marinopyrrole-a has been researched along with Leukemia--Myelogenous--Chronic--BCR-ABL-Positive* in 1 studies
1 other study(ies) available for marinopyrrole-a and Leukemia--Myelogenous--Chronic--BCR-ABL-Positive
Article | Year |
---|---|
Involvement of MCL1, c-myc, and cyclin D2 protein degradation in ponatinib-induced cytotoxicity against T315I(+) Ph+leukemia cells.
T315I mutation found in chronic myelogenous leukemia (CML) and Ph + ALL patients is the most serious one among resistance against BCR/ABL kinase inhibitors including imatinib and is only responsive to ponatinib (PNT). However, the novel strategy is required to reduce life-threatening adverse effects of PNT including ischemic cardiovascular disease. We examined the mechanism of PNT-induced cytotoxicity against a T315I(+) Ph + ALL cell line, TccY/Sr. PNT induced apoptosis (increased sub G1 cells, and cleaved caspase3 and PARP), and suppressed protein expression of MCL1, cyclin D2 and c-myc, which were reversed by a proteasome inhibitor, MG132, suggesting enhanced proteasomal degradation by PNT. Among BCL2 family inhibitors, MCL1 inhibitors (maritoclax and AZD5991) robustly induced cell death, showing the MCL1-dependent survival of TccY/Sr cells. Decreased MCL1 and c-myc expression by PNT was also observed in T315I(+) MEGA2/STIR cells. PNT suppressed PI3K activation followed by AKT inhibition and GSK3 dephosphorylation. PI3K/AKT inhibitors mimicked PNT, suggesting that PI3K/AKT signaling is important for survival of TccY/Sr cells. Moreover, GSK3 inhibitor (SB216763) reduced PNT-induced cytotoxicity and degradation of c-myc and MCL1. AZD5991 exhibited the synergistic action with PNT, anti-cancer drugs and venetoclax (BCL2 inhibitor), suggesting the utility of MCL1 inhibitor alone or in combination as a future clinical option for Ph + leukemia patients. Topics: Antineoplastic Agents; Cell Death; Cell Line, Tumor; Cyclin D2; Drug Resistance, Neoplasm; Drug Synergism; Glycogen Synthase Kinase 3; Humans; Imatinib Mesylate; Imidazoles; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leupeptins; Macrocyclic Compounds; Myeloid Cell Leukemia Sequence 1 Protein; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Protein Phosphatase 2; Proteolysis; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-myc; Pyridazines; Pyrroles; Signal Transduction; Wortmannin | 2020 |