maltodextrin has been researched along with Disease-Models--Animal* in 13 studies
1 trial(s) available for maltodextrin and Disease-Models--Animal
Article | Year |
---|---|
Supplemental fructose attenuates postprandial glycemia in Zucker fatty fa/fa rats.
Experiments were conducted to evaluate the effects of supplemental fructose on postprandial glycemia. After overnight food deprivation, Zucker fatty fa/fa rats were given a meal glucose tolerance test. Plasma glucose response was determined for 180 min postprandially. At a dose of 0.16 g/kg body, fructose reduced (P < 0.05) the incremental area under the curve (AUC) by 34% when supplemented to a glucose challenge and by 32% when supplemented to a maltodextrin (a rapidly digested starch) challenge. Similarly, sucrose reduced (P = 0.0575) the incremental AUC for plasma glucose when rats were challenged with maltodextrin. Second-meal glycemic response was not affected by fructose supplementation to the first meal, and fructose supplementation to the second meal reduced (P < 0.05) postprandial glycemia when fructose had been supplemented to the first meal. In a dose-response study (0.1, 0.2, and 0.5 g/kg body), supplemental fructose reduced (P < 0.01) the peak rise in plasma glucose (linear and quadratic effects). In the final experiment, a low dose of fructose (0.075 g/kg body) reduced (P < 0.05) the incremental AUC by 18%. These data support the hypothesis that small amounts of oral fructose or sucrose may be useful in lowering the postprandial blood glucose response. Topics: Animals; Area Under Curve; Blood Glucose; Cross-Over Studies; Diabetes Mellitus, Type 2; Dietary Supplements; Disease Models, Animal; Dose-Response Relationship, Drug; Fructose; Glucose Tolerance Test; Polysaccharides; Postprandial Period; Rats; Rats, Zucker; Time Factors | 2002 |
12 other study(ies) available for maltodextrin and Disease-Models--Animal
Article | Year |
---|---|
Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine.
Influenza vaccines administered intramuscularly exhibit poor mucosal immune responses in the respiratory tract which is the prime site of the infection. Intranasal vaccination is a potential route for vaccine delivery which has been demonstrated effective in inducing protective immune responses in both systemic and mucosal compartments. For this purpose, nanoparticles have been used as antigen delivery systems to improve antigen capture by immune cells. In this paper we demonstrate efficient delivery of viral antigens to airway epithelial cells, macrophages and dendritic cells, using polysaccharide nanoparticles (NPL), leading to a strong protection against influenza virus infection. A formulation combining split Udorn virus antigens with NPL and the mucosal protein adjuvant CTA1-DD was administered intranasally and resulted in an enhanced specific humoral immune response. Furthermore, NPL carrying split Udorn, with or without CTA1-DD, inhibited virus transmission from infected to uninfected naive mice. These results demonstrate that an intranasal delivery system combining NPL, mucosal adjuvant CTA1-DD and split virus antigens confers robust protection against influenza infection and inhibits virus transmission. Topics: Adjuvants, Immunologic; Administration, Intranasal; Animals; Antibodies, Viral; Antigens, Viral; Cholera Toxin; Disease Models, Animal; Drug Carriers; Drug Compounding; Immunity, Humoral; Influenza A Virus, H3N2 Subtype; Influenza Vaccines; Mice, Inbred BALB C; Mice, Inbred DBA; Nanoparticles; Orthomyxoviridae Infections; Polysaccharides; Porosity; Recombinant Fusion Proteins | 2020 |
Molecular Imaging of Infective Endocarditis With 6''-[
Topics: Animals; Aortic Valve; Bacterial Proteins; Disease Models, Animal; Endocarditis, Bacterial; Fluorine Radioisotopes; Humans; Membrane Transport Proteins; Mice; Molecular Imaging; Polysaccharides; Positron Emission Tomography Computed Tomography; Predictive Value of Tests; Radiopharmaceuticals; Staphylococcus aureus; Trisaccharides | 2020 |
Maltodextrin-induced intestinal injury in a neonatal mouse model.
Prematurity and enteral feedings are major risk factors for intestinal injury leading to necrotizing enterocolitis (NEC). An immature digestive system can lead to maldigestion of macronutrients and increased vulnerability to intestinal injury. The aim of this study was to test in neonatal mice the effect of maltodextrin, a complex carbohydrate, on the risk of intestinal injury. The goal was to develop a robust and highly reproducible murine model of intestinal injury that allows insight into the pathogenesis and therapeutic interventions of nutrient-driven intestinal injury. Five- to 6-day-old C57BL/6 mice were assigned to the following groups: dam fed (D); D+hypoxia+ Topics: Animals; Animals, Newborn; Cytokines; Disease Models, Animal; Enterocolitis, Necrotizing; Goblet Cells; Hypoxia; Inflammation Mediators; Intestinal Mucosa; Intestine, Small; Klebsiella pneumoniae; Mice, Inbred C57BL; Microvilli; Mucin-2; Permeability; Polysaccharides; Tight Junction Proteins | 2020 |
Resistant Maltodextrin Alleviates Dextran Sulfate Sodium-Induced Intestinal Inflammatory Injury by Increasing Butyric Acid to Inhibit Proinflammatory Cytokine Levels.
Inflammatory bowel disease (IBD), one kind of intestinal chronic inflammatory disease, is characterized by colonic epithelial barrier injury, overproduction of proinflammatory cytokines, and fewer short-chain fatty acids (SCFAs). The present study is aimed at testing the hypothesis that resistant maltodextrin (RM), a soluble dietary fiber produced by starch debranching, alleviated dextran sulfate sodium- (DSS-) induced colitis in mice. Female C57BL/6 mice with or without oral administration of 50 mg/kg RM for 19 days were challenged with 3% DSS in drinking water to induce colitis (from day 14 to day 19). Although RM could not reverse DSS-induced weight loss or colon shortening, it reduced inflammatory cell infiltration and epithelial damage in colon tissue, as well as the transfer of intestinal permeability indicators including serum diamine oxidase (DAO) and D-lactic acid (D-LA). ELISA analysis indicated that RM significantly suppressed the increase of Th1 cytokines induced by DSS in the colon such as tumor necrosis factor- Topics: Animals; Butyric Acid; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Feces; Female; Inflammation; Inflammation Mediators; Intestinal Mucosa; Lactic Acid; Mice, Inbred C57BL; Polysaccharides | 2020 |
Anti-Inflammatory Activity of Isomaltodextrin in a C57BL/6NCrl Mouse Model with Lipopolysaccharide-Induced Low-Grade Chronic Inflammation.
:The purpose of this study was to identify the anti-inflammatory activity and mechanism of isomaltodextrin (IMD) in a C57BL/6NCrl mouse model with lipopolysaccharide (LPS)-induced systemic low-grade chronic inflammation and the effect on inflammation-induced potential risk of metabolic disorders. Pre-treatment of IMD decreased the production of pro-inflammatory mediators, TNF-α and MCP-1, and stimulated the production of the anti-inflammatory mediator, adiponectin by increasing the protein expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the white adipose tissues. IMD administration reduced plasma concentrations of endotoxin, decreased macrophage infiltration into adipocytes, and increased expression of mucin 2, mucin 4, and the tight junction protein claudin 4. These results suggest that IMD administration exerted an anti-inflammatory effect on mice with LPS-induced inflammation, potentially by decreasing circulating endotoxin, suppressing pro-inflammatory mediators and macrophage infiltration, or by improving mucus or tight junction integrity. IMD exerted protein expression of insulin receptor subset-1 (IRS-1). IMD alleviated the disturbance of gut microflora in LPS-treated mice, as the number of Topics: Animals; Anti-Inflammatory Agents; Disease Models, Animal; Inflammation; Inflammation Mediators; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Polysaccharides | 2019 |
Chemoprevention of inflammation-related colorectal cancer by silymarin-, acetyl-11-keto-beta-boswellic acid-, curcumin- and maltodextrin-enriched dietetic formulation in animal model.
On the basis of preliminary in vitro experience, we assessed whether an enriched nutritional formulation with estrogen receptor (ER)-beta agonist and anti-inflammatory properties may prevent inflammation-associated colorectal cancer (CRC) in an animal model. Study sample enclosed 110 C57BL/6J male mice. Forty underwent dietary supplement safety assessment (20 standard diet and 20 enriched formulation). Seventy were treated with azoxymethane (AOM)/dextran sulfate sodium and divided into two groups: 35 received standard diet and 35 enriched formulation (curcumin, boswellic acids, silymarin and maltodextrins). Miniature colonoscopy demonstrated colitis and solid lesion development in five mice/group 100 days after first AOM injection. Mice were killed after 10 days. In each group, four subgroups received intraperitoneal bromodeoxyuridine (BrdU) injection at 24th/48th/72nd/96th hour before killing. Anti-inflammatory effect and chemoprevention were evaluated by lesion number/size, histological inflammation/dysplasia/neoplasia assessment, pro-inflammatory cytokine messenger RNA (mRNA), ER-beta/ER-alpha/BrdU immunohistochemistry and TUNEL immunofluorescence. Standard formulation assumption was associated with colon shortening compared with enriched one (P = 0.04), which reduced solid lesion number and size (P < 0.001 for both), histological inflammation score (P = 0.04), pro-inflammatory cytokine mRNA expression (P < 0.001), number of low-grade dysplasia (LGD; P = 0.03) and high-grade dysplasia (P < 0.001) areas. CRC was observed in 69.6% in standard and 23.5% in enriched formulation assuming animals (P < 0.001). Enriched formulation induced lower ER-alpha expression in CRC (P < 0.001) and higher ER-beta expression in LGD (P < 0.001) being associated to higher epithelial turnover (BrdU; P<0.001) in normal mucosa and increased apoptosis in LGD and CRC (P < 0.001 for both). Our results are promising for a successful anti-inflammatory and chemopreventive effect of enriched formulation in CRC arising from inflamed tissue. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Azoxymethane; Chemoprevention; Colitis; Colon; Colonoscopy; Colorectal Neoplasms; Curcumin; Cytokines; Dextran Sulfate; Disease Models, Animal; Food, Fortified; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Polysaccharides; Real-Time Polymerase Chain Reaction; Receptors, Estrogen; Silymarin; Triterpenes | 2018 |
Intervention of Isomaltodextrin Mitigates Intestinal Inflammation in a Dextran Sodium Sulfate-Induced Mouse Model of Colitis via Inhibition of Toll-like Receptor-4.
Isomaltodextrin (IMD), a highly branched α-glucan, is a type of resistant starch. Earlier studies have indicated that polysaccharides could prevent inflammation and can be effective in reducing the complications of chronic gastrointestinal diseases such as inflammatory bowel disease (IBD). Therefore, the aim of the present study was to evaluate the anti-inflammatory effect of IMD in dextran sodium sulfate (DSS)-induced colitis in a mouse model. IMD (0.5, 1.0, 2.5, and 5.0% (w/v)) was given orally for 23 days to female Balb/c mice, and then 5% DSS was administered to induce colitis (from day 15 onward to the end of the trial). IMD could not prevent DSS-induced weight loss or colon shortening. However, IMD could reduce inflammatory cytokines, TNF-α and IL-6, in the colon. Gene expression indicated the tendency of IMD to suppress pro-inflammatory cytokines IL-1β, MCP-1, and IL-17 and to increase an anti-inflammatory cytokine, IL-10. Further study revealed that the anti-inflammatory action of IMD mediates through inhibition of the expression of Toll-like receptor-4. Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Female; Humans; Interleukin-10; Interleukin-6; Intestines; Mice; Mice, Inbred BALB C; Polysaccharides; Sulfates; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2017 |
Effect of acute beer ingestion on the liver: studies in female mice.
The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model.. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake.. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers.. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol. Topics: Alanine Transaminase; Aldehydes; Animals; Beer; Biomarkers; Disease Models, Animal; Ethanol; Fatty Liver; Female; Lipid Peroxidation; Lipogenesis; Liver; Mice; Mice, Inbred C57BL; Myeloid Differentiation Factor 88; NF-kappa B; Nitric Oxide Synthase Type II; Plasminogen Activator Inhibitor 1; Polysaccharides; RAW 264.7 Cells; RNA, Messenger; Sterol Regulatory Element Binding Protein 1; Toll-Like Receptor 4; Triglycerides | 2015 |
Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis.
Dietary fibers are increasingly appreciated as beneficial nutritional components. However, a requisite role of gut microbiota in fiber function and the overall impact of fibers on metabolomic flux remain unclear. We herein showed enhancing effects of a soluble resistant maltodextrin (RM) on glucose homeostasis in mouse metabolic disease models. Remarkably, fecal microbiota transplantation (FMT) caused pronounced and time-dependent improvement in glucose tolerance in RM recipient mice, indicating a causal relationship between microbial remodeling and metabolic efficacy. Microbial 16S sequencing revealed transmissible taxonomic changes correlated with improved metabolism, notably enrichment of probiotics and reduction of Alistipes and Bacteroides known to associate with high fat/protein diets. Metabolomic profiling further illustrated broad changes, including enrichment of phenylpropionates and decreases in key intermediates of glucose utilization, cholesterol biosynthesis and amino acid fermentation. These studies elucidate beneficial roles of RM-dependent microbial remodeling in metabolic homeostasis, and showcase prevalent health-promoting potentials of dietary fibers. Topics: Animals; Biomarkers; Blood Glucose; Cluster Analysis; Dietary Fiber; Disease Models, Animal; Gastrointestinal Microbiome; Homeostasis; Metabolic Diseases; Metabolome; Metabolomics; Mice; Polysaccharides | 2015 |
Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.
Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Topics: Animal Feed; Animals; Choice Behavior; Conditioning, Psychological; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Drinking Water; Female; Flavoring Agents; Food Preferences; Glucose; Motor Activity; Obesity; Polysaccharides; Random Allocation; Rats, Sprague-Dawley; Reward; Saccharin | 2015 |
Variations in the efficacy of resistant maltodextrin on body fat reduction in rats fed different high-fat models.
Many studies have utilized a variety of methods to induce obesity in rodents, but they often received inconsistent results. The present study intended to use resistant maltodextrin (RMD) as a means to investigate the variations in its efficacy on body fat accumulation under the influence of four high-fat (HF) models of 23% or 40% total fat, comprising soybean oil, lard, and/or condensed milk. Results indicated that integrating condensed milk into the diets could help increase diet intake, boost energy intake, increase weight gain, and enhance fat formation. Supplementation of RMD (2.07 g/kg) notably reduced total body fat levels in three HF models, with the exception of a condensed-milk-added 40%-fat diet that may have misrepresented the functions of RMD. The uses of the 23% HF diets, with and without milk, and the milk-free 40% HF diet were therefore recommended as suitable models for antiobesity evaluations of RMD, or other fiber-rich products. Topics: Adipose Tissue; Animals; Diet, High-Fat; Disease Models, Animal; Energy Intake; Humans; Male; Obesity; Polysaccharides; Rats; Rats, Sprague-Dawley | 2014 |
Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs.
Necrotizing enterocolitis (NEC) remains the most severe gastrointestinal disorder in preterm infants. It is associated with the initiation of enteral nutrition and may be related to immature carbohydrate digestive capacity. We tested the hypothesis that a formula containing maltodextrin vs. a formula containing lactose as the principal source of carbohydrate would predispose preterm pigs to a higher NEC incidence. Cesarean-derived preterm pigs were given total parenteral nutrition for 48 h followed by total enteral nutrition with a lactose-based (n = 11) or maltodextrin-based (n = 11) formula for 36 h. A higher incidence (91% vs. 27%) and severity (score of 3.3 vs. 1.8) of NEC were observed in the maltodextrin than in the lactose group. This higher incidence of NEC in the maltodextrin group was associated with significantly lower activities of lactase, maltase, and aminopeptidase; reduced villus height; transiently reduced in vivo aldohexose uptake; and reduced ex vivo aldohexose uptake capacity in the middle region of the small intestine. Bacterial diversity was low for both diets, but alterations in bacterial composition and luminal concentrations of short-chain fatty acids were observed in the maltodextrin group. In a second study, we quantified net portal absorption of aldohexoses (glucose and galactose) during acute jejunal infusion of a maltodextrin- or a lactose-based formula (n = 8) into preterm pigs. We found lower net portal aldohexose absorption (4% vs. 42%) and greater intestinal recovery of undigested carbohydrate (68% vs. 27%) in pigs acutely perfused with the maltodextrin-based formula than those perfused with the lactose-based formula. The higher digestibility of the lactose than the maltodextrin in the formulas can be attributed to a 5- to 20-fold higher hydrolytic activity of tissue-specific lactase than maltases. We conclude that carbohydrate maldigestion is sufficient to increase the incidence and severity of NEC in preterm pigs. Topics: alpha-Glucosidases; Aminopeptidases; Animal Nutritional Physiological Phenomena; Animals; Animals, Newborn; Cesarean Section; Digestion; Disease Models, Animal; Enteral Nutrition; Enterocolitis, Necrotizing; Galactose; Glucose; Humans; Hydrolysis; Infant Formula; Infant, Newborn; Intestinal Absorption; Intestines; Lactase; Lactose; Parenteral Nutrition; Polysaccharides; Premature Birth; Severity of Illness Index; Swine; Time Factors | 2009 |