maitotoxin and Hypoxia

maitotoxin has been researched along with Hypoxia* in 1 studies

Other Studies

1 other study(ies) available for maitotoxin and Hypoxia

ArticleYear
Selective release of calpain produced alphalI-spectrin (alpha-fodrin) breakdown products by acute neuronal cell death.
    Biological chemistry, 2002, Volume: 383, Issue:5

    Activation of calpain results in the breakdown of alpha II spectrin (alpha-fodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cell-conditioned media from SH-SY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150-specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a time-dependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTX-induced SBDP150 release. The cell-conditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R(-)-3-(2-carbopiperazine-4-yl)-propyl-1-phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody-based detection of SBDP150 in the cell-conditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.

    Topics: Analysis of Variance; Animals; Blotting, Western; Calpain; Cell Death; Cells, Cultured; Cerebellum; Cerebral Cortex; Dipeptides; Dose-Response Relationship, Drug; Glucose; Humans; Hypoxia; Marine Toxins; Nerve Tissue Proteins; Neuroblastoma; Neurons; Neurotoxins; Oxocins; Rats; Rats, Sprague-Dawley; Spectrin; Time Factors

2002