marizomib has been researched along with Glioblastoma* in 3 studies
2 review(s) available for marizomib and Glioblastoma
Article | Year |
---|---|
Proteasome Inhibitors against Glioblastoma-Overview of Molecular Mechanisms of Cytotoxicity, Progress in Clinical Trials, and Perspective for Use in Personalized Medicine.
Proteasome inhibitors are moieties targeting the proteolytic activity of a proteasome, with demonstrated efficacy in certain hematological malignancies and candidate drugs in other types of cancer, including glioblastoma (GBM). They disturb the levels of proteasome-regulated proteins and lead to the cell cycle inhibition and apoptosis of GBM cells. The accumulation of cell cycle inhibitors p21 and p27, and decreased levels of prosurvival molecules NFKB, survivin, and MGMT, underlie proteasome inhibitors' cytotoxicity when used alone or in combination with the anti-GBM cytostatic drug temozolomide (TMZ). The evidence gathered in preclinical studies substantiated the design of clinical trials that employed the two most promising proteasome inhibitors, bortezomib and marizomib. The drug safety profile, maximum tolerated dose, and interaction with other drugs were initially evaluated, mainly in recurrent GBM patients. A phase III study on newly diagnosed GBM patients who received marizomib as an adjuvant to the Stupp protocol was designed and completed in 2021, with the Stupp protocol receiving patients as a parallel control arm. The data from this phase III study indicate that marizomib does not improve the PFS and OS of GBM patients; however, further analysis of the genetic and epigenetic background of each patient tumor may shed some light on the sensitivity of individual patients to proteasome inhibition. The mutational and epigenetic makeup of GBM cells, like genetic alterations to Topics: Glioblastoma; Humans; Neoplasm Recurrence, Local; Precision Medicine; Proteasome Endopeptidase Complex; Proteasome Inhibitors | 2023 |
Proteasome inhibition for the treatment of glioblastoma.
Glioblastoma is a primary brain tumor with a poor prognosis despite multimodal therapy including surgery, radiotherapy and alkylating chemotherapy. Novel therapeutic options are therefore urgently needed; however, there have been various drug failures in late-stage clinical development. The proteasome represents a key target for anti-cancer therapy as successfully shown in multiple myeloma and other hematologic malignancies.. This review article summarizes the preclinical and clinical development of proteasome inhibitors in the context of glioblastoma.. Early clinical trials with bortezomib ended with disappointing results, possibly because this agent does not cross the blood-brain barrier. In contrast to bortezomib and other proteasome inhibitors, marizomib is a novel drug that displays strong inhibitory properties on all enzymatic subunits of the proteasome and, most importantly, crosses the blood-brain barrier, making it a potentially very active novel agent against intrinsic brain tumors. While preclinical studies have demonstrated significant anti-glioma activity, its clinical benefit has yet to be proven. Exploiting the biological effects of proteasome inhibitors in combination with other therapeutic strategies may represent a key next step in their clinical development. Topics: Animals; Antineoplastic Agents; Bortezomib; Brain Neoplasms; Drug Development; Glioblastoma; Humans; Lactones; Proteasome Inhibitors; Pyrroles | 2020 |
1 other study(ies) available for marizomib and Glioblastoma
Article | Year |
---|---|
Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo.
New therapies for glioblastoma (GBM) are needed, as five-year survival is <10%. The proteasome inhibitor marizomib (MRZ) has inhibitory and death-inducing properties unique from previous inhibitors such as bortezomib (BTZ), and has not been well examined in GBM. We evaluated the mechanism of death and in vivo properties of MRZ in GBM. The activation kinetics of initiator caspases 2, 8, and 9 were assessed using chemical and knockdown strategies to determine their contribution to cell death. Blood brain barrier permeance and proteasome inhibition by MRZ and BTZ were examined in an orthotopic GBM model. Blockade of caspase 9, relative to other caspases, was most protective against both MRZ and BTZ. Only MRZ increased the proteasome substrate p27 in orthotopic brain tumors after a single injection, while both MRZ and BTZ increased p21 levels after multiple treatments. Cleavage of caspase substrate lamin A was increased in orthotopic brain tumors from mice treated with MRZ or BTZ and the histone deacetylase inhibitor vorinostat. Our data indicate that MRZ induces caspase 9-dependent death in GBM, suggesting drug efficacy biomarkers and possible resistance mechanisms. MRZ reaches orthotopic brain tumors where it inhibits proteasome function and increases death in combination with vorinostat. Topics: Animals; Apoptosis; Biomarkers, Tumor; Bortezomib; Caspases; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Lactones; Mice; Proliferating Cell Nuclear Antigen; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrroles | 2016 |