I; González, MA; Govers, TM; Grant, PC; Gray, EH; Gray, JE; Green, MS; Greenwald, I; Gregory, MJ; Gretzke, D; Griffin-Nolan, RJ; Griffith, DC; Gruppen, EG; Guaita, A; Guan, P; Guan, X; Guerci, P; Guerrero, DT; Guo, M; Guo, P; Guo, R; Guo, X; Gupta, J; Guz, G; Hajizadeh, N; Hamada, H; Haman-Wabi, AB; Han, TT; Hannan, N; Hao, S; Harjola, VP; Harmon, M; Hartmann, MSM; Hartwig, JF; Hasani, M; Hawthorne, WJ; Haykal-Coates, N; Hazari, MS; He, DL; He, P; He, SG; Héau, C; Hebbar Kannur, K; Helvaci, O; Heuberger, DM; Hidalgo, F; Hilty, MP; Hirata, K; Hirsch, A; Hoffman, AM; Hoffmann, JF; Holloway, RW; Holmes, RK; Hong, S; Hongisto, M; Hopf, NB; Hörlein, R; Hoshino, N; Hou, Y; Hoven, NF; Hsieh, YY; Hsu, CT; Hu, CW; Hu, JH; Hu, MY; Hu, Y; Hu, Z; Huang, C; Huang, D; Huang, DQ; Huang, L; Huang, Q; Huang, R; Huang, S; Huang, SC; Huang, W; Huang, Y; Huffman, KM; Hung, CH; Hung, CT; Huurman, R; Hwang, SM; Hyun, S; Ibrahim, AM; Iddi-Faical, A; Immordino, P; Isla, MI; Jacquemond, V; Jacques, T; Jankowska, E; Jansen, JA; Jäntti, T; Jaque-Fernandez, F; Jarvis, GA; Jatt, LP; Jeon, JW; Jeong, SH; Jhunjhunwala, R; Ji, F; Jia, X; Jia, Y; Jian-Bo, Z; Jiang, GD; Jiang, L; Jiang, W; Jiang, WD; Jiang, Z; Jiménez-Hoyos, CA; Jin, S; Jobling, MG; John, CM; John, T; Johnson, CB; Jones, KI; Jones, WS; Joseph, OO; Ju, C; Judeinstein, P; Junges, A; Junnarkar, M; Jurkko, R; Kaleka, CC; Kamath, AV; Kang, X; Kantsadi, AL; Kapoor, M; Karim, Z; Kashuba, ADM; Kassa, E; Kasztura, M; Kataja, A; Katoh, T; Kaufman, JS; Kaupp, M; Kehinde, O; Kehrenberg, C; Kemper, N; Kerr, CW; Khan, AU; Khan, MF; Khan, ZUH; Khojasteh, SC; Kilburn, S; Kim, CG; Kim, DU; Kim, DY; Kim, HJ; Kim, J; Kim, OH; Kim, YH; King, C; Klein, A; Klingler, L; Knapp, AK; Ko, TK; Kodavanti, UP; Kolla, V; Kong, L; Kong, RY; Kong, X; Kore, S; Kortz, U; Korucu, B; Kovacs, A; Krahnert, I; Kraus, WE; Kuang, SY; Kuehn-Hajder, JE; Kurz, M; Kuśtrowski, P; Kwak, YD; Kyttaris, VC; Laga, SM; Laguerre, A; Laloo, A; Langaro, MC; Langham, MC; Lao, X; Larocca, MC; Lassus, J; Lattimer, TA; Lazar, S; Le, MH; Leal, DB; Leal, M; Leary, A; Ledermann, JA; Lee, JF; Lee, MV; Lee, NH; Leeds, CM; Leeds, JS; Lefrandt, JD; Leicht, AS; Leonard, M; Lev, S; Levy, K; Li, B; Li, C; Li, CM; Li, DH; Li, H; Li, J; Li, L; Li, LJ; Li, N; Li, P; Li, T; Li, X; Li, XH; Li, XQ; Li, XX; Li, Y; Li, Z; Li, ZY; Liao, YF; Lin, CC; Lin, MH; Lin, Y; Ling, Y; Links, TP; Lira-Romero, E; Liu, C; Liu, D; Liu, H; Liu, J; Liu, L; Liu, LP; Liu, M; Liu, T; Liu, W; Liu, X; Liu, XH; Liu, Y; Liuwantara, D; Ljumanovic, N; Lobo, L; Lokhande, K; Lopes, A; Lopes, RMRM; López-Gutiérrez, JC; López-Muñoz, MJ; López-Santamaría, M; Lorenzo, C; Lorusso, D; Losito, I; Lu, C; Lu, H; Lu, HZ; Lu, SH; Lu, SN; Lu, Y; Lu, ZY; Luboga, F; Luo, JJ; Luo, KL; Luo, Y; Lutomski, CA; Lv, W; M Piedade, MF; Ma, J; Ma, JQ; Ma, JX; Ma, N; Ma, P; Ma, S; Maciel, M; Madureira, M; Maganaris, C; Maginn, EJ; Mahnashi, MH; Maierhofer, M; Majetschak, M; Malla, TR; Maloney, L; Mann, DL; Mansuri, A; Marelli, E; Margulis, CJ; Marrella, A; Martin, BL; Martín-Francés, L; Martínez de Pinillos, M; Martínez-Navarro, EM; Martinez-Quintanilla Jimenez, D; Martínez-Velasco, A; Martínez-Villaseñor, L; Martinón-Torres, M; Martins, BA; Massongo, M; Mathew, AP; Mathews, D; Matsui, J; Matsumoto, KI; Mau, T; Maves, RC; Mayclin, SJ; Mayer, JM; Maynard, ND; Mayr, T; Mboowa, MG; McEvoy, MP; McIntyre, RC; McKay, JA; McPhail, MJW; McVeigh, AL; Mebazaa, A; Medici, V; Medina, DN; Mehmood, T; Mei-Li, C; Melku, M; Meloncelli, S; Mendes, GC; Mendoza-Velásquez, C; Mercadante, R; Mercado, MI; Merenda, MEZ; Meunier, J; Mi, SL; Michels, M; Mijatovic, V; Mikhailov, V; Milheiro, SA; Miller, DC; Ming, F; Mitsuishi, M; Miyashita, T; Mo, J; Mo, S; Modesto-Mata, M; Moeller, S; Monte, A; Monteiro, L; Montomoli, J; Moore, EE; Moore, HB; Moore, PK; Mor, MK; Moratalla-López, N; Moratilla Lapeña, L; Moreira, R; Moreno, MA; Mörk, AC; Morton, M; Mosier, JM; Mou, LH; Mougharbel, AS; Muccillo-Baisch, AL; Muñoz-Serrano, AJ; Mustafa, B; Nair, GM; Nakanishi, I; Nakanjako, D; Naraparaju, K; Nawani, N; Neffati, R; Neil, EC; Neilipovitz, D; Neira-Borrajo, I; Nelson, MT; Nery, PB; Nese, M; Nguyen, F; Nguyen, MH; Niazy, AA; Nicolaï, J; Nogueira, F; Norbäck, D; Novaretti, JV; O'Donnell, T; O'Dowd, A; O'Malley, DM; Oaknin, A; Ogata, K; Ohkubo, K; Ojha, M; Olaleye, MT; Olawande, B; Olomo, EJ; Ong, EWY; Ono, A; Onwumere, J; Ortiz Bibriesca, DM; Ou, X; Oza, AM; Ozturk, K; Özütemiz, C; Palacio-Pastrana, C; Palaparthi, A; Palevsky, PM; Pan, K; Pantanetti, S; Papachristou, DJ; Pariani, A; Parikh, CR; Parissis, J; Paroul, N; Parry, S; Patel, N; Patel, SM; Patel, VC; Pawar, S; Pefura-Yone, EW; Peixoto Andrade, BCO; Pelepenko, LE; Peña-Lora, D; Peng, S; Pérez-Moro, OS; Perez-Ortiz, AC; Perry, LM; Peter, CM; Phillips, NJ; Phillips, P; Pia Tek, J; Piner, LW; Pinto, EA; Pinto, SN; Piyachaturawat, P; Poka-Mayap, V; Polledri, E; Poloni, TE; Ponessa, G; Poole, ST; Post, AK; Potter, TM; Pressly, BB; Prouty, MG; Prudêncio, M; Pulkki, K; Pupier, C; Qian, H; Qian, ZP; Qiu, Y; Qu, G; Rahimi, S; Rahman, AU; Ramadan, H; Ramanna, S; Ramirez, I; Randolph, GJ; Rasheed, A; Rault, J; Raviprakash, V; Reale, E; Redpath, C; Rema, V; Remucal, CK; Remy, D; Ren, T; Ribeiro, LB; Riboli, G; Richards, J; Rieger, V; Rieusset, J; Riva, A; Rivabella Maknis, T; Robbins, JL; Robinson, CV; Roche-Campo, F; Rodriguez, R; Rodríguez-de-Cía, J; Rollenhagen, JE; Rosen, EP; Rub, D; Rubin, N; Rubin, NT; Ruurda, JP; Saad, O; Sabell, T; Saber, SE; Sabet, M; Sadek, MM; Saejio, A; Salinas, RM; Saliu, IO; Sande, D; Sang, D; Sangenito, LS; Santos, ALSD; Sarmiento Caldas, MC; Sassaroli, S; Sassi, V; Sato, J; Sauaia, A; Saunders, K; Saunders, PR; Savarino, SJ; Scambia, G; Scanlon, N; Schetinger, MR; Schinkel, AFL; Schladweiler, MC; Schofield, CJ; Schuepbach, RA; Schulz, J; Schwartz, N; Scorcella, C; Seeley, J; Seemann, F; Seinige, D; Sengoku, T; Seravalli, J; Sgromo, B; Shaheen, MY; Shan, L; Shanmugam, S; Shao, H; Sharma, S; Shaw, KJ; Shen, BQ; Shen, CH; Shen, P; Shen, S; Shen, Y; Shen, Z; Shi, J; Shi-Li, L; Shimoda, K; Shoji, Y; Shun, C; Silva, MA; Silva-Cardoso, J; Simas, NK; Simirgiotis, MJ; Sincock, SA; Singh, MP; Sionis, A; Siu, J; Sivieri, EM; Sjerps, MJ; Skoczen, SL; Slabon, A; Slette, IJ; Smith, MD; Smith, S; Smith, TG; Snapp, KS; Snow, SJ; Soares, MCF; Soberman, D; Solares, MD; Soliman, I; Song, J; Sorooshian, A; Sorrell, TC; Spinar, J; Staudt, A; Steinhart, C; Stern, ST; Stevens, DM; Stiers, KM; Stimming, U; Su, YG; Subbian, V; Suga, H; Sukhija-Cohen, A; Suksamrarn, A; Suksen, K; Sun, J; Sun, M; Sun, P; Sun, W; Sun, XF; Sun, Y; Sundell, J; Susan, LF; Sutjarit, N; Swamy, KV; Swisher, EM; Sykes, C; Takahashi, JA; Talmor, DS; Tan, B; Tan, ZK; Tang, L; Tang, S; Tanner, JJ; Tanwar, M; Tarazi, Z; Tarvasmäki, T; Tay, FR; Teketel, A; Temitayo, GI; Thersleff, T; Thiessen Philbrook, H; Thompson, LC; Thongon, N; Tian, B; Tian, F; Tian, Q; Timothy, AT; Tingle, MD; Titze, IR; Tolppanen, H; Tong, W; Toyoda, H; Tronconi, L; Tseng, CH; Tu, H; Tu, YJ; Tung, SY; Turpault, S; Tuynman, JB; Uemoto, AT; Ugurlu, M; Ullah, S; Underwood, RS; Ungell, AL; Usandizaga-Elio, I; Vakonakis, I; van Boxel, GI; van den Beucken, JJJP; van der Boom, T; van Slegtenhorst, MA; Vanni, JR; Vaquera, A; Vasconcellos, RS; Velayos, M; Vena, R; Ventura, G; Verso, MG; Vincent, RP; Vitale, F; Vitali, S; Vlek, SL; Vleugels, MPH; Volkmann, N; Vukelic, M; Wagner Mackenzie, B; Wairagala, P; Waller, SB; Wan, J; Wan, MT; Wan, Y; Wang, CC; Wang, H; Wang, J; Wang, JF; Wang, K; Wang, L; Wang, M; Wang, S; Wang, WM; Wang, X; Wang, Y; Wang, YD; Wang, YF; Wang, Z; Wang, ZG; Warriner, K; Weberpals, JI; Weerachayaphorn, J; Wehrli, FW; Wei, J; Wei, KL; Weinheimer, CJ; Weisbord, SD; Wen, S; Wendel Garcia, PD; Williams, JW; Williams, R; Winkler, C; Wirman, AP; Wong, S; Woods, CM; Wu, B; Wu, C; Wu, F; Wu, P; Wu, S; Wu, Y; Wu, YN; Wu, ZH; Wurtzel, JGT; Xia, L; Xia, Z; Xia, ZZ; Xiao, H; Xie, C; Xin, ZM; Xing, Y; Xing, Z; Xu, S; Xu, SB; Xu, T; Xu, X; Xu, Y; Xue, L; Xun, J; Yaffe, MB; Yalew, A; Yamamoto, S; Yan, D; Yan, H; Yan, S; Yan, X; Yang, AD; Yang, E; Yang, H; Yang, J; Yang, JL; Yang, K; Yang, M; Yang, P; Yang, Q; Yang, S; Yang, W; Yang, X; Yang, Y; Yao, JC; Yao, WL; Yao, Y; Yaqub, TB; Ye, J; Ye, W; Yen, CW; Yeter, HH; Yin, C; Yip, V; Yong-Yi, J; Yu, HJ; Yu, MF; Yu, S; Yu, W; Yu, WW; Yu, X; Yuan, P; Yuan, Q; Yue, XY; Zaia, AA; Zakhary, SY; Zalwango, F; Zamalloa, A; Zamparo, P; Zampini, IC; Zani, JL; Zeitoun, R; Zeng, N; Zenteno, JC; Zepeda-Palacio, C; Zhai, C; Zhang, B; Zhang, G; Zhang, J; Zhang, K; Zhang, Q; Zhang, R; Zhang, T; Zhang, X; Zhang, Y; Zhang, YY; Zhao, B; Zhao, D; Zhao, G; Zhao, H; Zhao, Q; Zhao, R; Zhao, S; Zhao, T; Zhao, X; Zhao, XA; Zhao, Y; Zhao, Z; Zheng, Z; Zhi-Min, G; Zhou, CL; Zhou, HD; Zhou, J; Zhou, W; Zhou, XQ; Zhou, Z; Zhu, C; Zhu, H; Zhu, L; Zhu, Y; Zitzmann, N; Zou, L; Zou, Y, 2022)
"To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway."4.12Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway. ( Chen, X; Deng, Y; Lai, J; Ou, Y; Peng, X; Shen, X; Wu, H; Wu, L; Yao, Z; Zhu, H, 2022)
"To observe the effect of electroacupuncture(EA)at "Baihui"(GV20) and "Shenting" (GV24) on the expression of melatonin synthesis rate-limiting enzyme-arylalkylamine N-acetyltransferase(AANAT)in pineal gland of rats with focal cerebral ischemia-reperfusion injury, so as to explore the mechanism of EA underlying improving ischemia-reperfusion injury."4.12[Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes]. ( Chen, B; Liang, H; Luo, J; Ruan, S; Wang, F; Wang, YX; Zhong, XY, 2022)
"Melatonin has a role in the cell survival signaling pathways as a candidate for secondary stroke prevention."4.12Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice. ( Altug-Tasa, B; Beker, M; Beker, MC; Caglayan, AB; Elibol, B; Kilic, E; Kilic, U; Uysal, O; Yilmaz, B, 2022)
"Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke."4.12Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke. ( Cambiaghi, M; Cherchi, L; Comai, S, 2022)
" Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown."4.02Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. ( Cao, Q; Gao, W; Li, BY; Liu, L; Xia, Z; Zeng, C; Zhao, B, 2021)
"Melatonin treatment following AGCI reduces pro-inflammatory factors, Gal-3, motility, and anxiety, therefore it should be considered as supplementary treatment following ischemic stroke."4.02Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats. ( Cervantes, M; Fenton-Navarro, B; Garduño Ríos, D; Letechipía-Vallejo, G; Torner, L, 2021)
"Consecutive patients admitted to the Tübingen University Stroke Unit, Tübingen, Germany, with acute ischemic stroke (AIS), who underwent standard care between August 2017 and December 2017, and patients who additionally received prophylactic melatonin (2 mg per day at night) within 24 h of symptom onset between August 2018 and December 2018 were included."4.02Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis. ( Boßelmann, C; Brendel, B; Fleischmann, R; Meisel, A; Mengel, A; Poli, S; Sartor-Pfeiffer, J; Stadler, V; Stefanou, MI; Ziemann, U; Zurloh, J, 2021)
"Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury."3.91Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. ( Chen, H; Jin, J; Li, G; Liu, L; Tang, Z; Yin, P; Zhong, D, 2019)
"The article studies the effect of melatonin on the intensity of free radical oxidation, the functioning of the enzymatic components of the antioxidant system and their transcriptional regulation in rats with experimental cerebral ischemia/reperfusion of the brain."3.91Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions. ( de Carvalho, MAP; Kryl'skii, ED; Popova, TN; Razuvaev, GA; Safonova, OA; Stolyarova, AO, 2019)
" Melatonin, a potent free radical scavenger and broad spectrum antioxidant, has been shown to counteract inflammation and apoptosis in brain injury."3.88Comparison of the Effect of Melatonin Treatment before and after Brain Ischemic Injury in the Inflammatory and Apoptotic Response in Aged Rats. ( Calvo-Soto, M; García, C; González, P; Hyacinthe, B; Paredes, SD; Rancan, L; Rodríguez-Bobada, C; Tresguerres, JAF; Vara, E, 2018)
"Apart from its potent antioxidant property, recent studies have revealed that melatonin promotes PI3K/Akt phosphorylation following focal cerebral ischemia (FCI) in mice."3.85Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice. ( Beker, MC; Caglayan, AB; Caglayan, B; Gunal, MY; Gundogdu, RZ; Kelestemur, T; Kerman, BE; Kilic, E; Kilic, U; Yalcin, E; Yılmaz, B; Yulug, B, 2017)
" In this study, we examined diurnal rhythmicity in different stages of Huntington (HD) disease and in patients with acute moderate ischemic stroke (AIS) outside the retinohypothalamic pathway by evaluating serum concentrations of melatonin and cortisol at twelve timepoints."3.85Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke. ( Adamczak-Ratajczak, A; Checinska-Maciejewska, Z; Gibas-Dorna, M; Krauss, H; Kupsz, J; Michalak, S; Owecki, M; Sowinska, A; Zielonka, D, 2017)
"Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema."3.80Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. ( Bhattacharya, P; Pandey, AK; Patnaik, R; Paul, S, 2014)
"Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood."3.78Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. ( Chern, CM; Liao, JF; Shen, YC; Wang, YH, 2012)
"The results of the multicenter open-label observational study of the efficacy and safety of the Melaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia are presented."3.78[The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia]. ( Bel'skaia, GN; Boĭko, AN; Doronin, BM; Gustov, AV; Iakupov, EZ; Levin, IaI; Poluéktov, MG; Poverennova, IE; Skoromets, AA; Spirin, NN, 2012)
"We demonstrate that methazolamide and melatonin are neuroprotective against cerebral ischemia and provide evidence of the effectiveness of a mitochondrial-based drug screen in identifying neuroprotective drugs."3.75Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. ( Day, AL; Figueroa, BE; Friedlander, RM; Kristal, BS; Sirianni, AC; Stavrovskaya, IG; Wang, X; Zhang, Y; Zhu, S, 2009)
"Quantitative data on melatonin in stroke patients are scarce."3.75Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis. ( Atanassova, PA; Dimitrov, BD; Terzieva, DD, 2009)
" Melatonin has protective effects against cerebral ischemia/reperfusion injury."3.75Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. ( Barut, F; Ozacmak, HS; Ozacmak, VH, 2009)
" We tested the sensitivity of PT to preconditioning with hypobaric hypoxia and to pretreatment with melatonin."3.74Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion. ( Bernášková, K; Krýsl, D; Mares, J; Matějovská, I, 2008)
"Melatonin reduces pyramidal neuronal death in the hippocampus and prevents the impairment of place learning and memory in the Morris water maze, otherwise occurring following global cerebral ischemia."3.74Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. ( Cervantes, M; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2007)
"Melatonin attenuates the short-term consequences of brain ischemia in several animal models."3.74Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome. ( de Butte, M; Fréchette, M; Pappas, BA; Rennie, K, 2008)
" melatonin (4 + 4 mg/kg, after induction of ischemia and at reperfusion onset) administered either alone or in combination with the thrombolytic tissue-plasminogen activator (t-PA, 10 mg/kg), on cerebral laser Doppler flow (LDF) and ischemic injury were studied after 30 min of middle cerebral artery (MCA) thread occlusion in male C57BL/6 mice."3.72Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. ( Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Yulug, B, 2004)
"To investigate the effects of melatonin (MT) on histology and behavioral tests during global cerebral ischemia-reperfusion in gerbils."3.71[The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. ( Dai, TJ; Gu, SL; Guo, JD; Xing, SH; Zhang, J, 2002)
"To investigate whether melatonin reduces the susceptibility of the fetal rat brain to oxidative damage of lipids and DNA, we created a model of fetal ischemia/reperfusion using rats at day 19 of pregnancy."3.70Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. ( Ikenoue, N; Izumiya, C; Okatani, Y; Wakatsuki, A, 1999)
"To study the protective effect of melatonin against neuronal injury and the possible roles of alteration in the expression of bcl-2 and bax following brain ischemia."3.70Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. ( Li, XJ; Ling, X; Lu, SD; Sun, FY; Zhang, LM, 1999)
"Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes."2.53The antioxidative property of melatonin against brain ischemia. ( Cordaro, M; Cuzzocrea, S; Esposito, E; Paterniti, I, 2016)
"On the other hand, cerebral ischemia is a major cause of human disability all over the world."2.50The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia. ( Colín-González, AL; Escribano, BM; Santamaría, A; Túnez, I, 2014)
" Special attention has been paid to the advantageous characteristics of melatonin as a neuroprotective drug: bioavailability into brain cells and cellular organelles targeted by morpho-functional derangement; effectiveness in exerting several neuroprotective actions, which can be amplified and prolonged by its metabolites, through direct and indirect antioxidant activity; prevention and reversal of mitochondrial malfunction, reducing inflammation, derangement of cytoskeleton organization, and pro-apoptotic cell signaling; lack of interference with thrombolytic and neuroprotective actions of other drugs; and an adequate safety profile."2.44Melatonin and ischemia-reperfusion injury of the brain. ( Cervantes, M; Letechipía-Vallejo, G; Moralí, G, 2008)
"Melatonin is a promising neuroprotective agent that can regulate microglial polarization in central nervous system (CNS) diseases."1.91Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice. ( He, T; Li, D; Liu, J; Wang, D; Wang, Q; Yuan, Y; Zhang, S; Zhang, Y; Zhao, H, 2023)
"Obesity is well-established as a common comorbidity in ischemic stroke."1.91Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. ( Govitrapong, P; Sengking, J; Tocharus, C; Tocharus, J; Yawoot, N, 2023)
"Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts."1.62Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. ( Cao, Q; Gao, W; Li, B; Liu, L; Xia, Z; Zhao, B, 2021)
"Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice."1.56The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. ( Ai, L; Gao, L; Gao, Y; Petersen, L; Pu, J; Qin, Z; Tong, R; Yan, Y; Zang, M; Zhao, Y; Zhong, F; Zhu, C, 2020)
"By day 28 after IS, the brain infarct area (BIA) was lowest in group 1, highest in group 2, significantly higher in groups 3 and 4 than in group 5, but not different between groups 3 and 4."1.51Combined Therapy With Hyperbaric Oxygen and Melatonin Effectively Reduce Brain Infarct Volume and Preserve Neurological Function After Acute Ischemic Infarct in Rat. ( Chen, KH; Chen, YL; Ko, SF; Lee, MS; Lin, KC; Wallace, CG; Yip, HK, 2019)
"Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain."1.51Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. ( Ding, ZT; Gao, FH; Gong, WJ; Liu, ZJ; Qie, SY; Ran, YY; Xi, JN, 2019)
"Melatonin has demonstrated a potential protective effect in central nervous system."1.46Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. ( Abraham, N; Dong, Y; Feng, D; Huang, L; Qu, Y; Shi, W; Tao, K; Wang, B; Wang, L, 2017)
"Melatonin treatment did not show a protective effect on neuronal metabolism."1.43No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat. ( Berger, HR; Brubakk, AM; Morken, TS; Sonnewald, U; Vettukattil, R; Widerøe, M, 2016)
"Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors."1.42Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. ( Buendia, I; Egea, J; Gameiro, I; Gómez-Rangel, V; González-Lafuente, L; Laudon, M; León, R; López, MG; Michalska, P; Parada, E, 2015)
"Melatonin is a highly potent free radical scavenger that protects against ischemic stroke."1.42Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation. ( Beker, MC; Caglayan, AB; Caglayan, B; Hermann, DM; Kelestemur, T; Kilic, E; Kilic, U; Yalcin, E; Yulug, B, 2015)
"Melatonin treatment attenuated injury-induced reductions in PP2A subunit B levels."1.38Melatonin attenuates decrease of protein phosphatase 2A subunit B in ischemic brain injury. ( Koh, PO, 2012)
"Melatonin treatment significantly attenuated MMP-9 activity and expression at 24, 48, and 72 h after ischemic injury."1.38Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. ( Jang, JW; Kim, HS; Kim, SH; Lee, JK; Lee, MC; Piao, MS, 2012)
"Melatonin pretreatment prevented the ischemic injury-induced reduction in PEA-15 levels."1.37Melatonin prevents down-regulation of astrocytic phosphoprotein PEA-15 in ischemic brain injury. ( Koh, PO, 2011)
"Global cerebral ischemia induces alterations of working memory, as evidenced in the eight-arm radial maze, in the absence of significant changes of pyramidal neuron population in the prefrontal cortex."1.35Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats. ( Cervantes, M; García-Chávez, D; González-Burgos, I; Letechipía-Vallejo, G; López-Loeza, E; Moralí, G, 2008)
"Melatonin and aMT6S were measured by radioimmunoassay."1.35Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. ( Berthiller, J; Brun, J; Cho, TH; Claustrat, B; Derex, L; Nighoghossian, N; Ritzenthaler, T; Schott, AM; Trouillas, P, 2009)
"Melatonin is a potent antioxidant with neuroprotective activity in animal models of ischemic stroke, which based on its lack of serious toxicity has raised hopes that it might be used for human stroke treatment in the future."1.35Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. ( Abdallah, NB; Bacigaluppi, M; Bassetti, CL; Guo, Z; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ; Wolfer, DP, 2008)
"Melatonin-treated animals also had significantly reduced immunopositive reactions for 8-OHdG and 4-HNE by 53% (P<0."1.33Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. ( Chang, GL; Chen, HY; Chen, ST; Hsu, YS; Lee, EJ; Lee, MY; Wu, TS, 2005)
"Co-treatment with melatonin restored phosphorylated Akt levels, increased Bcl-X(L) expression and reduced caspase-3 activity."1.33Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2005)
"Treatment with melatonin at 1."1.32Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. ( Cheung, RT; Fung, PC; Pei, Z, 2003)
"Melatonin was administered twice (6."1.32Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging. ( Kondoh, T; Nishino, H; Torii, K; Uneyama, H, 2004)
"Treatment with melatonin significantly reduced the infarct size by approximately 30-35%, independent of whether the indole was given prophylactically before or acutely after ischemia."1.32Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. ( Bassetti, CL; Hermann, DM; Kilic, E; Kilic, U; Reiter, RJ, 2004)
"Melatonin treatment increased survival and reduced hyperactivity linked to neurodegeneration induced by cerebral ischemia and reperfusion."1.31Protective effects of melatonin in ischemic brain injury. ( Barberi, I; Caputi, AP; Cordaro, S; Costantino, G; Cuzzocrea, S; De Sarro, A; Fulia, F; Gitto, E; Mazzon, E; Serraino, I, 2000)

Research

Studies (105)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's5 (4.76)18.2507
2000's29 (27.62)29.6817
2010's42 (40.00)24.3611
2020's29 (27.62)2.80

Authors

AuthorsStudies
Samadi, A1
Soriano, E1
Revuelta, J1
Valderas, C1
Chioua, M1
Garrido, I1
Bartolomé, B1
Tomassolli, I1
Ismaili, L1
González-Lafuente, L2
Villarroya, M2
García, AG1
Oset-Gasque, MJ1
Marco-Contelles, J2
Tenti, G1
Parada, E3
León, R3
Egea, J4
Martínez-Revelles, S1
Briones, AM1
Sridharan, V1
López, MG3
Ramos, MT1
Menéndez, JC1
Monjas, L1
Arce, MP1
Pérez, C1
Gil, C1
Conde, S1
Rodríguez-Franco, MI1
Kilic, U11
Elibol, B2
Beker, M2
Altug-Tasa, B2
Caglayan, AB5
Beker, MC5
Yilmaz, B4
Kilic, E11
Hu, J1
Tan, X1
Wang, D2
Li, Y7
Liang, H4
Peng, J1
Li, F1
Zhou, Q1
Geng, P1
Wang, S3
Yu, Y1
Liu, J4
Liu, L6
Cao, Q2
Gao, W2
Li, BY1
Zeng, C1
Xia, Z3
Zhao, B3
Yawoot, N2
Sengking, J2
Wicha, P1
Govitrapong, P3
Tocharus, C3
Tocharus, J3
Chen, X3
Shen, X1
Lai, J1
Yao, Z1
Peng, X1
Wu, L1
Ou, Y1
Wu, H2
Zhu, H3
Deng, Y1
Zhong, XY2
Ruan, S3
Wang, F3
Chen, B3
Luo, J2
Wang, YX2
Thangwong, P1
Jearjaroen, P1
Zhong, X1
Li, Z4
Lin, R1
Tao, J1
Uysal, O1
Bseiso, EA2
Abd El-Aal, SA1
Nasr, M2
Sammour, OA2
Abd El Gawad, NA1
AbdEl-Aal, SA1
El Gawad, NAA1
Cambiaghi, M1
Cherchi, L1
Comai, S1
Lu, D1
Liu, Y4
Huang, H1
Hu, M1
Li, T3
Shen, S2
Wu, R1
Cai, W1
Lu, T1
Lu, Z1
Mehrpooya, M1
Mazdeh, M1
Rahmani, E1
Khazaie, M1
Ahmadimoghaddam, D1
Yan, NW1
Liu, JJ1
Li, D1
He, T1
Zhang, Y6
Zhao, H2
Wang, Q1
Yuan, Y1
Zhang, S1
Yilmaz, U1
Tanbek, K1
Gul, S1
Gul, M1
Koc, A1
Sandal, S1
Xu, Q1
Cheung, RTF1
Gong, P1
Zhang, M1
Li, C3
Xiao, P1
Yu, M1
Wang, X9
An, L1
Bi, F1
Song, X1
Azedi, F1
Mehrpour, M1
Talebi, S1
Zendedel, A1
Kazemnejad, S1
Mousavizadeh, K1
Beyer, C1
Zarnani, AH1
Joghataei, MT1
Lin, KC2
Chen, KH1
Wallace, CG1
Chen, YL2
Ko, SF1
Lee, MS1
Yip, HK2
Chen, H1
Jin, J1
Tang, Z1
Yin, P1
Zhong, D1
Li, G1
Liu, ZJ1
Ran, YY1
Qie, SY1
Gong, WJ1
Gao, FH1
Ding, ZT1
Xi, JN1
Caglayan, B3
Kelestemur, T3
Yalcin, E3
Caglayan, A1
Baykal, AT1
Reiter, RJ10
Zang, M1
Zhao, Y4
Gao, L1
Zhong, F1
Qin, Z1
Tong, R1
Ai, L1
Petersen, L1
Yan, Y1
Gao, Y2
Zhu, C2
Pu, J1
Nese, M1
Riboli, G1
Brighetti, G1
Sassi, V1
Camela, E1
Caselli, G1
Sassaroli, S1
Borlimi, R1
Aucoin, M1
Cooley, K1
Saunders, PR1
Carè, J1
Anheyer, D1
Medina, DN1
Cardozo, V1
Remy, D1
Hannan, N1
Garber, A1
Velayos, M1
Muñoz-Serrano, AJ1
Estefanía-Fernández, K1
Sarmiento Caldas, MC1
Moratilla Lapeña, L1
López-Santamaría, M1
López-Gutiérrez, JC1
Li, J3
Zhang, J3
Zhang, B2
Yu, WW1
Toyoda, H1
Huang, DQ1
Le, MH1
Nguyen, MH1
Huang, R1
Zhu, L1
Wang, J7
Xue, L1
Yan, X2
Huang, S1
Xu, T1
Ji, F1
Ming, F1
Cheng, J1
Wang, Y4
Hong, S1
Chen, K2
Zhao, XA1
Zou, L1
Sang, D1
Shao, H1
Guan, X1
Chen, Y4
Wei, J1
Wu, C1
Moore, HB1
Barrett, CD1
Moore, EE1
Jhunjhunwala, R1
McIntyre, RC1
Moore, PK1
Hajizadeh, N1
Talmor, DS1
Sauaia, A1
Yaffe, MB1
Liu, C4
Lin, Y1
Dong, Y3
Wu, Y1
Bao, Y1
Yan, H2
Ma, J1
Fernández-Cuadros, ME1
Albaladejo-Florín, MJ1
Álava-Rabasa, S1
Usandizaga-Elio, I1
Martinez-Quintanilla Jimenez, D1
Peña-Lora, D1
Neira-Borrajo, I1
López-Muñoz, MJ1
Rodríguez-de-Cía, J1
Pérez-Moro, OS1
Abdallah, M1
Alsaleh, H1
Baradwan, A1
Alfawares, R1
Alobaid, A1
Rasheed, A1
Soliman, I1
Wendel Garcia, PD1
Fumeaux, T1
Guerci, P1
Heuberger, DM1
Montomoli, J2
Roche-Campo, F1
Schuepbach, RA1
Hilty, MP1
Poloni, TE1
Carlos, AF1
Cairati, M1
Cutaia, C1
Medici, V1
Marelli, E1
Ferrari, D1
Galli, A1
Bognetti, P1
Davin, A1
Cirrincione, A1
Ceretti, A1
Cereda, C1
Ceroni, M1
Tronconi, L1
Vitali, S1
Guaita, A1
Leeds, JS1
Raviprakash, V1
Jacques, T1
Scanlon, N1
Cundall, J1
Leeds, CM1
Riva, A1
Gray, EH1
Azarian, S1
Zamalloa, A1
McPhail, MJW1
Vincent, RP1
Williams, R1
Chokshi, S1
Patel, VC1
Edwards, LA1
Alqarawi, W1
Birnie, DH1
Golian, M1
Nair, GM1
Nery, PB1
Klein, A1
Davis, DR1
Sadek, MM1
Neilipovitz, D1
Johnson, CB1
Green, MS1
Redpath, C1
Miller, DC1
Beamer, P1
Billheimer, D1
Subbian, V1
Sorooshian, A1
Campbell, BS1
Mosier, JM1
Novaretti, JV1
Astur, DC1
Cavalcante, ELB1
Kaleka, CC1
Amaro, JT1
Cohen, M1
Huang, W1
Ling, Y1
Qian, ZP1
Zhang, YY1
Huang, D1
Xu, SB1
Liu, XH1
Xia, L1
Yang, Y4
Lu, SH1
Lu, HZ1
Zhang, R2
Ma, JX1
Tang, S1
Li, CM1
Wan, J1
Wang, JF1
Ma, JQ1
Luo, JJ1
Chen, HY4
Mi, SL1
Chen, SY1
Su, YG1
Ge, JB1
Milheiro, SA1
Gonçalves, J1
Lopes, RMRM1
Madureira, M1
Lobo, L1
Lopes, A1
Nogueira, F1
Fontinha, D1
Prudêncio, M1
M Piedade, MF1
Pinto, SN1
Florindo, PR1
Moreira, R1
Castillo-Lora, J1
Delley, MF1
Laga, SM1
Mayer, JM1
Sutjarit, N1
Thongon, N1
Weerachayaphorn, J1
Piyachaturawat, P1
Suksamrarn, A1
Suksen, K1
Papachristou, DJ1
Blair, HC1
Hu, Y1
Shen, P1
Zeng, N1
Wang, L4
Yan, D1
Cui, L1
Yang, K2
Zhai, C1
Yang, M1
Lao, X1
Sun, J1
Ma, N1
Ye, W2
Guo, P1
Rahimi, S1
Singh, MP1
Gupta, J1
Nakanishi, I1
Ohkubo, K1
Shoji, Y1
Fujitaka, Y1
Shimoda, K1
Matsumoto, KI1
Fukuhara, K1
Hamada, H1
van der Boom, T1
Gruppen, EG1
Lefrandt, JD1
Connelly, MA1
Links, TP1
Dullaart, RPF1
Berry, JD1
Bedlack, R1
Mathews, D1
Agnese, W1
Apple, S1
Meloncelli, S1
Divizia, M1
Germani, G1
Adefegha, SA1
Bottari, NB1
Leal, DB1
de Andrade, CM1
Schetinger, MR1
Martínez-Velasco, A1
Perez-Ortiz, AC1
Antonio-Aguirre, B1
Martínez-Villaseñor, L1
Lira-Romero, E1
Palacio-Pastrana, C1
Zenteno, JC1
Ramirez, I1
Zepeda-Palacio, C1
Mendoza-Velásquez, C1
Camacho-Ordóñez, A1
Ortiz Bibriesca, DM1
Estrada-Mena, FJ1
Martin, BL1
Thompson, LC1
Kim, YH2
Snow, SJ1
Schladweiler, MC1
Phillips, P1
Harmon, M1
King, C1
Richards, J1
George, I1
Haykal-Coates, N1
Gilmour, MI1
Kodavanti, UP1
Hazari, MS1
Farraj, AK1
Shen, Z1
Zou, Y1
Gao, K1
Lazar, S1
Wurtzel, JGT1
Ma, P1
Goldfinger, LE1
Vukelic, M1
Laloo, A1
Kyttaris, VC1
Chen, R1
Chen, J2
Xun, J1
Hu, Z1
Huang, Q2
Steinhart, C1
Shen, Y1
Lu, H1
Mansuri, A1
Lokhande, K1
Kore, S1
Gaikwad, S1
Nawani, N1
Swamy, KV1
Junnarkar, M1
Pawar, S1
Shaheen, MY1
Basudan, AM1
Niazy, AA1
van den Beucken, JJJP1
Jansen, JA1
Alghamdi, HS1
Gao, Q2
Guo, X1
Cao, Y1
Jia, X1
Xu, S1
Lu, C3
Melku, M1
Abebe, G1
Teketel, A1
Asrie, F1
Yalew, A1
Biadgo, B1
Kassa, E1
Damtie, D1
Anlay, DZ1
Ahmed, MFE1
Ramadan, H1
Seinige, D1
Kehrenberg, C1
Abd El-Wahab, A1
Volkmann, N1
Kemper, N1
Schulz, J1
Hu, MY1
Wu, YN1
McEvoy, MP1
Wang, YF1
Cong, WL1
Liu, LP1
Li, XX1
Zhou, CL1
Chen, WM1
Wei, KL1
Tung, SY1
Shen, CH1
Chang, TS1
Yen, CW1
Hsieh, YY1
Chiu, WN1
Hu, JH1
Lu, SN1
Hung, CH1
Alakavuklar, MA1
Fuqua, C1
Luo, KL1
Underwood, RS1
Greenwald, I1
Elashiry, MM1
Elashiry, M1
Zeitoun, R1
Elsayed, R1
Tian, F2
Saber, SE1
Elashry, SH1
Tay, FR1
Cutler, CW1
O'Dowd, A1
Maciel, M1
Poole, ST1
Jobling, MG1
Rollenhagen, JE1
Woods, CM1
Sincock, SA1
McVeigh, AL1
Gregory, MJ1
Maves, RC1
Prouty, MG1
Holmes, RK1
Savarino, SJ1
Mor, MK1
Palevsky, PM1
Kaufman, JS1
Thiessen Philbrook, H1
Weisbord, SD1
Parikh, CR1
John, CM1
Phillips, NJ1
Jarvis, GA1
Zhu, Y1
Kilburn, S1
Kapoor, M1
Chaturvedi, S1
Shaw, KJ1
Chaturvedi, V1
Kong, X1
Zhang, T1
Xiao, H1
Feng, X1
Tu, H1
Feng, J1
Sabet, M1
Tarazi, Z1
Griffith, DC1
Nguyen, F1
Guan, P1
Guerrero, DT1
Kolla, V1
Naraparaju, K1
Perry, LM1
Soberman, D1
Pressly, BB1
Alferiev, IS1
Chorny, M1
Brodeur, GM1
Gao, X2
Cheng, YH1
Enten, GA1
DeSantis, AJ1
Gaponenko, V1
Majetschak, M1
Kim, DY1
Choi, MJ1
Ko, TK1
Lee, NH1
Kim, OH1
Cheon, HG1
Cai, H1
Yip, V1
Lee, MV1
Wong, S1
Saad, O1
Ma, S1
Ljumanovic, N1
Khojasteh, SC1
Kamath, AV1
Shen, BQ1
Cuypers, ML1
Chanteux, H1
Gillent, E1
Bonnaillie, P1
Saunders, K1
Beckers, C1
Delatour, C1
Dell'Aiera, S1
Ungell, AL1
Nicolaï, J1
Knapp, AK1
Chen, A1
Griffin-Nolan, RJ1
Baur, LE1
Carroll, CJW1
Gray, JE1
Hoffman, AM1
Li, X4
Post, AK1
Slette, IJ1
Collins, SL1
Luo, Y1
Smith, MD1
Temitayo, GI1
Olawande, B1
Emmanuel, YO1
Timothy, AT1
Kehinde, O1
Susan, LF1
Ezra, L1
Joseph, OO1
Lev, S1
Desmarini, D1
Liuwantara, D1
Sorrell, TC1
Hawthorne, WJ1
Djordjevic, JT1
Verso, MG1
Costantino, C1
Marrella, A1
Immordino, P1
Vitale, F1
Amodio, E1
Wang, YD1
Yao, WL1
Xin, ZM1
Han, TT1
Wang, ZG1
Chen, L2
Cai, C1
Ba, D1
Wen, S1
Tian, Q1
Lv, W1
Cheng, G1
Li, N1
Yue, XY1
Chu, WJ1
Chen, Q1
Choi, ES1
Zhao, X3
Zhou, HD1
Sun, XF1
Sharma, S2
Chhoker, S1
Xie, C1
Ong, EWY1
Tan, ZK1
Evans, S1
Weinheimer, CJ1
Kovacs, A1
Williams, JW1
Randolph, GJ1
Jiang, W1
Barger, PM1
Mann, DL1
Huang, Y1
Kong, L1
Yu, X1
Feng, B1
Liu, D2
Mendes, GC1
Yuan, P1
Ge, D1
Wang, WM1
Fontes, EPB1
Li, P1
Shan, L1
He, P1
Katoh, T1
Sengoku, T1
Hirata, K1
Ogata, K1
Suga, H1
Shun, C1
Yong-Yi, J1
Mei-Li, C1
Shi-Li, L1
Jian-Bo, Z1
Dan-Li, W1
Zhi-Min, G1
Ibrahim, AM1
Zakhary, SY1
Amin, SAW1
Ugurlu, M1
Fornari, VJ1
Hartmann, MSM1
Vanni, JR1
Rodriguez, R1
Langaro, MC1
Pelepenko, LE1
Zaia, AA1
Nakanjako, D1
Zalwango, F1
Wairagala, P1
Luboga, F1
Andia Biraro, I1
Bukirwa, VD1
Mboowa, MG1
Cose, S1
Seeley, J1
Elliott, A1
Zhao, G1
Sun, P1
Hao, S1
Qu, G1
Xing, Y1
Xu, X1
Maierhofer, M1
Rieger, V1
Mayr, T1
Zhang, Q1
Bigliardi, AP1
Fernandes, CLF1
Pinto, EA1
Dos Santos, M1
Garcia, EM1
Baisch, PRM1
Soares, MCF1
Muccillo-Baisch, AL1
da Silva Júnior, FMR1
Yu, W1
Ju, C1
Wang, K1
Zheng, Z1
Liu, H1
Martínez-Navarro, EM1
Cebrián-Tarancón, C1
Moratalla-López, N1
Lorenzo, C1
Alonso, GL1
Salinas, RM1
Bermúdez de Castro, JM1
Modesto-Mata, M1
Martín-Francés, L1
García-Campos, C1
Martínez de Pinillos, M1
Martinón-Torres, M1
Hasani, M1
Wu, F2
Warriner, K1
Kurz, M1
Gretzke, D1
Hörlein, R1
Turpault, S1
Atzrodt, J1
Derdau, V1
Yao, Y1
Ou, X1
Zhao, S1
Tian, B1
Jin, S1
Jiang, Z1
Zhou, Z1
Liu, M2
Jiang, GD1
Mou, LH1
Chen, JJ1
Li, ZY1
He, SG1
Reale, E1
Fustinoni, S1
Mercadante, R1
Polledri, E1
Hopf, NB1
Grant, PC1
Levy, K1
Lattimer, TA1
Depner, RM1
Kerr, CW1
Sato, J1
Merenda, MEZ1
Uemoto, AT1
Dos Santos, MP1
Barion, MRL1
Carciofi, AC1
de Paula Dorigam, JC1
Ribeiro, LB1
Vasconcellos, RS1
Waller, SB1
Peter, CM1
Hoffmann, JF1
Cleff, MB1
Faria de, RO1
Zani, JL1
Martins, BA1
Sande, D1
Solares, MD1
Takahashi, JA1
Yang, S2
Jia, Y1
Yin, C1
Zhao, R1
Ojha, M1
Wu, B1
Deepa, M1
Mo, J1
Au, DW1
Wan, MT1
Shi, J1
Zhang, G1
Winkler, C1
Kong, RY1
Seemann, F1
Bianco, M1
Calvano, CD1
Ventura, G1
Bianco, G1
Losito, I1
Cataldi, TRI1
Angiolella, L1
Staudt, A1
Duarte, PF1
Amaral, BPD1
Peixoto Andrade, BCO1
Simas, NK1
Correa Ramos Leal, I1
Sangenito, LS1
Santos, ALSD1
de Oliveira, D1
Junges, A1
Cansian, RL1
Paroul, N1
Siu, J1
Klingler, L1
Hung, CT1
Jeong, SH1
Smith, S1
Tingle, MD1
Wagner Mackenzie, B1
Biswas, K1
Douglas, RG1
Oza, AM1
Lorusso, D1
Aghajanian, C1
Oaknin, A1
Dean, A1
Colombo, N1
Weberpals, JI1
Clamp, AR1
Scambia, G1
Leary, A1
Holloway, RW1
Gancedo, MA1
Fong, PC1
Goh, JC1
O'Malley, DM1
Armstrong, DK1
Banerjee, S1
García-Donas, J1
Swisher, EM1
Cella, D1
Meunier, J1
Goble, S1
Cameron, T1
Maloney, L1
Mörk, AC1
Bedel, J1
Ledermann, JA1
Coleman, RL1
Vlek, SL1
Burm, R1
Govers, TM1
Vleugels, MPH1
Tuynman, JB1
Mijatovic, V1
Leicht, AS1
Connor, J1
Conduit, N1
Vaquera, A1
Gómez, MA1
McKay, JA1
Church, AL1
Rubin, N1
Emory, TH1
Hoven, NF1
Kuehn-Hajder, JE1
Nelson, MT1
Ramanna, S1
Auerbach, EJ1
Moeller, S1
Bolan, PJ1
Fox, NP1
Leonard, M1
Sjerps, MJ1
Chang, EF1
Hyun, S1
Saejio, A1
Shanmugam, S1
Liu, X1
Sun, M1
Bai, Z1
Jaque-Fernandez, F1
Beaulant, A1
Berthier, C1
Monteiro, L1
Allard, B1
Casas, M1
Rieusset, J1
Jacquemond, V1
Góngora-García, OR1
Aca-Aca, G1
Baz-Rodríguez, SA1
Monte, A1
Maganaris, C1
Baltzopoulos, V1
Zamparo, P1
Wang, Z3
Hou, Y1
Cai, L1
Tu, YJ1
Tan, B1
Jiang, L1
Wu, ZH1
Yu, HJ1
Li, XQ1
Yang, AD1
Titze, IR1
Palaparthi, A1
Mau, T1
González, MA1
Goiri, F1
Barandika, JF1
García-Pérez, AL1
Jatt, LP1
Gandhi, MM1
Guo, R1
Sukhija-Cohen, A1
Bhattacharya, D1
Tseng, CH1
Chew, KW1
Onwumere, J1
Pia Tek, J1
Budnyak, T1
Budnyk, S1
Karim, Z1
Thersleff, T1
Kuśtrowski, P1
Mathew, AP1
Slabon, A1
Guo, M1
Zhao, T1
Xing, Z1
Qiu, Y1
Pan, K1
Zhou, W1
Ghassemi Tabrizi, S1
Arbuznikov, AV1
Jiménez-Hoyos, CA1
Kaupp, M1
Lin, MH2
Bulman, DM1
Remucal, CK1
Chaplin, BP1
Laguerre, A1
George, LA1
Gall, ET1
Emerson, MS1
Wang, H4
Maginn, EJ1
Margulis, CJ1
Li, H3
Feng, W1
Kang, X2
Yan, S1
Chao, M1
Mo, S1
Sun, W1
Lu, Y1
Chen, C1
Stevens, DM1
Adiseshaiah, P1
Dasa, SSK1
Potter, TM1
Skoczen, SL1
Snapp, KS1
Cedrone, E1
Patel, N1
Busman-Sahay, K1
Rosen, EP1
Sykes, C1
Cottrell, M1
Dobrovolskaia, MA1
Estes, JD1
Kashuba, ADM1
Stern, ST1
Özütemiz, C1
Neil, EC1
Tanwar, M1
Rubin, NT1
Ozturk, K1
Cayci, Z1
Duscha, BD1
Kraus, WE1
Jones, WS1
Robbins, JL1
Piner, LW1
Huffman, KM1
Allen, JD1
Annex, BH1
Mehmood, T1
Ahmad, I1
Bibi, S1
Mustafa, B1
Ali, I1
Dahal, RH1
Chaudhary, DK1
Kim, DU1
Kim, J2
Yeter, HH1
Gonul, I1
Guz, G1
Helvaci, O1
Korucu, B1
Akcay, OF1
Derici, U1
Arinsoy, T1
Neffati, R1
Judeinstein, P1
Rault, J1
Xu, Y1
Chai, X1
Ren, T1
Yu, S1
Fu, Q2
Ye, J1
Ge, X1
Song, J1
Yang, H2
El-Baba, TJ1
Lutomski, CA1
Kantsadi, AL1
Malla, TR1
John, T1
Mikhailov, V1
Bolla, JR1
Schofield, CJ1
Zitzmann, N1
Vakonakis, I1
Robinson, CV1
Langham, MC1
Caporale, AS1
Wehrli, FW1
Parry, S1
Schwartz, N1
den Boer, RB1
Jones, KI1
Ash, S1
van Boxel, GI1
Gillies, RS1
O'Donnell, T1
Ruurda, JP1
Sgromo, B1
Silva, MA1
Maynard, ND1
Sivieri, EM1
Eichenwald, EC1
Rub, D1
Abbasi, S1
Krahnert, I1
Bolze, A1
Gibon, Y1
Fernie, AR1
Huang, L2
Wan, Y1
Dang, Z1
Yang, P1
Yang, Q1
Wu, S2
Lin, CC1
Hsu, CT1
Liu, W2
Huang, SC1
Kortz, U1
Mougharbel, AS1
Chen, TY3
Hu, CW1
Lee, JF1
Wang, CC1
Liao, YF1
Li, LJ1
Li, L1
Peng, S1
Stimming, U1
Hebbar Kannur, K1
Yaqub, TB1
Pupier, C1
Héau, C1
Cavaleiro, A1
Yamamoto, S1
Ono, A1
Matsui, J1
Hoshino, N1
Akutagawa, T1
Miyashita, T1
Mitsuishi, M1
Patel, SM1
Smith, TG1
Morton, M1
Stiers, KM1
Seravalli, J1
Mayclin, SJ1
Edwards, TE1
Tanner, JJ1
Becker, DF1
Butcher, TW1
Yang, JL1
Hartwig, JF1
Yu, MF1
Xia, ZZ1
Yao, JC1
Feng, Z1
Li, DH1
Liu, T1
Cheng, GJ1
He, DL1
Li, XH1
Huurman, R1
Schinkel, AFL1
de Jong, PL1
van Slegtenhorst, MA1
Hirsch, A1
Michels, M1
Kataja, A1
Tarvasmäki, T1
Lassus, J1
Sionis, A1
Mebazaa, A1
Pulkki, K1
Banaszewski, M1
Carubelli, V1
Hongisto, M1
Jankowska, E1
Jurkko, R1
Jäntti, T1
Kasztura, M1
Parissis, J1
Sabell, T1
Silva-Cardoso, J1
Spinar, J1
Tolppanen, H1
Harjola, VP1
Carsetti, A1
Damiani, E1
Casarotta, E1
Scorcella, C1
Domizi, R1
Gasparri, F1
Gabbanelli, V1
Pantanetti, S1
Carozza, R1
Adrario, E1
Donati, A1
Almada, E1
Pariani, A1
Rivabella Maknis, T1
Hidalgo, F1
Vena, R1
Favre, C1
Larocca, MC1
Lu, ZY1
Jiang, WD1
Wu, P1
Kuang, SY1
Tang, L1
Yang, J1
Zhou, XQ1
Feng, L1
Leal, M1
Zampini, IC1
Mercado, MI1
Moreno, MA1
Simirgiotis, MJ1
Bórquez, J1
Ponessa, G1
Isla, MI1
Saliu, IO1
Amoo, ZA1
Khan, MF1
Olaleye, MT1
Rema, V1
Akinmoladun, AC1
Khan, AU1
Rahman, AU1
Yuan, Q1
Ahmad, A1
Khan, ZUH1
Mahnashi, MH1
Alyami, BA1
Alqahtani, YS1
Ullah, S1
Wirman, AP1
Gao, M1
Deng, L1
Zhang, K1
Wang, M1
Gao, D1
Balkissou, AD1
Poka-Mayap, V1
Massongo, M1
Djenabou, A1
Endale-Mangamba, LM1
Olomo, EJ1
Boulleys-Nana, JR1
Diffo-Sonkoue, L1
Adidigue-Ndiome, R1
Alexandra, AJE1
Haman-Wabi, AB1
Adama, S1
Iddi-Faical, A1
Pefura-Yone, EW1
Zhao, Q1
Tong, W1
Ge, C1
Zhao, D1
Norbäck, D1
Li, B2
Zhao, Z2
Huang, C1
Zhang, X1
Qian, H1
Yang, X2
Sun, Y1
Sundell, J1
Deng, Q1
Kim, HJ1
Jeon, JW1
Hwang, SM1
Chu, KI1
Cha, YH1
Kwak, YD1
Choi, SD1
Aslam, M1
Kim, CG1
Zhou, J1
Yang, E1
Yang, W1
Fenton-Navarro, B1
Garduño Ríos, D1
Torner, L1
Letechipía-Vallejo, G5
Cervantes, M5
Mengel, A1
Zurloh, J1
Boßelmann, C1
Brendel, B1
Stadler, V1
Sartor-Pfeiffer, J1
Meisel, A1
Fleischmann, R1
Ziemann, U1
Poli, S1
Stefanou, MI1
Shao, A1
Gao, S1
Xu, W1
Pan, Y2
Fang, Y1
Dubey, NK1
Sung, PH1
Chiang, JY1
Chu, YC1
Huang, CR1
Deng, YH1
Cheng, HC1
Deng, WP1
Tuncer, M1
Pehlivanoglu, B1
Sürücü, SH1
Isbir, T1
Nasoni, MG1
Carloni, S2
Canonico, B1
Burattini, S1
Cesarini, E1
Papa, S1
Pagliarini, M1
Ambrogini, P1
Balduini, W2
Luchetti, F1
Gunal, MY1
Gundogdu, RZ1
Yulug, B3
Kerman, BE1
Riparini, G1
Buonocore, G1
Suofu, Y1
Li, W1
Jean-Alphonse, FG1
Jia, J1
Khattar, NK1
Baranov, SV1
Leronni, D1
Mihalik, AC1
He, Y1
Cecon, E1
Wehbi, VL1
Heath, BE1
Baranova, OV1
Gable, MJ1
Kretz, ES1
Di Benedetto, G1
Lezon, TR1
Ferrando, LM1
Larkin, TM1
Sullivan, M1
Yablonska, S1
Minnigh, MB1
Guillaumet, G1
Suzenet, F1
Richardson, RM1
Poloyac, SM1
Stolz, DB1
Jockers, R1
Witt-Enderby, PA1
Carlisle, DL1
Vilardaga, JP1
Friedlander, RM2
Adamczak-Ratajczak, A1
Kupsz, J1
Owecki, M1
Zielonka, D1
Sowinska, A1
Checinska-Maciejewska, Z1
Krauss, H1
Michalak, S1
Gibas-Dorna, M1
Rancan, L1
Paredes, SD1
García, C1
González, P1
Rodríguez-Bobada, C1
Calvo-Soto, M1
Hyacinthe, B1
Vara, E1
Tresguerres, JAF1
Wang, W1
Zeng, R1
Ni, L1
Lai, Z1
Hedayatpour, A1
Shiasi, M1
Famitafreshi, H1
Abolhassani, F1
Ebrahimnia, P1
Mokhtari, T1
Hassanzaeh, G1
Karimian, M1
Nazparvar, B1
Marefati, N1
Tarzjani, MD1
Wei, N1
Pu, Y1
Yang, Z1
Kryl'skii, ED1
Popova, TN1
Safonova, OA1
Stolyarova, AO1
Razuvaev, GA1
de Carvalho, MAP1
Chen, W1
Juan, WS1
Huang, SY1
Chang, CC1
Hung, YC1
Lin, YW1
Lee, AH1
Lee, AC1
Wu, TS3
Lee, EJ3
Bhattacharya, P1
Pandey, AK1
Paul, S1
Patnaik, R1
Feng, D2
Xu, M1
Gao, A1
Zhang, L1
Cui, Y1
Chen, G1
Escribano, BM1
Colín-González, AL1
Santamaría, A1
Túnez, I1
Jiang, S1
Fan, C1
Zhao, L1
Di, S1
Yue, L1
Liang, G1
Qu, Y2
Kulesh, AA1
Lapaeva, TV1
Shestakov, VV1
Buendia, I1
Gómez-Rangel, V1
Gameiro, I1
Michalska, P1
Laudon, M1
Hermann, DM7
Berger, HR1
Morken, TS1
Vettukattil, R1
Brubakk, AM1
Sonnewald, U1
Widerøe, M1
Paterniti, I1
Cordaro, M1
Esposito, E1
Cuzzocrea, S2
Ramos, E1
Patiño, P1
Gil-Martín, E1
de Los Rios, C1
Romero, A1
Wang, B1
Abraham, N1
Tao, K1
Shi, W1
Sarkar, S1
Mukherjee, A1
Das, N1
Swarnakar, S1
García-Chávez, D1
González-Burgos, I3
López-Loeza, E3
Moralí, G4
Koh, PO3
Figueroa, BE1
Stavrovskaya, IG1
Sirianni, AC1
Zhu, S1
Day, AL1
Kristal, BS1
Ritzenthaler, T1
Nighoghossian, N1
Berthiller, J1
Schott, AM1
Cho, TH1
Derex, L1
Brun, J1
Trouillas, P1
Claustrat, B1
Atanassova, PA1
Terzieva, DD1
Dimitrov, BD1
Ozacmak, VH1
Barut, F1
Ozacmak, HS1
Hamada, F1
Watanabe, K1
Wakatsuki, A2
Nagai, R1
Shinohara, K1
Hayashi, Y1
Imamura, R1
Fukaya, T1
Arushanian, EB1
Naumov, SS1
Han, F2
Tao, RR2
Zhang, GS2
Lu, YM2
Liu, LL1
Chen, YX2
Lou, YJ1
Fukunaga, K2
Hong, ZH1
Huang, JY1
Ji, YL1
Liao, MH1
Qin, ZH1
Ugur, M1
Yüksel, A1
Deykun, K1
Pometlova, M1
Schutova, B1
Mares, J2
Chern, CM1
Liao, JF1
Wang, YH1
Shen, YC1
Maslennikova, DV1
Gan'shina, TS1
Oleĭnikova, ON1
Kurdiumov, IN1
Mirzoian, RS1
Jang, JW1
Lee, JK1
Lee, MC1
Piao, MS1
Kim, SH1
Kim, HS1
Poluéktov, MG1
Levin, IaI1
Boĭko, AN1
Skoromets, AA1
Bel'skaia, GN1
Gustov, AV1
Doronin, BM1
Poverennova, IE1
Spirin, NN1
Iakupov, EZ1
Sun, FY3
Lin, X1
Mao, LZ1
Ge, WH1
Zhang, LM3
Huang, YL1
Gu, J2
Pei, Z1
Fung, PC1
Cheung, RT1
Guo, JD1
Xing, SH1
Gu, SL1
Dai, TJ1
Sainz, RM1
Lopez-Burillo, S1
Mayo, JC1
Manchester, LC1
Tan, DX1
Torii, K1
Uneyama, H1
Nishino, H2
Kondoh, T1
Gupta, S1
Kaul, CL1
Sharma, SS1
Bassetti, CL4
Kavakli, A1
Sahna, E1
Parlakpinar, H1
Yahsi, S1
Ogeturk, M1
Acet, A1
Lee, MY2
Hsu, YS1
Chen, ST1
Chang, GL1
Kuo, YL1
Lin, SC1
Espinoza-González, V1
Olvera-Cortés, ME1
Matějovská, I1
Bernášková, K1
Krýsl, D1
Bacigaluppi, M1
Guo, Z1
Abdallah, NB1
Wolfer, DP1
Rennie, K1
de Butte, M1
Fréchette, M1
Pappas, BA1
Fiorina, P2
Lattuada, G2
Ponari, O2
Silvestrini, C2
DallAglio, P1
Okatani, Y1
Izumiya, C1
Ikenoue, N1
Li, XJ2
Zhang, AZ1
Dall'Aglio, P1
Ling, X1
Lu, SD1
Borlongan, CV1
Yamamoto, M1
Takei, N1
Kumazaki, M1
Ungsuparkorn, C1
Hida, H1
Sanberg, PR1
Costantino, G1
Gitto, E1
Mazzon, E1
Fulia, F1
Serraino, I1
Cordaro, S1
Barberi, I1
De Sarro, A1
Caputi, AP1
Sinha, K1
Degaonkar, MN1
Jagannathan, NR1
Gupta, YK1

Clinical Trials (3)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Use of Melatonin for Neuroprotection in Term Infants With Hypoxic-ischaemic Encephalopathy[NCT03806816]100 participants (Anticipated)Interventional2018-12-13Recruiting
A Multicenter, Randomized, Double-blind, Placebo-controlled Study Evaluating the Efficacy and Safety of Agomelatine in the Prevention of Poststroke Depression[NCT05426304]Phase 4420 participants (Anticipated)Interventional2022-10-01Not yet recruiting
The Protective Effect of Melatonin in Patients Under Carotid Endarterectomy[NCT03115034]Phase 460 participants (Actual)Interventional2016-06-01Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

7 reviews available for melatonin and Brain Ischemia

ArticleYear
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia.
    CNS & neurological disorders drug targets, 2014, Volume: 13, Issue:6

    Topics: Brain Ischemia; Disease Progression; Humans; Huntington Disease; Melatonin; Multiple Sclerosis

2014
The antioxidative property of melatonin against brain ischemia.
    Expert review of neurotherapeutics, 2016, Volume: 16, Issue:7

    Topics: Antioxidants; Brain Ischemia; Free Radicals; Humans; Kynuramine; Melatonin

2016
Ischemic brain injury: New insights on the protective role of melatonin.
    Free radical biology & medicine, 2017, Volume: 104

    Topics: Antioxidants; Blood-Brain Barrier; Brain Ischemia; Calcium; Humans; Melatonin; Neuroprotective Agent

2017
[Stroke and epiphysis].
    Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 2009, Volume: 109, Issue:12 Suppl 2

    Topics: Aged; Brain Ischemia; Circadian Rhythm; Humans; Melatonin; Pineal Gland; Stroke

2009
Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke.
    Annals of the New York Academy of Sciences, 2003, Volume: 993

    Topics: Animals; Antioxidants; Brain; Brain Ischemia; Disease Models, Animal; Humans; Melatonin; Neuroprotec

2003
Melatonin and ischemia-reperfusion injury of the brain.
    Journal of pineal research, 2008, Volume: 45, Issue:1

    Topics: Animals; Brain; Brain Ischemia; Humans; Melatonin; Reperfusion Injury

2008

Trials

4 trials available for melatonin and Brain Ischemia

ArticleYear
Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study.
    Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2022, Volume: 106

    Topics: Brain Ischemia; Dietary Supplements; Double-Blind Method; Humans; Ischemic Stroke; Melatonin; Pilot

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
    Zeitschrift fur Gesundheitswissenschaften = Journal of public health, 2022, Volume: 30, Issue:2

    Topics: 3T3-L1 Cells; A Kinase Anchor Proteins; Acetates; Achilles Tendon; Acute Kidney Injury; Acute Pain;

2022
The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial.
    Journal of pineal research, 2018, Volume: 65, Issue:4

    Topics: Aged; Aged, 80 and over; Animals; Blotting, Western; Brain Ischemia; Enzyme-Linked Immunosorbent Ass

2018
[Chronobiological characteristics of stroke and poststroke cognitive impairment].
    Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 2014, Volume: 114, Issue:11

    Topics: Adult; Aged; Brain Ischemia; Circadian Rhythm; Cognition; Female; Humans; Male; Melatonin; Middle Ag

2014

Other Studies

95 other studies available for melatonin and Brain Ischemia

ArticleYear
Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia.
    Bioorganic & medicinal chemistry, 2011, Jan-15, Volume: 19, Issue:2

    Topics: Antioxidants; Brain Ischemia; Cell Line, Tumor; Humans; Hydrogen Bonding; Hydroxyl Radical; Models,

2011
New 5-unsubstituted dihydropyridines with improved CaV1.3 selectivity as potential neuroprotective agents against ischemic injury.
    Journal of medicinal chemistry, 2014, May-22, Volume: 57, Issue:10

    Topics: Animals; Brain Ischemia; Calcium; Calcium Channels, L-Type; Calcium Signaling; Cell Line, Tumor; Dih

2014
Enzymatic and solid-phase synthesis of new donepezil-based L- and d-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia.
    European journal of medicinal chemistry, 2017, Apr-21, Volume: 130

    Topics: Alzheimer Disease; Animals; Brain Ischemia; Calcium Channel Blockers; Cholinesterase Inhibitors; Don

2017
Inflammatory Cytokines are in Action: Brain Plasticity and Recovery after Brain Ischemia Due to Delayed Melatonin Administration.
    Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 2021, Volume: 30, Issue:12

    Topics: Animals; Anti-Inflammatory Agents; Brain Ischemia; Cytokines; Inflammation; Melatonin; Mice; Neurona

2021
A stepwise-targeting strategy for the treatment of cerebral ischemic stroke.
    Journal of nanobiotechnology, 2021, Nov-17, Volume: 19, Issue:1

    Topics: Animals; Antioxidants; Brain; Brain Ischemia; Cell Line; Drug Delivery Systems; Melatonin; Mice; Mic

2021
Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2021, Volume: 35, Issue:12

    Topics: Animals; Antioxidants; ARNTL Transcription Factors; Autophagy; Brain Ischemia; Diabetes Mellitus, Ex

2021
Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K.
    Journal of cellular physiology, 2022, Volume: 237, Issue:3

    Topics: Animals; Brain Ischemia; Gliosis; Glycogen Synthase Kinase 3 beta; Inflammation; Male; Melatonin; Ne

2022
Influence of Melatonin on Behavioral and Neurological Function of Rats with Focal Cerebral Ischemia-Reperfusion Injury via the JNK/FoxO3a/Bim Pathway.
    Computational and mathematical methods in medicine, 2022, Volume: 2022

    Topics: Animals; Bcl-2-Like Protein 11; Behavior, Animal; Brain; Brain Ischemia; Computational Biology; Dise

2022
[Electroacupuncture ameliorates ischemic injury in cerebral ischemia-reperfusion rats by regulating endogenous melatonin and inhibiting the activation of astrocytes].
    Zhen ci yan jiu = Acupuncture research, 2022, Jan-25, Volume: 47, Issue:1

    Topics: Animals; Astrocytes; Brain Ischemia; Electroacupuncture; Melatonin; Rats; Rats, Sprague-Dawley; Repe

2022
Melatonin improves cognitive function by suppressing endoplasmic reticulum stress and promoting synaptic plasticity during chronic cerebral hypoperfusion in rats.
    Biochemical pharmacology, 2022, Volume: 198

    Topics: Acetylcholinesterase; Animals; Brain Ischemia; Cognition; Disease Models, Animal; Endoplasmic Reticu

2022
Electroacupuncture Ameliorates Cognitive Impairment Through the Inhibition of NLRP3 Inflammasome Activation by Regulating Melatonin-Mediated Mitophagy in Stroke Rats.
    Neurochemical research, 2022, Volume: 47, Issue:7

    Topics: Animals; Brain Ischemia; Cognitive Dysfunction; Electroacupuncture; Infarction, Middle Cerebral Arte

2022
Delayed Therapeutic Administration of Melatonin Enhances Neuronal Survival Through AKT and MAPK Signaling Pathways Following Focal Brain Ischemia in Mice.
    Journal of molecular neuroscience : MN, 2022, Volume: 72, Issue:5

    Topics: Animals; Brain Ischemia; Cell Survival; Melatonin; Mice; Proto-Oncogene Proteins c-akt; Signal Trans

2022
Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia.
    Life sciences, 2022, Oct-01, Volume: 306

    Topics: Animals; Antioxidants; Brain Ischemia; Melatonin; Nanocapsules; Oxidative Stress; Polymers; Rats; Sh

2022
Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality.
    Drug delivery, 2022, Volume: 29, Issue:1

    Topics: Animals; Brain; Brain Ischemia; Ischemia; Lipids; Melatonin; Nanocapsules; Sheep

2022
Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke.
    Methods in molecular biology (Clifton, N.J.), 2022, Volume: 2550

    Topics: Animals; Brain Injuries; Brain Ischemia; Disease Models, Animal; Humans; Ischemic Stroke; Melatonin;

2022
Melatonin Offers Dual-Phase Protection to Brain Vessel Endothelial Cells in Prolonged Cerebral Ischemia-Recanalization Through Ameliorating ER Stress and Resolving Refractory Stress Granule.
    Translational stroke research, 2023, Volume: 14, Issue:6

    Topics: Animals; Brain; Brain Ischemia; Cerebral Infarction; Endothelial Cells; Ischemic Stroke; Melatonin;

2023
[Electroacupuncture alleviates cerebral ischemia injury in rats by regulating melatonin-NLRP3 and inhibiting pyroptosis].
    Zhen ci yan jiu = Acupuncture research, 2023, Mar-25, Volume: 48, Issue:3

    Topics: Animals; Brain Injuries; Brain Ischemia; Caspase 1; Cerebral Infarction; Electroacupuncture; Melaton

2023
Melatonin regulates microglial polarization and protects against ischemic stroke-induced brain injury in mice.
    Experimental neurology, 2023, Volume: 367

    Topics: Animals; Brain Injuries; Brain Ischemia; Infarction, Middle Cerebral Artery; Ischemic Stroke; Melato

2023
Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats.
    Biochimica et biophysica acta. Molecular basis of disease, 2023, Volume: 1869, Issue:7

    Topics: Animals; Brain Ischemia; Inflammation; Male; Melatonin; Necroptosis; Neuroinflammatory Diseases; Obe

2023
Melatonin Attenuates Cerebral Ischemia/Reperfusion Injury through Inducing Autophagy.
    Neuroendocrinology, 2023, Volume: 113, Issue:10

    Topics: Animals; Autophagy; Beclin-1; Brain Injuries; Brain Ischemia; Caspase 3; Infarction; Infarction, Mid

2023
Melatonin mitigates type 1 diabetes-aggravated cerebral ischemia-reperfusion injury through anti-inflammatory and anti-apoptotic effects.
    Brain and behavior, 2023, Volume: 13, Issue:9

    Topics: Animals; Brain Ischemia; Cerebral Infarction; Diabetes Mellitus, Type 1; Hyperglycemia; Infarction,

2023
Multi-parametric MRI assessment of melatonin regulating the polarization of microglia in rats after cerebral ischemia/reperfusion injury.
    Brain research bulletin, 2023, Volume: 204

    Topics: Amides; Animals; Brain Ischemia; Cerebral Infarction; Magnetic Resonance Imaging; Melatonin; Microgl

2023
Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase.
    Brain research, 2019, 11-15, Volume: 1723

    Topics: Animals; Brain Ischemia; Inflammation; Ischemia; Male; Melatonin; Microglia; Neuroimmunomodulation;

2019
Combined Therapy With Hyperbaric Oxygen and Melatonin Effectively Reduce Brain Infarct Volume and Preserve Neurological Function After Acute Ischemic Infarct in Rat.
    Journal of neuropathology and experimental neurology, 2019, 10-01, Volume: 78, Issue:10

    Topics: Animals; Apoptosis; Brain; Brain Infarction; Brain Ischemia; Disease Models, Animal; Hyperbaric Oxyg

2019
Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation.
    Life sciences, 2019, Dec-15, Volume: 239

    Topics: Animals; Apoptosis; Brain Ischemia; Infarction, Middle Cerebral Artery; Male; Melatonin; Mice; Mice,

2019
Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway.
    CNS neuroscience & therapeutics, 2019, Volume: 25, Issue:12

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Brain Ischemia; Cell Hypoxia; Cell Line

2019
Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival.
    Scientific reports, 2019, 12-13, Volume: 9, Issue:1

    Topics: Animals; ARNTL Transcription Factors; Brain Ischemia; Cell Line; Cell Survival; Glucose; Male; Melat

2019
The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin.
    Biochimica et biophysica acta. Molecular basis of disease, 2020, 11-01, Volume: 1866, Issue:11

    Topics: Animals; Antioxidants; Apoptosis; Brain Ischemia; Cerebral Infarction; Circadian Rhythm; Disease Mod

2020
Melatonin Decreases Circulating Levels of Galectin-3 and Cytokines, Motor Activity, and Anxiety Following Acute Global Cerebral Ischemia in Male Rats.
    Archives of medical research, 2021, Volume: 52, Issue:5

    Topics: Animals; Anxiety; Brain Ischemia; Cytokines; Galectin 3; Male; Melatonin; Motor Activity; Rats; Rats

2021
Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis.
    European journal of neurology, 2021, Volume: 28, Issue:6

    Topics: Brain Ischemia; Delirium; Humans; Ischemic Stroke; Melatonin; Propensity Score; Prospective Studies;

2021
Melatonin Ameliorates Hemorrhagic Transformation via Suppression of ROS-Induced NLRP3 Activation after Cerebral Ischemia in Hyperglycemic Rats.
    Oxidative medicine and cellular longevity, 2021, Volume: 2021

    Topics: Animals; Brain Ischemia; Hematoma, Subdural, Intracranial; Hyperglycemia; Male; Melatonin; NLR Famil

2021
Melatonin rescues cerebral ischemic events through upregulated tunneling nanotube-mediated mitochondrial transfer and downregulated mitochondrial oxidative stress in rat brain.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 139

    Topics: Animals; Apoptosis; Brain; Brain Ischemia; Cell Line, Tumor; Hydrogen Peroxide; Male; Melatonin; Mic

2021
Melatonin Improves Reduced Activities of Membrane ATPases and Preserves Ultrastructure of Gray and White Matter in the Rat Brain Ischemia/Reperfusion Model.
    Biochemistry. Biokhimiia, 2021, Volume: 86, Issue:5

    Topics: Adenosine Triphosphatases; Animals; Brain Ischemia; Disease Models, Animal; Gray Matter; Melatonin;

2021
Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells.
    Journal of pineal research, 2021, Volume: 71, Issue:1

    Topics: Animals; Brain Ischemia; Cell Line; Cell Membrane Structures; Hippocampus; Melatonin; Mice; Mitochon

2021
Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway.
    Aging, 2021, 06-11, Volume: 13, Issue:12

    Topics: Animals; Apoptosis; Brain Edema; Brain Ischemia; Cell Line; Cell Survival; Chromones; Diabetes Melli

2021
Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin's neuroprotective activity after focal cerebral ischemia in mice.
    Redox biology, 2017, Volume: 12

    Topics: Animals; Antioxidants; Brain Ischemia; Disease Models, Animal; Gene Expression Regulation; Immunoglo

2017
Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain.
    Journal of pineal research, 2017, Volume: 63, Issue:3

    Topics: Animals; Animals, Newborn; Brain Ischemia; Cell Death; Female; Glial Fibrillary Acidic Protein; Mela

2017
Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release.
    Proceedings of the National Academy of Sciences of the United States of America, 2017, 09-19, Volume: 114, Issue:38

    Topics: Animals; Brain Injuries; Brain Ischemia; Cytochromes c; Male; Melatonin; Mice; Mitochondria; Recepto

2017
Circadian rhythms of melatonin and cortisol in manifest Huntington's disease and in acute cortical ischemic stroke.
    Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 2017, Volume: 68, Issue:4

    Topics: Brain Ischemia; Circadian Rhythm; Humans; Huntington Disease; Hydrocortisone; Male; Melatonin; Middl

2017
Comparison of the Effect of Melatonin Treatment before and after Brain Ischemic Injury in the Inflammatory and Apoptotic Response in Aged Rats.
    International journal of molecular sciences, 2018, Jul-19, Volume: 19, Issue:7

    Topics: Aging; Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Gene Expression Regulation; G

2018
Co-Administration of Progesterone and Melatonin Attenuates Ischemia-Induced Hippocampal Damage in Rats.
    Journal of molecular neuroscience : MN, 2018, Volume: 66, Issue:2

    Topics: Animals; Apoptosis; Brain Ischemia; Drug Therapy, Combination; Hippocampus; Male; Maze Learning; Mel

2018
Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 110

    Topics: Adaptor Proteins, Signal Transducing; Animals; Antioxidants; Brain Ischemia; Cell Cycle Proteins; Ce

2019
Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia / Reperfusion Conditions.
    Neuroscience, 2019, 05-15, Volume: 406

    Topics: Animals; Antioxidants; Brain; Brain Ischemia; Free Radicals; Ischemia; Male; Melatonin; Nerve Tissue

2019
Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-κB pathway.
    Brain research bulletin, 2019, Volume: 150

    Topics: Animals; Brain; Brain Ischemia; Diffusion Tensor Imaging; Disease Models, Animal; Infarction, Middle

2019
Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral isch
    Journal of pineal research, 2014, Volume: 56, Issue:2

    Topics: Animals; Behavior, Animal; Brain; Brain Ischemia; Cells, Cultured; Disks Large Homolog 4 Protein; GA

2014
Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia.
    Life sciences, 2014, Apr-01, Volume: 100, Issue:2

    Topics: Animals; Antioxidants; Apoptosis; Aquaporin 4; Blotting, Western; Brain Edema; Brain Ischemia; Calci

2014
Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin.
    Journal of pineal research, 2014, Volume: 57, Issue:1

    Topics: Animals; Blotting, Western; Brain; Brain Ischemia; In Situ Nick-End Labeling; Male; Melatonin; Membr

2014
Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice.
    Journal of pineal research, 2015, Volume: 58, Issue:1

    Topics: Animals; Antioxidants; Brain Ischemia; Carbazoles; Cell Death; Male; Melatonin; Mice; Mitochondria;

2015
Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models.
    Neuropharmacology, 2015, Volume: 99

    Topics: Animals; Antioxidants; Brain; Brain Ischemia; Cell Hypoxia; Cell Line, Tumor; Disease Models, Animal

2015
Effects of normobaric oxygen and melatonin on reperfusion injury: role of cerebral microcirculation.
    Oncotarget, 2015, Oct-13, Volume: 6, Issue:31

    Topics: Animals; Antioxidants; bcl-2-Associated X Protein; bcl-X Protein; Blood-Brain Barrier; Brain; Brain

2015
No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat.
    Journal of neurochemistry, 2016, Volume: 136, Issue:2

    Topics: Acetates; Animals; Animals, Newborn; Antioxidants; Astrocytes; Brain Injuries; Brain Ischemia; Disea

2016
Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.
    Journal of pineal research, 2017, Volume: 62, Issue:3

    Topics: Animals; Autophagy; Brain Ischemia; eIF-2 Kinase; Endoplasmic Reticulum Stress; Male; Melatonin; Mem

2017
Protective roles of nanomelatonin in cerebral ischemia-reperfusion of aged brain: Matrixmetalloproteinases as regulators.
    Experimental gerontology, 2017, Volume: 92

    Topics: Aging; Animals; Antioxidants; Blood-Brain Barrier; Brain Ischemia; Disease Models, Animal; Female; M

2017
Long-term evaluation of cytoarchitectonic characteristics of prefrontal cortex pyramidal neurons, following global cerebral ischemia and neuroprotective melatonin treatment, in rats.
    Neuroscience letters, 2008, Dec-19, Volume: 448, Issue:1

    Topics: Analysis of Variance; Animals; Antioxidants; Brain Ischemia; Dendrites; Disease Models, Animal; Drug

2008
Melatonin attenuates the cerebral ischemic injury via the MEK/ERK/p90RSK/bad signaling cascade.
    The Journal of veterinary medical science, 2008, Volume: 70, Issue:11

    Topics: Animals; bcl-Associated Death Protein; Brain Injuries; Brain Ischemia; Cell Death; Cerebral Infarcti

2008
Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury.
    Stroke, 2009, Volume: 40, Issue:5

    Topics: Animals; Antioxidants; Blotting, Western; Brain Ischemia; Carbonic Anhydrase Inhibitors; Caspase 1;

2009
Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke.
    Journal of pineal research, 2009, Volume: 46, Issue:3

    Topics: Adolescent; Age Factors; Aged; Brain Ischemia; Chi-Square Distribution; Circadian Rhythm; Female; Hu

2009
Impaired nocturnal melatonin in acute phase of ischaemic stroke: cross-sectional matched case-control analysis.
    Journal of neuroendocrinology, 2009, Volume: 21, Issue:7

    Topics: Brain Ischemia; Case-Control Studies; Creatinine; Cross-Sectional Studies; Female; Humans; Hydrocort

2009
Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats.
    Journal of pineal research, 2009, Volume: 47, Issue:2

    Topics: Animals; Brain Ischemia; Chronic Disease; Female; Glutathione; Hippocampus; Histocytochemistry; HSP7

2009
Therapeutic effects of maternal melatonin administration on ischemia/reperfusion-induced oxidative cerebral damage in neonatal rats.
    Neonatology, 2010, Volume: 98, Issue:1

    Topics: Animals; Animals, Newborn; Brain Ischemia; CA1 Region, Hippocampal; CA3 Region, Hippocampal; Female;

2010
Melatonin ameliorates ischemic-like injury-evoked nitrosative stress: Involvement of HtrA2/PED pathways in endothelial cells.
    Journal of pineal research, 2011, Volume: 50, Issue:3

    Topics: Animals; Apoptosis Regulatory Proteins; Brain Ischemia; Cell Line; Cell Survival; Endothelial Cells;

2011
Regulation of the ischemia-induced autophagy-lysosome processes by nitrosative stress in endothelial cells.
    Journal of pineal research, 2011, Volume: 51, Issue:1

    Topics: Animals; Autophagy; Brain; Brain Ischemia; Cell Line; Endothelial Cells; Glucose; Humans; Immunohist

2011
Melatonin prevents down-regulation of astrocytic phosphoprotein PEA-15 in ischemic brain injury.
    Journal of pineal research, 2011, Volume: 51, Issue:4

    Topics: Animals; Apoptosis Regulatory Proteins; Astrocytes; Blotting, Western; Brain Ischemia; Cell Line; El

2011
Melatonin attenuates decrease of protein phosphatase 2A subunit B in ischemic brain injury.
    Journal of pineal research, 2012, Volume: 52, Issue:1

    Topics: Analysis of Variance; Animals; Brain; Brain Chemistry; Brain Ischemia; Carrier Proteins; Cell Line;

2012
Evidence that membrane-bound G protein-coupled melatonin receptors MT1 and MT2 are not involved in the neuroprotective effects of melatonin in focal cerebral ischemia.
    Journal of pineal research, 2012, Volume: 52, Issue:2

    Topics: Animals; Antioxidants; Blotting, Western; Brain Ischemia; Male; Melatonin; Mice; Mice, Knockout; Neu

2012
Modulations of behavioral consequences of minor cortical ischemic lesion by application of free radicals scavengers.
    General physiology and biophysics, 2011, Volume: 30, Issue:3

    Topics: Animals; Behavior, Animal; Brain Ischemia; Cognition; Cyclic N-Oxides; Feedback, Sensory; Free Radic

2011
Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice.
    Free radical biology & medicine, 2012, May-01, Volume: 52, Issue:9

    Topics: Animals; Base Sequence; Brain Ischemia; DNA Primers; Immunohistochemistry; Melatonin; Mice; Neurogen

2012
[GABAergic mechanism of the cerebrovascular effect of melatonin].
    Eksperimental'naia i klinicheskaia farmakologiia, 2012, Volume: 75, Issue:4

    Topics: Animals; Blood Flow Velocity; Blood Pressure; Brain Ischemia; Central Nervous System Depressants; Ce

2012
Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model.
    Journal of the neurological sciences, 2012, Dec-15, Volume: 323, Issue:1-2

    Topics: Animals; Blood-Brain Barrier; Body Water; Brain Edema; Brain Ischemia; Disease Models, Animal; Drug

2012
[The results of Russian multicenter open-label observational study of the efficacy and safety of мelaxen (melatonin) for the treatment of disordered sleep in patients with chronic cerebral ischemia].
    Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 2012, Volume: 112, Issue:9

    Topics: Brain Ischemia; Female; Humans; Male; Melatonin; Middle Aged; Sleep Initiation and Maintenance Disor

2012
Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia.
    Journal of pineal research, 2002, Volume: 33, Issue:1

    Topics: Animals; Apoptosis; Brain Ischemia; Cerebral Arteries; Disease Models, Animal; DNA; DNA Damage; DNA

2002
Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model.
    Journal of pineal research, 2003, Volume: 34, Issue:2

    Topics: Animals; Blood-Brain Barrier; Brain Ischemia; Disease Models, Animal; Electron Spin Resonance Spectr

2003
[The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2002, Volume: 37, Issue:5

    Topics: Animals; Brain Ischemia; Female; Gerbillinae; Hippocampus; Learning; Male; Melatonin; Memory; Motor

2002
Melatonin suppresses cerebral edema caused by middle cerebral artery occlusion/reperfusion in rats assessed by magnetic resonance imaging.
    Journal of pineal research, 2004, Volume: 36, Issue:1

    Topics: Animals; Brain Edema; Brain Ischemia; Corpus Striatum; Infarction, Middle Cerebral Artery; Magnetic

2004
Neuroprotective effect of combination of poly (ADP-ribose) polymerase inhibitor and antioxidant in middle cerebral artery occlusion induced focal ischemia in rats.
    Neurological research, 2004, Volume: 26, Issue:1

    Topics: Animals; Antioxidants; Benzamides; Brain Ischemia; Disease Models, Animal; Drug Combinations; Drug T

2004
Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator.
    Journal of pineal research, 2004, Volume: 36, Issue:3

    Topics: Animals; Brain Ischemia; Caspase 3; Caspase Inhibitors; Cell Death; Coronary Disease; Corpus Striatu

2004
Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1.
    Journal of pineal research, 2004, Volume: 37, Issue:4

    Topics: Animals; Antioxidants; Aspartic Acid Endopeptidases; Blotting, Western; Brain Ischemia; Endothelin-C

2004
The effects of melatonin on focal cerebral ischemia-reperfusion model.
    Saudi medical journal, 2004, Volume: 25, Issue:11

    Topics: Animals; Brain Ischemia; Cell Survival; Cerebral Cortex; Disease Models, Animal; Infarction, Middle

2004
Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia.
    Journal of pineal research, 2005, Volume: 38, Issue:1

    Topics: Animals; Brain; Brain Ischemia; DNA; Hydroxylation; Lipid Peroxidation; Male; Melatonin; Mice; Mice,

2005
Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice.
    Journal of pineal research, 2005, Volume: 38, Issue:1

    Topics: Animals; Blotting, Western; Brain Ischemia; Female; Melatonin; Mice; Mice, Inbred C57BL; Mitogen-Act

2005
Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and Akt.
    Journal of pineal research, 2005, Volume: 39, Issue:2

    Topics: Animals; Blotting, Western; Brain Ischemia; Immunohistochemistry; Laser-Doppler Flowmetry; Male; Mel

2005
Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice.
    Journal of pineal research, 2006, Volume: 40, Issue:3

    Topics: Animals; Blood-Brain Barrier; Brain Ischemia; Infarction, Middle Cerebral Artery; Intracranial Hemor

2006
Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats.
    Journal of pineal research, 2007, Volume: 42, Issue:2

    Topics: Animals; Brain Ischemia; Male; Melatonin; Neuroprotective Agents; Rats

2007
Influence of melatonin pretreatment and preconditioning by hypobaric hypoxia on the development of cortical photothrombotic ischemic lesion.
    Physiological research, 2008, Volume: 57, Issue:2

    Topics: Animals; Antioxidants; Atmospheric Pressure; Brain Ischemia; Cerebral Cortex; Endothelial Cells; Fre

2008
Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats.
    Neuroscience letters, 2007, Aug-16, Volume: 423, Issue:2

    Topics: Animals; Brain Ischemia; Dendritic Spines; Maze Learning; Melatonin; Neuronal Plasticity; Neuroprote

2007
Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice.
    Journal of pineal research, 2008, Volume: 45, Issue:2

    Topics: Animals; Antioxidants; Anxiety; Brain Ischemia; Cell Survival; Doublecortin Domain Proteins; Hyperki

2008
Chronic and acute melatonin effects in gerbil global forebrain ischemia: long-term neural and behavioral outcome.
    Journal of pineal research, 2008, Volume: 44, Issue:2

    Topics: Animals; Behavior, Animal; Brain Ischemia; Cell Count; Cell Differentiation; Disease Models, Animal;

2008
Impaired nocturnal melatonin excretion and changes of immunological status in ischaemic stroke patients.
    Lancet (London, England), 1996, Mar-09, Volume: 347, Issue:9002

    Topics: Brain Ischemia; Female; Humans; Immunity, Cellular; Male; Melatonin; Middle Aged

1996
Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain.
    Journal of pineal research, 1999, Volume: 26, Issue:3

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Brain; Brain Ischemia; Deoxyguanosine; DNA; DNA Damage; Female

1999
Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion.
    Zhongguo yao li xue bao = Acta pharmacologica Sinica, 1997, Volume: 18, Issue:5

    Topics: Animals; Brain Ischemia; Free Radical Scavengers; Gentisates; Hydroxyl Radical; Male; Melatonin; Rat

1997
Disruption of nocturnal melatonin rhythm and immunological involvement in ischaemic stroke patients.
    Scandinavian journal of immunology, 1999, Volume: 50, Issue:2

    Topics: B-Lymphocytes; Brain Ischemia; CD3 Complex; CD4-Positive T-Lymphocytes; Female; Humans; Hydrocortiso

1999
Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression.
    Zhongguo yao li xue bao = Acta pharmacologica Sinica, 1999, Volume: 20, Issue:5

    Topics: Animals; bcl-2-Associated X Protein; Brain; Brain Ischemia; Male; Melatonin; Neurons; Neuroprotectiv

1999
Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2000, Volume: 14, Issue:10

    Topics: Animals; Brain Ischemia; Cell Death; Cell Survival; Cerebral Infarction; Free Radical Scavengers; Gl

2000
Protective effects of melatonin in ischemic brain injury.
    Journal of pineal research, 2000, Volume: 29, Issue:4

    Topics: Animals; Brain; Brain Edema; Brain Ischemia; Enzyme-Linked Immunosorbent Assay; Free Radical Scaveng

2000
Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats.
    European journal of pharmacology, 2001, Oct-05, Volume: 428, Issue:2

    Topics: Animals; Antioxidants; Brain; Brain Ischemia; Glutathione; Infarction, Middle Cerebral Artery; Injec

2001