marizomib has been researched along with Plasmacytoma* in 2 studies
2 other study(ies) available for marizomib and Plasmacytoma
Article | Year |
---|---|
Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model.
Our previous study showed that the novel proteasome inhibitor NPI-0052 induces apoptosis in multiple myeloma (MM) cells resistant to conventional and bortezomib (Velcade, Takeda, Boston, MA, USA) therapies. In vivo studies using human MM-xenografts demonstrated that NPI-0052 is well tolerated, prolongs survival, and reduces tumour recurrence. These preclinical studies provided the basis for an ongoing phase-1 clinical trial of NPI-0052 in relapsed/refractory MM patients. Here we performed pharmacodynamic (PD) studies of NPI-0052 using human MM xenograft murine model. Our results showed that NPI-0052: (i) rapidly left the vascular compartment in an active form after intravenous (i.v.) administration, (ii) inhibited 20S proteasome chymotrypsin-like (CT-L, beta5), trypsin-like (T-L, beta2), and caspase-like (C-L, beta1) activities in extra-vascular tumours, packed whole blood (PWB), lung, liver, spleen, and kidney, but not brain and (iii) triggered a more sustained (>24 h) proteasome inhibition in tumours and PWB than in other organs (<24 h). Tissue distribution analysis of radiolabeled compound (3H-NPI-0052) in mice demonstrated that NPI-0052 left the vascular space and entered organs as the parent compound. Importantly, treatment of MM.1S-bearing mice with NPI-0052 showed reduced tumour growth without significant toxicity, which was associated with prolonged inhibition of proteasome activity in tumours and PWB but not normal tissues. Topics: Animals; Antineoplastic Agents; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Kidney; Lactones; Male; Mice; Plasmacytoma; Proteasome Inhibitors; Pyrroles; Rats; Rats, Sprague-Dawley; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2010 |
A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib.
Bortezomib therapy has proven successful for the treatment of relapsed and/or refractory multiple myeloma (MM); however, prolonged treatment is associated with toxicity and development of drug resistance. Here, we show that the novel proteasome inhibitor NPI-0052 induces apoptosis in MM cells resistant to conventional and Bortezomib therapies. NPI-0052 is distinct from Bortezomib in its chemical structure, effects on proteasome activities, mechanisms of action, and toxicity profile against normal cells. Moreover, NPI-0052 is orally bioactive. In animal tumor model studies, NPI-0052 is well tolerated and prolongs survival, with significantly reduced tumor recurrence. Combining NPI-0052 and Bortezomib induces synergistic anti-MM activity. Our study therefore provides the rationale for clinical protocols evaluating NPI-0052, alone and together with Bortezomib, to improve patient outcome in MM. Topics: Administration, Oral; Animals; Antineoplastic Agents; Apoptosis; Boronic Acids; Bortezomib; Caspases; Cell Movement; Cell Proliferation; Drug Synergism; Genes, bcl-2; Humans; Lactones; Lymphocytes; Mice; Mitochondria; Multiple Myeloma; NF-kappa B; Plasmacytoma; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Pyrroles; Tumor Cells, Cultured | 2005 |