mdl-100907 has been researched along with Stomach-Ulcer* in 2 studies
2 other study(ies) available for mdl-100907 and Stomach-Ulcer
Article | Year |
---|---|
Citral: a monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain.
Citral (3,7-dimethyl-2,6-octadienal) is an open-chain monoterpenoid present in the essential oils of several medicinal plants. The aim of this work was to evaluate the effects of orally administered citral in experimental models of acute and chronic nociception, inflammation, and gastric ulcers caused by non-steroidal anti-inflammatory drugs (NSAIDs). Oral treatment with citral significantly inhibited the neurogenic and inflammatory pain responses induced by intra-plantar injection of formalin. Citral also had prophylactic and therapeutic anti-nociceptive effects against mechanical hyperalgesia in plantar incision surgery, chronic regional pain syndrome, and partial ligation of sciatic nerve models, without producing any significant motor dysfunction. In addition, citral markedly attenuated the pain response induced by intra-plantar injection of glutamate and phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator), as well as by intrathecal (i.t.) injection of ionotropic and metabotropic glutamate receptor agonists (N-methyl-D-aspartic acid [NMDA] and 1-amino-1,3-dicarboxycyclopentane [trans-ACPD], respectively), substance P, and cytokine tumour necrosis factor-α. However, citral potentiated behaviours indicative of pain caused by i.t., but not intra-plantar, injection of a transient receptor potential vanilloid receptor type 1 (TRPV1) agonist. Finally, the anti-nociceptive action of citral was found to involve significant activation of the 5-HT2A serotonin receptor. The effect of citral was accompanied by a gastro-protective effect against NSAID-induced ulcers. Together, these results show the potential of citral as a new drug for the treatment of pain. Topics: Acute Pain; Acyclic Monoterpenes; Analgesics; Animals; Capsaicin; Chronic Pain; Excitatory Amino Acids; Formaldehyde; Glutamic Acid; Hyperalgesia; Ischemia; Ketanserin; Male; Mice; Monoterpenes; Neuralgia; Pain, Postoperative; Rats, Wistar; Receptor, Serotonin, 5-HT2A; Serotonin 5-HT2 Receptor Antagonists; Stomach Ulcer; Substance P; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha | 2014 |
Desvenlafaxine succinate ameliorates visceral hypersensitivity but delays solid gastric emptying in rats.
Desvenlafaxine succinate (DVS) is a novel serotonin and norepinephrine reuptake inhibitor. The aim of this study was to investigate the effects of DVS on visceral hypersensitivity and solid gastric emptying in a rodent model of gastric hyperalgesia. Twenty-eight gastric hyperalgesia rats and 20 control rats were used. Visceral sensitivity during gastric distention (GD) was assessed by recording of electromyogram (EMG) at pressures of 20, 40, 60, and 80 mmHg. DVS with doses of 1, 10, and 30 mg/kg were administrated by gavage, 5-HT1A antagonist (WAY-100635, 0.3 mg/kg) was given subcutaneously, and 5-HT2A antagonist (ketanserin, 1 mg/kg) was given intraperitoneally. The level of norepinephrine in plasma was measured by enzyme-linked immunosorbent assay. We found that 1) visceral hypersensitivity induced by acetic acid was validated. 2) DVS dose-dependently reduced visceral hypersensitivity in the gastric hypersensitivity rats. The EMG (% of baseline value without GD) during GD at 60 and 80 mmHg with DVS at a dose of 30 mg/kg were 119.4 ± 2.3% (vs. saline 150.9 ± 2.7%, P < 0.001) and 128.2 ± 3.2% (vs. saline 171.1 ± 2.4%, P < 0.001). Similar findings were observed at a dose of 10 mg/kg. DVS at a dose of 1 mg/kg reduced visceral hypersensitivity only during GD at 60 mmHg. 3) Neither WAY-100635 nor ketanserin blocked the effect of DVS on visceral sensitivity. 4) DVS at 30 mg/kg significantly increased plasma NE level (P = 0.012 vs. saline). 5) DVS at 30 mg/kg significantly delayed solid gastric emptying (P < 0.05 vs. saline). We conclude that DVS reduces visceral sensitivity in a rodent model of visceral hypersensitivity and delays solid gastric emptying. Caution should be made when DVS is used for treating patients. Topics: Acetic Acid; Administration, Oral; Adrenergic Uptake Inhibitors; Animals; Cyclohexanols; Desvenlafaxine Succinate; Disease Models, Animal; Dose-Response Relationship, Drug; Electromyography; Gastric Emptying; Gastroparesis; Hyperalgesia; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Mechanotransduction, Cellular; Norepinephrine; Pain Measurement; Pain Threshold; Pressure; Rats; Rats, Sprague-Dawley; Selective Serotonin Reuptake Inhibitors; Serotonin 5-HT1 Receptor Antagonists; Serotonin 5-HT2 Receptor Antagonists; Stomach; Stomach Ulcer | 2013 |