maneb and Neuroblastoma

maneb has been researched along with Neuroblastoma* in 5 studies

Other Studies

5 other study(ies) available for maneb and Neuroblastoma

ArticleYear
Exposure to dithiocarbamate fungicide maneb in vitro and in vivo: Neuronal apoptosis and underlying mechanisms.
    Environment international, 2023, Volume: 171

    Maneb, a widely-used dithiocarbamate fungicide, remains in the environment and exerts adverse health effects. Epidemiological evidence shows that maneb exposure is associated with a higher risk of Parkinson's disease (PD), one of the most common neurodegenerative diseases. However, the molecular mechanisms underlying maneb-induced neurotoxicity remain unclear. Here we investigated the toxic effects and the underlying mechanisms of maneb on the degeneration of dopaminergic cells and α-synuclein in A53T transgenic mice. In SH-SY5Y cells, exposure to maneb reduces cell viability, triggers neuronal apoptosis, induces mitochondrial dysfunction, and generates reactive oxidative species (ROS) in a dose-dependent manner. Furthermore, Western blot analysis found that the mitochondrial apoptosis pathway (Bcl-2, Bax, cytochrome c, activated caspase-3) and the PKA/CREB signaling pathway (PKA, PDE10A, CREB, p-CREB) were changed by maneb both in vitro and in vivo. In addition, the activation of the mitochondrial apoptosis pathway induced by maneb was attenuated by activating PKA. Therefore, these results suggest that the PKA/CREB signaling pathway is involved in maneb-induced apoptosis. This study provides novel insights into maneb-induced neurotoxicity and the underlying mechanisms, which may serve as a guide for further toxicological assessment and standard application of maneb.

    Topics: Animals; Apoptosis; Fungicides, Industrial; Humans; Maneb; Mice; Neuroblastoma; Parkinson Disease; Phosphoric Diester Hydrolases

2023
Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis.
    Chemosphere, 2022, Volume: 308, Issue:Pt 2

    Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.

    Topics: alpha-Synuclein; Animals; Environmental Pollutants; Fungicides, Industrial; Humans; Maneb; Metabolomics; Mice; Neuroblastoma; Neurotoxicity Syndromes; Paraquat; Parkinson Disease; Pesticides; Phenylalanine; Proteomics; Tryptophan

2022
Acute Maneb Exposure Significantly Alters Both Glycolysis and Mitochondrial Function in Neuroblastoma Cells.
    Toxicological sciences : an official journal of the Society of Toxicology, 2018, 09-01, Volume: 165, Issue:1

    The pesticides paraquat (PQ) and maneb (MB) have been described as environmental risk factors for Parkinson's disease (PD), with mechanisms associated with mitochondrial dysfunction and reactive oxygen species generation. A combined exposure of PQ and MB in murine models and neuroblastoma cells has been utilized to further advance understanding of the PD phenotype. MB acts as a redox modulator through alkylation of protein thiols and has been previously characterized to inhibit complex III of the electron transport chain and uncouple the mitochondrial proton gradient. The purpose of this study was to analyze ATP-linked respiration and glycolysis in human neuroblastoma cells utilizing the Seahorse extracellular flux platform. Employing an acute, subtoxic exposure of MB, this investigation revealed a MB-mediated decrease in mitochondrial oxygen consumption at baseline and maximal respiration, with inhibition of ATP synthesis and coupling efficiency. Additionally, MB-treated cells showed an increase in nonmitochondrial respiration and proton leak. Further investigation into mitochondrial fuel flex revealed an elimination of fuel flexibility across all 3 major substrates, with a decrease in pyruvate capacity as well as glutamine dependency. Analyses of glycolytic function showed a substantial decrease in glycolytic acidification caused by lactic acid export. This inhibition of glycolytic parameters was also observed after titrating the MB dose as low as 6 μM, and appears to be dependent on the dithiocarbamate functional group, with manganese possibly potentiating the effect. Further studies into cellular ATP and NAD levels revealed a drastic decrease in cells treated with MB. In summary, MB significantly impacted both aerobic and anaerobic energy production; therefore, further characterization of MB's effect on cellular energetics may provide insight into the specificity of PD to dopaminergic neurons.

    Topics: Adenosine Triphosphate; Cell Line, Tumor; Cell Survival; Environmental Pollutants; Glycolysis; Humans; Maneb; Mitochondria; Neuroblastoma; Oxygen Consumption; Pesticides

2018
Proteasome subunit and opioid receptor gene expression down-regulation induced by paraquat and maneb in human neuroblastoma SH-SY5Y cells.
    Environmental toxicology and pharmacology, 2015, Volume: 40, Issue:3

    Paraquat (PQ) and maneb (MB) are able to induce neurotoxic effects by promoting α-synuclein (α-syn) aggregates and altering tyrosine hydroxylase (TH), thus increasing the risk of Parkinson's disease (PD). These pesticides promote neurotoxic effects also by affecting proteasome function that normally regulate protein turnover. We investigated the effects of the two pesticides exposure on multiple targets involved in PD, using SH-SY5Y cells. First, we evaluated TH and α-syn protein levels following PQ and MB cell exposure and a significant increase of these protein levels was observed. Subsequently, since a relationship between ubiquitin/proteasome and opioid receptors has been proposed, the effects of pesticides on their gene expression have been investigated. A decrease of β1 and Rpt3 proteasome subunit mRNA levels, together with the μ and δ opioid receptor down-regulation, was detected. The reported alterations, here simultaneously observed, help to clarify the involvement of multiple biological markers implicated in PD, often separately evaluated.

    Topics: alpha-Synuclein; ATPases Associated with Diverse Cellular Activities; Cell Line, Tumor; Cell Survival; Gene Expression Regulation, Neoplastic; Humans; Insecticides; Maneb; Models, Biological; Neuroblastoma; Paraquat; Parkinson Disease, Secondary; Proteasome Endopeptidase Complex; Receptors, Opioid; Tyrosine 3-Monooxygenase

2015
Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 133, Issue:2

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

    Topics: alpha-Synuclein; Cell Death; Cell Line, Tumor; Cell Survival; Glycine; Glyphosate; Humans; Insecticides; Maneb; Melanoma; Neuroblastoma; Paraquat; Parkinson Disease; Rotenone; Transduction, Genetic

2013