maleic-acid has been researched along with Acidosis--Renal-Tubular* in 6 studies
6 other study(ies) available for maleic-acid and Acidosis--Renal-Tubular
Article | Year |
---|---|
Coordinately increased lysozymuria and lysosomal enzymuria induced by maleic acid.
During the acute renal tubular dysfunction of Fanconi syndrome and type 2 renal tubular acidosis (FS/RTA2) induced by maleic acid in the unanesthetized dog, we observed: 30 minutes after the onset of FS/RTA2, the urinary excretion of lysosomal enzymes, N-acetyl-beta-glucosaminidase (NAG), beta-glucuronidase (beta-gluc) and beta-galactosidase (beta-galac), increased simultaneously with the anticipated increase in renal clearance of lysozyme; the severities of all these hyperenzymurias increased rapidly, progressively, and in parallel, all reaching a peak some 60 to 80 minutes after their onset; thereafter, while the FS/RTA2 continued undiminished in severity, the severity of the hyperenzymurias decreased rapidly, greatly, progressively, and in parallel; and sodium phosphate loading strikingly attenuated the FS/RTA2 and the hyperenzymurias. Thus, the maleic acid-induced FS/RTA2 is attended by an acute reversible-complex derangement in the renal tubular processing of proteins that: affects not only lysozyme which is normally filtered, but also NAG and other lysosomal enzymes, which are not; and is to some extent functionally separable from that of FS/RTA2. The findings suggest that the derangements in renal processing of lysozyme and lysosomal enzymes are linked, and that a phosphate-dependent metabolic abnormality in the proximal tubule can participate in the pathogenesis of both these derangements and the FS/RTA2. Topics: Acetylglucosaminidase; Acidosis, Renal Tubular; Animals; beta-Galactosidase; Dogs; Fanconi Syndrome; Female; Galactosidases; Glucuronidase; Hexosaminidases; Injections, Intravenous; Kidney Diseases; Kidney Function Tests; Maleates; Metabolic Clearance Rate; Muramidase; Phosphates | 1986 |
Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis.
Microperfusion studies were carried out in rats to examine the abnormality in proximal tubule HCO3- transport caused by maleic acid administration. Permeability of the proximal tubule to HCO-3 was measured by perfusing proximal tubules with a HCO3- -free low-buffer isotonic equilibrium solution containing acetazolamide after plasma [HCO3-] had been raised by intravenous NaHCO3 infusion. Insulin recovery in the collected perfusate was approximately 100% in control and maleic acid-treated rats. CO2 influx measured by microcalorimetry was not significantly different in control vs. maleic acid-treated rats. Thus maleic acid did not cause increased permeability of the proximal tubule to either inulin or HCO3-. In a second group of experiments, proximal tubule fluid and HCO3- efflux were measured in paired-reperfusion experiments before and after maleic acid administration. The perfusion fluid contained 25 mM HCO3- and 120 mM Cl-. HCO3- absorption was inhibited 25% (79 pmol/min), Na+ was inhibited 22% (164 pmol/min), and Cl- absorption (calculated as the anion gap) by 85 pmol/min. [HCO3-] in the collected perfusate rose significantly after maleic acid, presumably accompanied by a fall in [Cl-]. The observations indicate that proximal renal tubular acidosis (RTA) induced by maleic acid is characterized by impaired lumen-to-blood transport of sodium bicarbonate and chloride but not by increased backflux. Based on previously demonstrated effects of maleic acid on mitochondrial energy metabolism and cellular ATP levels, we postulate that the principal transport abnormality is impaired basolateral membrane active sodium transport, leading to a secondary reduction in brush border Na+-H+ exchange.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acidosis, Renal Tubular; Animals; Bicarbonates; Biological Transport; In Vitro Techniques; Kidney Tubules, Proximal; Male; Maleates; Perfusion; Rats; Rats, Inbred Strains | 1986 |
Phosphate loading attenuates renal tubular dysfunction induced by maleic acid in the dog.
The metabolic pathogenesis of the complex renal tubular dysfunction of type II renal tubular acidosis and Fanconi's syndrome (RTA II/FS) acutely induced by maleic acid could depend on the occurrence of a positive feedback loop in cells of the proximal renal tubule: impaired mitochondrial oxidation----increased glucose uptake----increased formation and concentration of phosphorylated glycolytic intermediates----limitation on availability of cellular inorganic phosphate----more severely impaired mitochondrial oxidative metabolism. To test this hypothesis we intravenously administered maleic acid both alone and after initiating intravenously administered neutral sodium phosphate, sodium sulfate, or sodium chloride to 10 unanesthetized trained female dogs undergoing water diuresis. We made the following observations: 1) Administration of maleic acid alone predictably induced dose-dependent increments in urine flow (V) and in renal clearance of HCO3-, Na+, K+, and alpha-aminonitrogen and a pronounced increase in the renal clearance and excretion of citrate. 2) Prior phosphate loading, which increased the plasma concentration of phosphate from 2.5 +/- 0.20 to 11.3 +/- 2 mg/dl: a) attenuated the increment in renal clearance of HCO3- by one-half even though the filtered load of bicarbonate was higher by 37%, owing to the higher values of both GFR and plasma bicarbonate concentration that obtained with phosphate loading; b) prevented the increment in renal clearance and excretion of alpha-aminonitrogen; c) significantly attenuated the increments in V and renal clearance of K+; but d) did not affect the increment in renal clearance and excretion of citrate.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acidosis, Renal Tubular; Amino Acids; Animals; Bicarbonates; Chlorides; Dogs; Fanconi Syndrome; Female; Glomerular Filtration Rate; Injections, Intravenous; Maleates; Nitrogen; Phosphates; Potassium; Sodium; Sulfates | 1985 |
Proximal tubular HCO3-, H+ and fluid transport during maleate-induced acidification defect.
The mechanism of tubular acidification was studied in proximal tubular acidification defect induced in rats by acute parenteral infusion of maleate (200 mg/kg), which causes diuresis and bicarbonaturia. Proximal tubular bicarbonate reabsorption and H+ ion secretion were determined by stopped-flow microperfusion and measurement of luminal pH by Sb microelectrodes. Stationary pH increased in proximal tubule from 6.78 to 7.25 and bicarbonate reabsorption decreased from 1.32 to 0.51 nmol/cm2 X s. In these segments, mean cell PD fell from -66.6 to -20.2 mV, while Jv as estimated by the Gertz technique fell to 15% of controls. A similar impairment of acidification was observed during luminal and capillary perfusion with phosphate Ringer's. Since H+-ion efflux from the lumen was not significantly increased and both acidification and alkalinization half-times (t/2) were increased, no evidence for an increase in passive permeability for H+/HCO3- was obtained. The increased t/2 found during luminal perfusion with acid phosphate indicates, according to an electrical analog model, a reduction in pump series conductance. These results show that maleate affects both proximal Na+ and H+ transport; this effect may be ascribed to impairment of sodium-dependent transport systems in the brush-border membrane. Topics: Acid-Base Equilibrium; Acidosis, Renal Tubular; Animals; Bicarbonates; Biological Transport, Active; Cell Membrane Permeability; Hydrogen-Ion Concentration; Kidney Tubules, Proximal; Male; Maleates; Membrane Potentials; Rats | 1984 |
Dysfunction of the proximal tubule underlies maleic acid-induced type II renal tubular acidosis.
To investigate whether dysfunction of the proximal tubule underlies maleic acid-(MA) induced type II ("proximal") renal tubular acidosis (RTA II), we intravenously administered either MA or acetazolamide to eight conscious trained dogs undergoing water diuresis and examined the relationship between fractional solute-free water clearance (Ch2o/GFR), a measure of NaCl reabsorption in the post-proximal nephron, and either fractional urine flow (V/GFR), a measure of total solute rejected by the proximal tubule, or the sum of fractional excretion of Cl- and Ch2o/GFR [(Ccl + Ch2o)/GFR], a measure of proximally rejected solute that is potentially reabsorbable by the thick ascending limb. When MA or acetazolamide induced brisk bicarbonaturia at normal plasma bicarbonate concentrations: 1) V/GFR, (Ccl + Ch20)GFR, and Ch2o/GFR increased strikingly; 2) at any increment of Ch2o/GFR ws not; 3) the increments of V/GFR correlated positively with those of fractional excretion of bicarbonate (P less than 0.001); 4) during hyperchloremic acidosis, MA-induced bicarbonaturia was greatly attenuated; the increment in V/GFR was halved and approximated that in Ch20/GFR, which was unchanged; 5) when plasma bicarbonate was abruptly increased, bicarbonaturia increased strikingly and V/GFR increased further but Ch20/GFR and aminoaciduria did not. We conclude that MA induces a reduction in the net rate at which the proximal tubule reabsorbs HCO-3, Na+, and Cl-. This dysfunction underlies RTA II and evokes greatly increased reabsorption of Cl- and Na+ in the post-proximal tubule. Topics: Acetazolamide; Acidosis, Renal Tubular; Animals; Bicarbonates; Diuresis; Dogs; Female; Glomerular Filtration Rate; Kidney Tubules, Proximal; Maleates | 1982 |
[Urinary-blood delta PCO2 in renal tubular acidosis (author's transl)].
A state of renal tubular acidosis has been produced in rats by the administration of sodium maleate or acetazolamide (proximal tubular acidosis) and of lithium chloride of amiloride (distal tubular acidosis). During progressive alkaline diuresis, delta PCO2 (urine minus blood PCO2) increases significantly in rats presenting proximal tubular acidosis. Delta PCO2 is significantly depressed in rats presenting distal tubular acidosis. In well defined conditions of bicarbonate or phosphate excretion, delta PCO2 is a valuable index of distal ion secretion. Topics: Acetazolamide; Acidosis, Renal Tubular; Amiloride; Animals; Carbon Dioxide; Chlorides; Disease Models, Animal; Lithium; Lithium Chloride; Maleates; Partial Pressure; Rats | 1980 |