manumycin has been researched along with Glioblastoma* in 2 studies
2 other study(ies) available for manumycin and Glioblastoma
Article | Year |
---|---|
TGF-β-induced hCG-β regulates redox homeostasis in glioma cells.
Transforming growth factor (TGF-β) is associated with the progression of glioblastoma multiforme (GBM)-the most malignant of brain tumors. Since there is a structural homology between TGF-β and human chorionic gonadotropin (hCG) and as both TGF-β and hCG-β are known regulators of oxidative stress and survival responses in a variety of tumors, the role of TGF-β in the regulation of hCG-β and its consequences on redox modulation of glioblastoma cells was investigated. A heightened hCG-β level was observed in GBM tumors. TGF-β treatment increased hCG-β expression in glioma cell lines, and this heightened hCG-β was found to regulate redox homeostasis in TGF-β-treated glioma cells, as siRNA-mediated knockdown of hCG-β (i) elevated reactive oxygen species (ROS) generation, (ii) decreased thioredoxin Trx1 expression and thioredoxin reductase (TrxR) activity, and (iii) abrogated expression of TP53-induced glycolysis and apoptosis regulator (TIGAR). Silencing of hCG-β abrogated Smad2/3 levels, suggesting the existence of TGF-β-hCG-β cross-talk in glioma cells. siRNA-mediated inhibition of elevated TIGAR levels in TGF-β-treated glioma cells was accompanied by an increase in ROS levels. As a farnesyltransferase inhibitor, Manumycin is known to induce glioma cell apoptosis in a ROS-dependent manner, and we investigated whether Manumycin could induce apoptosis in TGF-β-treated cells with elevated hCG-β exhibiting ROS-scavenging property. Manumycin-induced apoptosis in TGF-β-treated cells was accompanied by elevated ROS levels and decreased expression of hCG-β, Trx1, Smad2/3, and TIGAR. These findings indicate the existence of a previously unknown TGF-β-hCG-β link that regulates redox homeostasis in glioma cells. Topics: Cell Line, Tumor; Cell Survival; Chorionic Gonadotropin, beta Subunit, Human; Gene Expression; Gene Expression Regulation, Neoplastic; Glioblastoma; Homeostasis; Humans; Oxidation-Reduction; Polyenes; Polyunsaturated Alkamides; Reactive Oxygen Species; Transforming Growth Factor beta | 2015 |
Manumycin inhibits STAT3, telomerase activity, and growth of glioma cells by elevating intracellular reactive oxygen species generation.
The poor prognosis of glioblastoma multiforme and lack of effective therapy have necessitated the identification of new treatment strategies. We have previously reported that elevation of oxidative stress induces apoptosis of glioma cells. Because the farnesyltransferase inhibitor manumycin is known to induce reactive oxygen species (ROS) generation, we evaluated the effects of manumycin on glioma cells. Manumycin induced glioma cell apoptosis by elevating ROS generation. Treatment with the ROS inhibitor N-acetylcysteine blocked manumycin-induced apoptosis, caspase-3 activity, and PARP expression, indicating the involvement of increased ROS in the proapoptotic activity of manumycin. This heightened ROS level was accompanied by a concurrent decrease in antioxidants such as superoxide dismutase (SOD-1) and thioredoxin (TRX-1). SOD-1 overexpression protects glioma cells from manumycin-induced apoptosis. In addition, small interfering RNA-mediated knockdown of SOD-1 and TRX-1 expression also increased ROS generation and sensitivity of glioma cells to manumycin-induced cell death. Interestingly, suppressing ROS generation prevented manumycin-induced Ras inhibition. This study reports for the first time that Ras inhibition by manumycin is due to heightened ROS levels. We also report for the first time that manumycin inhibits the phosphorylation of signal transducer and activator of transcription 3 and telomerase activity in a ROS-dependent manner, which plays a crucial role in glioma resistance to apoptosis. In addition manumycin (i) induced the DNA-damage repair response, (ii) affected cell-cycle-regulatory molecules, and (iii) impaired the colony-forming ability of glioma cells in a ROS-dependent manner. Topics: Acetylcysteine; Apoptosis; Caspase 3; Cell Cycle; Cell Growth Processes; Cell Line, Tumor; Farnesyltranstransferase; Gene Expression Regulation; Glioblastoma; Glioma; Humans; Oxidative Stress; Phosphorylation; Poly(ADP-ribose) Polymerases; Polyenes; Polyunsaturated Alkamides; Proto-Oncogene Proteins p21(ras); Reactive Oxygen Species; RNA, Small Interfering; STAT3 Transcription Factor; Superoxide Dismutase; Superoxide Dismutase-1; Telomerase; Thioredoxins | 2009 |