malonyl-coenzyme-a has been researched along with Myocardial-Ischemia* in 12 studies
7 review(s) available for malonyl-coenzyme-a and Myocardial-Ischemia
Article | Year |
---|---|
AMP-activated protein kinase control of energy metabolism in the ischemic heart.
Myocardial ischemia produces an energy-deficient state in heart muscle, which if not corrected can lead to cardiomyocyte death. AMP-activated protein kinase (AMPK) is a key kinase that can increase energy production in the ischemic heart. During ischemia a rapid activation of AMPK occurs, resulting in an activation of both myocardial glucose uptake and glycolysis, as well as an increase in fatty acid oxidation. This activation of AMPK has the potential to increase energy production, thereby protecting the heart during ischemic stress. However, at clinically relevant high levels of fatty acids, ischemia-induced activation of AMPK also stimulates fatty acid oxidation during and following ischemia. This can contribute to ischemic injury secondary to an inhibition of glucose oxidation, which results in a decrease in cardiac efficiency. As a result, AMPK activation has the potential to be either beneficial or harmful in the ischemic heart. Topics: AMP-Activated Protein Kinases; Animals; Energy Metabolism; Fatty Acids; Glucose; Glycolysis; Heart; Humans; Malonyl Coenzyme A; Mice; Myocardial Ischemia; Myocardial Reperfusion | 2008 |
The malonyl CoA axis as a potential target for treating ischaemic heart disease.
Cardiovascular disease is the leading cause of death and disability for people living in western societies, with ischaemic heart disease accounting for the majority of this health burden. The primary treatment for ischaemic heart disease consists of either improving blood and oxygen supply to the heart or reducing the heart's oxygen demand. Unfortunately, despite recent advances with these approaches, ischaemic heart disease still remains a major health problem. Therefore, the development of new treatment strategies is still required. One exciting new approach is to optimize cardiac energy metabolism, particularly by decreasing the use of fatty acids as a fuel and by increasing the use of glucose as a fuel. This approach is beneficial in the setting of ischaemic heart disease, as it allows the heart to produce energy more efficiently and it reduces the degree of acidosis associated with ischaemia/reperfusion. Malonyl CoA is a potent endogenous inhibitor of cardiac fatty acid oxidation, secondary to inhibiting carnitine palmitoyl transferase-I, the rate-limiting enzyme in the mitochondrial uptake of fatty acids. Malonyl CoA is synthesized in the heart by acetyl CoA carboxylase, which in turn is phosphorylated and inhibited by 5'AMP-activated protein kinase. The degradation of myocardial malonyl CoA occurs via malonyl CoA decarboxylase (MCD). Previous studies have shown that inhibiting MCD will significantly increase cardiac malonyl CoA levels. This is associated with an increase in glucose oxidation, a decrease in acidosis, and an improvement in cardiac function and efficiency during and following ischaemia. Hence, the malonyl CoA axis represents an exciting new target for the treatment of ischaemic heart disease. Topics: Animals; Carnitine O-Palmitoyltransferase; Energy Metabolism; Fatty Acids; Humans; Malonyl Coenzyme A; Mitochondria; Myocardial Ischemia; Myocardium | 2008 |
AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart.
The heart relies predominantly on a balance between fatty acids and glucose to generate its energy supply. There is an important interaction between the metabolic pathways of these two substrates in the heart. When circulating levels of fatty acids are high, fatty acid oxidation can dominate over glucose oxidation as a source of energy through feedback inhibition of the glucose oxidation pathway. Following an ischaemic episode, fatty acid oxidation rates increase further, resulting in an uncoupling between glycolysis and glucose oxidation. This uncoupling results in an increased proton production, which worsens ischaemic damage. Since high rates of fatty acid oxidation can contribute to ischaemic damage by inhibiting glucose oxidation, it is important to maintain proper control of fatty acid oxidation both during and following ischaemia. An important molecule that controls myocardial fatty acid oxidation is malonyl-CoA, which inhibits uptake of fatty acids into the mitochondria. The levels of malonyl-CoA in the heart are controlled both by its synthesis and degradation. Three enzymes, namely AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and malonyl-CoA decarboxylase (MCD), appear to be extremely important in this process. AMPK causes phosphorylation and inhibition of ACC, which reduces the production of malonyl-CoA. In addition, it is suggested that AMPK also phosphorylates and activates MCD, promoting degradation of malonyl-CoA levels. As a result malonyl-CoA levels can be dramatically altered by activation of AMPK. In ischaemia, AMPK is rapidly activated and inhibits ACC, subsequently decreasing malonyl-CoA levels and increasing fatty acid oxidation rates. The consequence of this is a decrease in glucose oxidation rates. In addition to altering malonyl-CoA levels, AMPK can also increase glycolytic rates, resulting in an increased uncoupling of glycolysis from glucose oxidation and an enhanced production of protons and lactate. This decreases cardiac efficiency and contributes to the severity of ischaemic damage. Decreasing the ischaemic-induced activation of AMPK or preventing the downstream decrease in malonyl-CoA levels may be a therapeutic approach to treating ischaemic heart disease. Topics: AMP-Activated Protein Kinases; Animals; Fatty Acids; Gene Expression Regulation; Gene Expression Regulation, Enzymologic; Humans; Malonyl Coenzyme A; Models, Biological; Multienzyme Complexes; Myocardial Ischemia; Myocardium; Protein Serine-Threonine Kinases; Reperfusion Injury | 2003 |
Malonyl CoA control of fatty acid oxidation in the ischemic heart.
Abnormally high rates of fatty acid metabolism is an important contributor to the severity of ischemic heart disease. During and following myocardial ischemia a number of alterations in fatty acid oxidation occur that result in an excessive amount of fatty acids being used as a fuel source by the heart. This contributes to a decrease in cardiac efficiency both during and following the ischemic episode. Central to the regulation of fatty acid oxidation in the heart is malonyl CoA, which is a potent endogenous inhibitor of mitochondrial fatty acid uptake. The levels of malonyl CoA are regulated both by its synthesis by acetyl CoA carboxylase (ACC) and its degradation by malonyl CoA decarboxylase (MCD). ACC is in turn controlled by AMP-activated protein kinase (AMPK), which acts as a fuel gauge in the heart. The control of these enzymes are altered during ischemia, such that malonyl CoA levels in the heart decrease, resulting in an increased relative contribution of fatty acids to oxidative metabolism. Activation of AMPK during and following ischemia appears to be centrally involved in this decrease in malonyl CoA. Clinical evidence is now accumulating that show that inhibition of fatty acid oxidation is an effective approach to treating ischemic heart disease. As a result, modulation of fatty acid oxidation by targeting the enzymes controlling malonyl CoA may be a novel approach to treating angina pectoris and acute myocardial infarction. This paper will discuss some of the molecular changes that occur in fatty acid oxidation in the ischemic heart and will include a discussion of the important role of malonyl CoA in this process. Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Fatty Acids; Glucose; Glycolysis; Humans; Malonyl Coenzyme A; Models, Cardiovascular; Multienzyme Complexes; Myocardial Ischemia; Myocardium; Oxidation-Reduction; Protein Serine-Threonine Kinases | 2002 |
Malonyl CoA control of fatty acid oxidation in the diabetic rat heart.
Increased fatty acid metabolism can decrease cardiac function and efficiency, and may therefore contribute to the outcome of ischemic injury in the diabetic. Alterations in the control of myocardial malonyl CoA levels is an important contributing factor to these high fatty acid oxidation rates. This includes alterations in AMPK, ACC, and MCD activity in the diabetic rat heart. A further understanding of how malonyl CoA controls fatty acid oxidation in the diabetic heart should help identify new targets for pharmacological intervention which decreases the reliance of the heart on fatty acid oxidation, and ultimately improves heart function. Topics: Acetyl-CoA Carboxylase; Animals; Diabetes Mellitus, Experimental; Fatty Acids, Nonesterified; Malonyl Coenzyme A; Models, Biological; Myocardial Ischemia; Myocardium; Oxidation-Reduction; Pyruvate Dehydrogenase Complex; Rats | 2001 |
Fatty acid oxidation in the reperfused ischemic heart.
Myocardial ATP production is dependent chiefly on the oxidative decarboxylation of glucose and fatty acids. The co-utilization of these and other substrates is determined by both the amount of any given substrate supplied to the heart as well as by complex intracellular regulatory mechanisms. This regulated balance is altered during and after ischemia. During aerobic reperfusion of ischemic myocardium, a rapid recovery of energy production is desirable for the complete recovery of muscle contractile function. It is now clear that the type of energy substrate used by the heart during reperfusion will directly influence this contractile recovery. By increasing the relative proportion of glucose oxidized to that of fatty acids, the mechanical function of the reperfused heart can be improved. However, fatty acid oxidation recovers quickly during reperfusion and dominates as a source of oxygen consumption. These high rates of fatty acid oxidation occur at the expense of glucose oxidation, resulting in a decreased recovery of both cardiac function and efficiency during reperfusion. One contributory factor to these high rates of fatty acid oxidation is a decrease in myocardial malonyl-coenzyme A (CoA) levels. Malonyl-CoA, which is synthesized by acetyl-CoA carboxylase, is an essential metabolic intermediary in the regulation of fatty acid oxidation. A decrease in malonyl-CoA level results in an increase of carnitine palmitoyl transferase-1 mediated fatty acid uptake into the mitochondria. This mechanism seems important in the regulation of fatty acid oxidation in the postischemic heart and is discussed in detail in this review, with reference to specific clinical scenarios of ischemia and reperfusion and options for modulating cardiac energy metabolism. Topics: Animals; Fatty Acids; Glucose; Heart; Humans; Malonyl Coenzyme A; Mitochondria, Heart; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Stunning; Myocardium; Oxidation-Reduction | 1999 |
The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart.
It has long been known that most of the energy production in the heart is derived from the oxidation of fatty acids. The other important sources of energy are the oxidation of carbohydrates and, to a lesser extent, ATP production from glycolysis. The contribution of these pathways to overall ATP production can vary dramatically, depending to a large extent on the carbon substrate profile delivered to the heart, as well as the presence or absence of underlying pathology within the myocardium. Despite extensive research devoted to the study of the individual pathways of energy substrate metabolism, relatively few studies have examined the integrated regulation between carbohydrate and fatty acid oxidation in the heart. While the mechanisms by which fatty acids inhibit carbohydrate oxidation (i.e., the Randle cycle) have been characterized, much less is known about how carbohydrates regulate fatty acid oxidation in the heart. It is clear that an increase in intramitochondrial acetyl-CoA derived from carbohydrate oxidation (via the pyruvate dehydrogenase complex) can downregulate beta-oxidation of fatty acids, but it is not clear how fatty acid acyl group entry into the mitochondria is downregulated when carbohydrate oxidation increases. Recent interest in our laboratory has focused on the involvement of acetyl-CoA carboxylase (ACC) in this process. While it has been known for some time that malonyl-CoA does exist in heart tissue, and that it is a potent inhibitor of carnitine palmitoyltransferase 1 (CPT 1), it has only recently been demonstrated that an isoenzyme of ACC exists in the heart that is a potential source of malonyl-CoA.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acetyl Coenzyme A; Acetyl-CoA Carboxylase; Animals; Carbohydrate Metabolism; Carnitine; Carnitine O-Palmitoyltransferase; Diabetes Mellitus; Down-Regulation; Fatty Acids; Humans; Malonyl Coenzyme A; Mitochondria, Heart; Myocardial Ischemia; Oxidation-Reduction | 1994 |
5 other study(ies) available for malonyl-coenzyme-a and Myocardial-Ischemia
Article | Year |
---|---|
Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors.
The discovery and structure-activity relationship of first-generation small-molecule malonyl-CoA decarboxylase (MCD; CoA = coenzyme A) inhibitors are reported. We demonstrated that MCD inhibitors increased malonyl-CoA concentration in the isolated working rat hearts. Malonyl-CoA is a potent, endogenous, and allosteric inhibitor of carnitine palmitoyltransferase-I (CPT-I), a key enzyme for mitochondrial fatty acid oxidation. As a result of the increase in malonyl-CoA levels, fatty acid oxidation rates were decreased and the glucose oxidation rates were significantly increased. Demonstration of in vivo efficacy of methyl 5-(N-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)morpholine-4-carboxamido)pentanoate (6u) in a pig ischemia model indicated that MCD inhibitors may be useful for treating ischemic heart diseases. Topics: Animals; Carboxy-Lyases; Energy Metabolism; Fatty Acids; Glucose; In Vitro Techniques; Male; Malonyl Coenzyme A; Morpholines; Myocardial Ischemia; Myocardium; Oxidation-Reduction; Phenylurea Compounds; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship; Swine | 2006 |
Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
Abnormally high rates of fatty acid oxidation and low rates of glucose oxidation are important contributors to the severity of ischemic heart disease. Malonyl coenzyme A (CoA) regulates fatty acid oxidation by inhibiting mitochondrial uptake of fatty acids. Malonyl CoA decarboxylase (MCD) is involved in the decarboxylation of malonyl CoA to acetyl CoA. Therefore, inhibition of MCD may decrease fatty acid oxidation and protect the ischemic heart, secondary to increasing malonyl CoA levels. Ex vivo working rat hearts aerobically perfused in the presence of newly developed MCD inhibitors showed an increase in malonyl CoA levels, which was accompanied by both a significant decrease in fatty acid oxidation rates and an increase in glucose oxidation rates compared with controls. Using a model of demand-induced ischemia in pigs, MCD inhibition significantly increased glucose oxidation rates and reduced lactate production compared with vehicle-treated hearts, which was accompanied by a significant increase in cardiac work compared with controls. In a more severe rat heart global ischemia/reperfusion model, glucose oxidation was significantly increased and cardiac function was significantly improved during reperfusion in hearts treated with the MCD inhibitor compared with controls. Together, our data show that MCD inhibitors, which increase myocardial malonyl CoA levels, decrease fatty acid oxidation and accelerate glucose oxidation in both ex vivo rat hearts and in vivo pig hearts. This switch in energy substrate preference improves cardiac function during and after ischemia, suggesting that pharmacological inhibition of MCD may be a novel approach to treating ischemic heart disease. Topics: Acetyl Coenzyme A; Animals; Carboxy-Lyases; Cardiotonic Agents; Energy Metabolism; Enzyme Inhibitors; Esters; Fatty Acids; Glucose; Glycolysis; Malonyl Coenzyme A; Mitochondria, Heart; Models, Animal; Myocardial Ischemia; Myocardium; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; Swine | 2004 |
The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the Topics: Angina Pectoris; Animals; Carboxy-Lyases; Dose-Response Relationship, Drug; Energy Metabolism; Esters; Fatty Acids; Glucose; Glycolysis; Male; Malonyl Coenzyme A; Mitochondria; Mitochondrial Trifunctional Protein; Multienzyme Complexes; Myocardial Ischemia; Myocardium; Pyruvate Dehydrogenase Complex; Rats; Rats, Sprague-Dawley; Trimetazidine; Vasodilator Agents | 2000 |
Pyruvate dehydrogenase activity and malonyl CoA levels in normal and ischemic swine myocardium: effects of dichloroacetate.
The purposes of this study were to: (1) assess myocardial pyruvate dehydrogenase (PDH) activity and substrate exchange under well-perfused and ischemic conditions; (2) determine the metabolic effects of an intra-coronary infusion of the PDH activator, dichloroacetate (DCA); and (3) measure the effects of ischemia and DCA on malonyl CoA levels. Experiments were performed in anesthetised open-chest swine under non-ischemic conditions, followed by 40 min with a 60% reduction in left anterior descending coronary artery (LAD) blood flow. Myocardial needle biopsies for measurement of PDH activity were taken after an intracoronary infusion of either saline or DCA (1 mM in LAD blood) under aerobic conditions, and after 37 min of ischemia. Pyruvate dehydrogenase activity was measured with and without maximal activation by swine PDH phosphatase. Malonyl CoA and acetyl CoA were measured after 40 min of LAD ischemia in myocardium from the ischemic DCA- or saline-treated LAD bed, and the non-ischemic untreated left circumflex coronary artery (CFX) perfusion bed. Net glucose, lactate and free fatty acid (FFA) uptakes were measured across the LAD perfusion bed throughout the study. Dichloroacetate treatment increased the amount of active dephosphorylated PDH to 88% of the total activity under aerobic conditions, compared to 55% with saline (P < 0.01). Ischemia did not significantly change PDH activation state in either group. Acetyl CoA and malonyl CoA contents were significantly elevated in ischemic DCA-treated myocardium compared to saline-treated ischemic myocardium. Dichloroacetate treatment significantly lowered rates of myocardial FFA uptake under both aerobic and ischemic conditions, but did not effect glucose uptake or lactate exchange. Free fatty acid uptake was negatively correlated to malonyl CoA levels (r = -0.68) during ischemia. It is proposed that the inhibition of FFA uptake observed with DCA in ischemic myocardium is due to malonyl CoA inhibition of carnitine palmitoyl transferase I. Topics: Animals; Dichloroacetic Acid; Infusions, Intra-Arterial; Male; Malonyl Coenzyme A; Myocardial Ischemia; Pyruvate Dehydrogenase Complex; Swine | 1996 |
High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
We determined whether high fatty acid oxidation rates during aerobic reperfusion of ischemic hearts could be explained by a decrease in malonyl-CoA levels, which would relieve inhibition of carnitine palmitoyl-transferase 1, the rate-limiting enzyme involved in mitochondrial uptake of fatty acids. Isolated working rat hearts perfused with 1.2 mM palmitate were subjected to 30 min of global ischemia, followed by 60 min of aerobic reperfusion. Fatty acid oxidation rates during reperfusion were 136% higher than rates seen in aerobically perfused control hearts, despite the fact that cardiac work recovered to only 16% of pre-ischemic values. Neither the activity of carnitine palmitoyltransferase 1, or the IC50 value of malonyl-CoA for carnitine palmitoyl-transferase 1 were altered in mitochondria isolated from aerobic, ischemic, or reperfused ischemic hearts. Levels of malonyl-CoA were extremely low at the end of reperfusion compared to levels seen in aerobic controls, as was the activity of acetyl-CoA carboxylase, the enzyme which produces malonyl-CoA. The activity of 5'-AMP-activated protein kinase, which has been shown to phosphorylate and inactivate acetyl-CoA carboxylase in other tissues, was significantly increased at the end of ischemia, and remained elevated throughout reperfusion. These results suggest that accumulation of 5'-AMP during ischemia results in an activation of AMP-activated protein kinase, which phosphorylates and inactivates ACC during reperfusion. The subsequent decrease in malonyl-CoA levels wil result in accelerated fatty acid oxidation rates during reperfusion of ischemic hearts. Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Carnitine O-Palmitoyltransferase; Fatty Acids; Male; Malonyl Coenzyme A; Multienzyme Complexes; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; Oxidation-Reduction; Palmitic Acid; Palmitic Acids; Perfusion; Phosphorylation; Protein Kinases; Protein Serine-Threonine Kinases; Rats; Rats, Wistar | 1995 |