mdl-100907 and Body-Weight

mdl-100907 has been researched along with Body-Weight* in 8 studies

Other Studies

8 other study(ies) available for mdl-100907 and Body-Weight

ArticleYear
Mechanisms of Action of Cassiae Semen for Weight Management: A Computational Molecular Docking Study of Serotonin Receptor 5-HT2C.
    International journal of molecular sciences, 2020, Feb-16, Volume: 21, Issue:4

    Overweight and obesity is a growing global health concern. Current management of obesity includes lifestyle intervention, bariatric surgery and medication. The serotonin receptor, 5-HT2C, is known to mediate satiety, appetite and consumption behaviour. Lorcaserin, an appetite control drug, has demonstrated efficacy in appetite control by targeting 5-HT2C but causes undesirable side effects. This study aimed to explore the potential usage of Cassiae semen (CS), a well-known traditional Chinese medicine used to treat obesity. A computational molecular docking study was performed to determine the binding mechanism of CS compounds to the 5-HT2C receptors in both active, agonist-bound and inactive, antagonist-bound conformations. By comparing binding poses and predicted relative binding affinities towards the active or inactive forms of the receptor, we hypothesise that two of the CS compounds studied may be potent agonists which may mimic the appetite suppression effects of lorcaserin: obtusifoliol and cassiaside B2. Furthermore, two ligands, beta-sitosterol and juglanin, were predicted to bind favourably to 5-HT2C outside of the known agonist binding pocket in the active receptor, suggesting that such ligands may serve as positive allosteric modulators of 5-HT2C receptor function. Overall, this study proposed several CS compounds which may be responsible for exerting anti-obesity effects via appetite suppression by 5-HT2C receptor activation.

    Topics: Anti-Obesity Agents; Body Weight; Cinnamomum aromaticum; Drug Discovery; Drugs, Chinese Herbal; Humans; Ligands; Molecular Docking Simulation; Overweight; Receptor, Serotonin, 5-HT2C; Serotonin 5-HT2 Receptor Agonists; Serotonin 5-HT2 Receptor Antagonists

2020
Agomelatine in the tree shrew model of depression: effects on stress-induced nocturnal hyperthermia and hormonal status.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2014, Volume: 24, Issue:3

    The antidepressive drug agomelatine combines the properties of an agonist of melatonergic receptors 1 and 2 with an antagonist of the 5-HT2C receptor. We analyzed the effects of agomelatine in psychosocially stressed male tree shrews, an established preclinical model of depression. Tree shrews experienced daily social stress for a period of 5 weeks and were concomitantly treated with different drugs daily for 4 weeks. The effects of agomelatine (40 mg/kg/day) were compared with those of the agonist melatonin (40 mg/kg/day), the inverse 5-HT2C antagonist S32006 (10mg/kg/day), and the SSRI fluoxetine (15 mg/kg/day). Nocturnal core body temperature (CBT) was recorded by telemetry, and urinary norepinephrine and cortisol concentrations were measured. Chronic social stress induced nocturnal hyperthermia. Agomelatine normalized the CBT in the fourth week of the treatment (T4), whereas the other drugs did not significantly counteract the stress-induced hyperthermia. Agomelatine also reversed the stress-induced reduction in locomotor activity. Norepinephrine concentration was elevated by the stress indicating sympathetic hyperactivity, and was normalized in the stressed animals treated with agomelatine or fluoxetine but not in those treated with melatonin or S32006. Cortisol concentration was elevated by stress but returned to basal levels by T4 in all animals, irrespective of the treatment. These observations show that agomelatine has positive effects to counteract stress-induced physiological processes and to restore the normal rhythm of nocturnal CBT. The data underpin the antidepressant properties of agomelatine and are consistent with a distinctive profile compared to its constituent pharmacological components and other conventional agents.

    Topics: Acetamides; Animals; Antidepressive Agents; Antidepressive Agents, Second-Generation; Body Temperature; Body Weight; Central Nervous System Depressants; Circadian Rhythm; Depressive Disorder; Fever; Fluoxetine; Hydrocortisone; Indoles; Male; Melatonin; Motor Activity; Norepinephrine; Pyridines; Serotonin 5-HT2 Receptor Antagonists; Stress, Psychological; Tupaiidae

2014
5-HT2A receptor antagonism by MDL 11,939 during inescapable stress prevents subsequent exaggeration of acoustic startle response and reduced body weight in rats.
    Journal of psychopharmacology (Oxford, England), 2011, Volume: 25, Issue:2

    Activation of central 5-HT(2A) receptor signaling and its subsequent alterations have been implicated in the pathophysiological response to stress and the pathogenesis of stress-associated psychiatric disorders. To further examine the association between alterations in central 5-HT(2A) receptor signaling and the occurrence of stress-induced psychiatric symptoms, the present study, utilizing a learned helplessness stress model in rats, determined whether 5-HT(2A) receptor signaling blockade during stress could prevent the occurrence of stress-induced physical and behavioral abnormalities. Rats subjected to restraint/tail shock for three days developed long-lasting elevated acoustic startle response (ASR) and reduced body weight, compared to non-stressed control animals. However, administration of the selective 5-HT(2A) receptor antagonist, MDL 11,939 (α-phenyl-1-(2-phenylethyl)-4-piperidinemethanol), 30 min prior to exposure of the animals to the stress protocol prevented the subsequent occurrence of elevated ASR and reduced body weight in a dose-dependent manner in stressed subjects. Administration of MDL 11,939 to the animals immediately after exposure to the stress protocol also prevented the occurrence of exaggerated ASR, but was not able to normalize body weight. These findings suggest a critical role of the central 5-HT(2A) receptor activation in developing the pathophysiology associated with elevated ASR and reduced body weight during stress. The differential effects of MDL 11,939 on startle response and body weight and its potential clinical significance are discussed.

    Topics: Animals; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Helplessness, Learned; Male; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT2A; Reflex, Startle; Serotonin 5-HT2 Receptor Antagonists; Stress, Psychological

2011
Vestibular-mediated increase in central serotonin plays an important role in hypergravity-induced hypophagia in rats.
    Journal of applied physiology (Bethesda, Md. : 1985), 2010, Volume: 109, Issue:6

    Exposure to a hypergravity environment induces acute transient hypophagia, which is partially restored by a vestibular lesion (VL), suggesting that the vestibular system is involved in the afferent pathway of hypergravity-induced hypophagia. When rats were placed in a 3-G environment for 14 days, Fos-containing cells increased in the paraventricular hypothalamic nucleus, the central nucleus of the amygdala, the medial vestibular nucleus, the raphe nucleus, the nucleus of the solitary tract, and the area postrema. The increase in Fos expression was completely abolished or significantly suppressed by VL. Therefore, these regions may be critical for the initiation and integration of hypophagia. Because the vestibular nucleus contains serotonergic neurons and because serotonin (5-HT) is a key neurotransmitter in hypophagia, with possible involvement in motion sickness, we hypothesized that central 5-HT increases during hypergravity and induces hypophagia. To examine this proposition, the 5-HT concentrations in the cerebrospinal fluid were measured when rats were reared in a 3-G environment for 14 days. The 5-HT concentrations increased in the hypergravity environment, and these increases were completely abolished in rats with VL. Furthermore, a 5-HT(2A) antagonist (ketanserin) significantly reduced 3-G (120 min) load-induced Fos expression in the medial vestibular nucleus, and chronically administered ketanserin ameliorated hypergravity-induced hypophagia. These results indicate that hypergravity induces an increase in central 5-HT via the vestibular input and that this increase plays a significant role in hypergravity-induced hypophagia. The 5-HT(2A) receptor is involved in the signal transduction of hypergravity stress in the vestibular nucleus.

    Topics: Animals; Arsanilic Acid; Body Weight; Drinking; Eating; Feeding Behavior; Hypergravity; Ketanserin; Male; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT2A; Serotonin; Serotonin 5-HT2 Receptor Antagonists; Signal Transduction; Time Factors; Up-Regulation; Vestibular Nuclei

2010
Dorsomedial medullary 5-HT2 receptors mediate immediate onset of initial hyperventilation, airway dilation, and ventilatory decline during hypoxia in mice.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2009, Volume: 297, Issue:1

    The dorsomedial medulla oblongata (DMM) includes the solitary tract nucleus and the hypoglossal nucleus, to which 5-HT neurons project. Effects of 5-HT in the DMM on ventilatory augmentation and airway dilation are mediated via 5-HT2 receptors, which interact with the CO(2) drive. The interaction may elicit cycles between hyperventilation with airway dilation and hypoventilation with airway narrowing. In the present study, effects of 5-HT2 receptors in the DMM on hypoxic ventilatory and airway responses were investigated, while 5-HT release in the DMM was monitored. Adult male mice were anesthetized, and then a microdialysis probe was inserted into the DMM. The mice were placed in a double-chamber plethysmograph. After recovery from anesthesia, the mice were exposed to hypoxic gas (7% O(2) in N(2)) for 5 min with or without a 5-HT2 receptor antagonist (LY-53857) perfused in the DMM. 5-HT release in the DMM was increased by hypoxia regardless of the presence of LY-53857. Immediate onset and the peak of initial hypoxic hyperventilatory responses were delayed. Subsequent ventilatory decline and airway dilation during initial hypoxic hyperventilation were suppressed with LY-53857. These results suggest that 5-HT release increased by hypoxia acts on 5-HT2 receptors in the DMM, which contributes to the immediate onset of initial hypoxic hyperventilation, airway dilation, and subsequent ventilatory decline. Hypoxic ventilatory and airway responses mediated via 5-HT2 receptors in the DMM may play roles in immediate rescue and defensive adaptation for hypoxia and may be included in periodic breathing and the pathogenesis of obstructive sleep apnea.

    Topics: Airway Resistance; Animals; Body Weight; Disease Models, Animal; Ergolines; Hyperventilation; Hypoxia; Lung; Male; Medulla Oblongata; Mice; Mice, Inbred C57BL; Microdialysis; Plethysmography; Pulmonary Ventilation; Receptors, Serotonin, 5-HT2; Respiratory Mechanics; Serotonin; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Sleep Apnea, Obstructive; Time Factors

2009
Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization.
    The Journal of pharmacology and experimental therapeutics, 2008, Volume: 325, Issue:2

    5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity (K(i) = 15 +/- 1 nM, 29 +/- 7 nM, respectively), and it was a full agonist for the human 5-HT(2C) receptor in a functional inositol phosphate accumulation assay, with 18- and 104-fold selectivity over 5-HT(2A) and 5-HT(2B) receptors, respectively. Lorcaserin was also highly selective for human 5-HT(2C) over other human 5-HT receptors (5-HT(1A), 5-HT(3), 5-HT(4C), 5-HT5(5A), 5-HT(6), and 5-HT(7)), in addition to a panel of 67 other G protein-coupled receptors and ion channels. Lorcaserin did not compete for binding of ligands to serotonin, dopamine, and norepinephrine transporters, and it did not alter their function in vitro. Behavioral observations indicated that unlike the 5-HT(2A) agonist (+/-)-1-(2,5-dimethoxy-4-phenyl)-2-aminopropane, lorcaserin did not induce behavioral changes indicative of functional 5-HT(2A) agonist activity. Acutely, lorcaserin reduced food intake in rats, an effect that was reversed by pretreatment with the 5-HT(2C)-selective antagonist 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl-carbamoyl]indoline (SB242,084) but not the 5-HT(2A) antagonist (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (MDL 100,907), demonstrating mediation by the 5-HT(2C) receptor. Chronic daily treatment with lorcaserin to rats maintained on a high fat diet produced dose-dependent reductions in food intake and body weight gain that were maintained during the 4-week study. Upon discontinuation, body weight returned to control levels. These data demonstrate lorcaserin to be a potent, selective, and efficacious agonist of the 5-HT(2C) receptor, with potential for the treatment of obesity.

    Topics: Aminopyridines; Animals; Behavior, Animal; Benzazepines; Body Weight; Brain; Cell Line; Dopamine; Eating; Fluorobenzenes; Humans; Indoles; Male; Norepinephrine; Obesity; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT2C; Recombinant Proteins; Serotonin; Serotonin 5-HT2 Receptor Agonists; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Serotonin Receptor Agonists; Transfection

2008
Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism.
    Gastroenterology, 2008, Volume: 134, Issue:7

    Chemotherapy with an anticancer agent generally causes gastrointestinal tract disorders such as vomiting and anorexia, but the mechanism remains unclear. Rikkunshito, a kampo preparation, is known to alleviate such adverse reactions. In this study, we attempted to clarify the mechanism.. We investigated the decreases of plasma acylated-ghrelin level and food intake caused by cisplatin, serotonin (5-HT), 5-HT agonists, and vagotomy as well as the decrease-suppressing effects of rikkunshito and 5-HT antagonists. In addition, binding affinities of rikkunshito components were determined in receptor-binding assays using 5-HT2B and 5-HT2C receptors.. Cisplatin, 5-HT, BW723C86 (5-HT2B-receptor agonist), and m-chlorophenylpiperazine HCl (5-HT2C agonist) markedly decreased plasma acylated-ghrelin levels, although 5-HT3 and 5-HT4 agonists had no effect. In contrast, 5-HT2B and 5-HT2C antagonists suppressed the cisplatin-induced decrease of plasma acylated-ghrelin level and food intake. Administration of rat ghrelin improved the cisplatin-induced decrease in food intake. Vagotomy decreased the plasma acylated-ghrelin level, which was decreased further by cisplatin. Rikkunshito suppressed such cisplatin-induced decreases of plasma acylated-ghrelin level and food intake. The suppressive effect of rikkunshito was blocked by a ghrelin antagonist. Components of rikkunshito, 3,3',4',5,6,7,8-heptamethoxyflavone, hesperidin, and iso-liquiritigenin showed a 5-HT2B-antagonistic effect in vitro, and oral administration of rikkunshito suppressed the cisplatin-induced decrease in the plasma acylated-ghrelin level.. The cisplatin-induced decreases of the plasma acylated-ghrelin level and food intake are mediated by 5-HT2B/2C receptors and suppressed by flavonoids in rikkunshito.

    Topics: Acylation; Aminopyridines; Animals; Anorexia; Antineoplastic Agents; Body Weight; Chalcones; Cisplatin; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Eating; Flavones; Gastric Mucosa; Gastrointestinal Agents; Ghrelin; Hesperidin; Indoles; Male; Oligopeptides; Piperazines; Protein Binding; Quinolines; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT2B; Receptor, Serotonin, 5-HT2C; Receptors, Ghrelin; Serotonin; Serotonin 5-HT2 Receptor Antagonists; Serotonin Receptor Agonists; Stomach; Thiophenes; Vagotomy

2008
Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice.
    Biochemical and biophysical research communications, 2006, Dec-29, Volume: 351, Issue:4

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A(y) mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A(y) mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A(y) mice, but did not increase plasma adiponectin levels.

    Topics: Adiponectin; Animals; Appetite; Body Weight; Eating; Gene Expression; Hypothalamus; Male; Mice; Mice, Obese; Nerve Tissue Proteins; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Receptor, Serotonin, 5-HT1B; Receptor, Serotonin, 5-HT2A; Receptor, Serotonin, 5-HT2C; Receptors, Corticotropin-Releasing Hormone; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists; Succinates

2006