mdl-100907 has been researched along with Seizures* in 5 studies
5 other study(ies) available for mdl-100907 and Seizures
Article | Year |
---|---|
Assessing the role of serotonergic receptors in cannabidiol's anticonvulsant efficacy.
Cannabidiol (CBD) is a phytocannabinoid that has demonstrated anticonvulsant efficacy in several animal models of seizure. The current experiment validated CBD's anticonvulsant effect using the acute pentylenetetrazol (PTZ) model. Furthermore, it tested whether CBD reduces seizure activity by interacting with either the serotonergic 5HT1A or 5HT2A receptor. 120 male adolescent Wistar-Kyoto rats were randomly assigned to 8 treatment groups in two consecutive experiments. In both experiments, subjects received either CBD (100mg/kg) or vehicle 60min prior to seizure testing. In Experiment 1, subjects received either WAY-100635 (1mg/kg), a 5HT1A antagonist, or saline vehicle injection 80min prior to seizure testing. In Experiment 2, subjects received either MDL-100907 (0.3mg/kg), a specific 5HT2A antagonist, or 40% DMSO vehicle 80min prior to seizure testing. 85mg/kg of PTZ was administered to induce seizure, and behavior was recorded for 30min. Seizure behaviors were subsequently coded using a 5-point scale of severity. Across both experiments, subjects in the vehicle control groups exhibited high levels of seizure activity and mortality. In both experiments, CBD treatment significantly attenuated seizure activity. Pre-treatment with either WAY-100635 or MDL-100907 did not block CBD's anticonvulsant effect. WAY-100635 administration, by itself, also led to a significant attenuation of seizure activity. These results do not support the hypothesis that CBD attenuates seizure activity through activation of the 5HT1A or 5HT2A receptor. While this work further confirms the anticonvulsant efficacy of CBD and supports its application in the treatment of human seizure disorders, additional research on CBD's mechanism of action must be conducted. Topics: Animals; Anticonvulsants; Cannabidiol; Fluorobenzenes; Male; Pentylenetetrazole; Piperazines; Piperidines; Pyridines; Rats; Rats, Inbred WKY; Receptor, Serotonin, 5-HT1A; Receptor, Serotonin, 5-HT2A; Seizures; Serotonin 5-HT1 Receptor Antagonists; Serotonin 5-HT2 Receptor Antagonists; Treatment Outcome | 2017 |
The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT₂A and 5-HT₂C serotonergic receptors in post-ictal antinociception.
The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception. Topics: Animals; Male; Nociception; Organ Specificity; Periaqueductal Gray; Rats; Rats, Wistar; Receptor, Serotonin, 5-HT2A; Receptor, Serotonin, 5-HT2C; Seizures; Serotonergic Neurons; Serotonin 5-HT2 Receptor Antagonists; Synaptic Transmission | 2014 |
Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome.
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia. Topics: Analgesia; Analysis of Variance; Animals; Behavior, Animal; Brain; Male; Medulla Oblongata; Models, Neurological; Neural Pathways; Pain; Pain Measurement; Pain Threshold; Pentylenetetrazole; Raphe Nuclei; Rats; Rats, Wistar; Receptors, Serotonin, 5-HT2; Reticular Formation; Ritanserin; Seizures; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Syndrome; Time Factors | 2006 |
Stimulation of 5-HT 1A receptors increases the seizure threshold for picrotoxin in mice.
To evaluate the possible role of 5-HT 1A and 5-HT 2A receptors in the anticonvulsant effect of swim stress, mice were pre-treated with agonists and antagonists of these receptors prior to exposure to stress and the intravenous infusion of picrotoxin. 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propylamino) tetralin) and WAY-100635 (a selective agonist and antagonist of 5-HT 1A receptors), DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) and ketanserin (a 5-HT 2A/2C receptor agonist and antagonist) were used. Results demonstrated that 1 and 3 mg/kg of 8-OH-DPAT increased the doses of picrotoxin producing running/bouncing clonus, tonic hindlimb extension and death in stressed and unstressed mice, respectively. Pre-treatment with WAY (0.3 mg/kg) prevented the effect of 8-OH-DPAT (3 mg/kg). DOI (2.5 mg/kg) and ketanserin (1 mg/kg) failed to affect the seizure threshold for picrotoxin. The results show that stimulation of 5-HT 1A receptors exerts anticonvulsant actions in stressed and unstressed mice, while stimulation of 5-HT 2A/2C receptors does not interfere with the effect of stress on picrotoxin-induced convulsions. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Amphetamines; Animals; Drug Administration Schedule; Drug Therapy, Combination; Ketanserin; Male; Mice; Mice, Inbred CBA; Picrotoxin; Piperazines; Pyridines; Receptor, Serotonin, 5-HT1A; Seizures; Serotonin 5-HT1 Receptor Agonists; Serotonin 5-HT1 Receptor Antagonists; Serotonin 5-HT2 Receptor Agonists; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Serotonin Receptor Agonists; Stress, Physiological; Swimming | 2005 |
The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats.
In this study, we assessed the effects of the acute administration of various 5-HT receptor antagonists on hippocampal partial seizures generated by low-frequency electrical stimulation in male Wistar rats. The seizure threshold and severity were determined by measuring the pulse number threshold and primary and secondary afterdischarges, respectively, and the latency of secondary discharge was also determined. The administration of either the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazineyl]ethyl]-N-(pyridinyl)-c yclohe xanecarboximimde 3 HCl (WAY 100635, 0.1-1 mg/kg i.p.), the selective 5-HT(3) receptor antagonist granisetron (0.3-3 mg/kg i.p.), the selective 5-HT(2A) receptor antagonist R-(+)-a-(2, 3-dimethoxyphenyl)-1-[2-(4-fluorophenyl) ethyl]-4-piperidine-methanol (MDL 100907, 0.3-3 mg/kg i.p.) or the 5-HT(2B,C) receptor antagonist antagonist N-(1-methyl-5-indolyl)-N'-(3-pyridyl) urea HCl (SKB 200646A, 5-50 mg/kg i.p.) did not alter the pulse number threshold compared to vehicle-treated animals. However, the acute administration of WAY 100635 (0.3 mg/kg) and M100907 (1 mg/kg) significantly increased, whereas granisetron (1 mg/kg) decreased, the primary afterdischarge duration compared to vehicle-treated animals. The latency of secondary after discharge was significantly decreased by WAY 100635 (1 mg/kg) and granisetron (3 mg/kg) compared to vehicle-treated animals. These results suggest that in this model, the antagonism of 5-HT(1A), 5-HT(2A), 5-HT(3) or 5-HT(2B,C) receptors do not lower or raise seizure threshold. However, the antagonism of 5-HT(1A) receptors may increase or augment seizure severity. Topics: Animals; Dose-Response Relationship, Drug; Electroencephalography; Fluorobenzenes; Granisetron; Hippocampus; Indoles; Locomotion; Male; Piperazines; Piperidines; Pyridines; Rats; Rats, Wistar; Receptors, Serotonin; Seizures; Serotonin Antagonists; Severity of Illness Index; Urea | 2000 |