macimorelin has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for macimorelin and Disease-Models--Animal
Article | Year |
---|---|
Translational potential of the ghrelin receptor agonist macimorelin for seizure suppression in pharmacoresistant epilepsy.
Current drugs for epilepsy affect seizures, but no antiepileptogenic or disease-modifying drugs are available that prevent or slow down epileptogenesis, which is characterized by neuronal cell loss, inflammation and aberrant network formation. Ghrelin and ghrelin receptor (ghrelin-R) agonists were previously found to exert anticonvulsant, neuroprotective and anti-inflammatory effects in seizure models and immediately after status epilepticus (SE). Therefore, the aim of this study was to assess whether the ghrelin-R agonist macimorelin is antiepileptogenic in the pharmacoresistant intrahippocampal kainic acid (IHKA) mouse model.. SE was induced in C57BL/6 mice by unilateral IHKA injection. Starting 24 h after SE, mice were treated intraperitoneally with macimorelin (5 mg/kg) or saline twice daily for 2 weeks, followed by a 2-week wash-out. Mice were continuously electroencephalogram-monitored, and at the end of the experiment neuroprotection and gliosis were assessed.. Macimorelin significantly decreased the number and duration of seizures during the treatment period, but had no antiepileptogenic or disease-modifying effect in this dose regimen. While macimorelin did not significantly affect food intake or body weight over a 2-week treatment period, its acute orexigenic effect was preserved in epileptic mice but not in sham mice.. While the full ghrelin-R agonist macimorelin was not significantly antiepileptogenic nor disease-modifying, this is the first study to demonstrate its anticonvulsant effects in the IHKA model of drug-refractory temporal lobe epilepsy. These findings highlight the potential use of macimorelin as a novel treatment option for seizure suppression in pharmacoresistant epilepsy. Topics: Animals; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Hippocampus; Humans; Indoles; Mice; Mice, Inbred C57BL; Receptors, Ghrelin; Seizures; Status Epilepticus; Tryptophan | 2021 |
Anticonvulsant effect of a ghrelin receptor agonist in 6Hz corneally kindled mice.
Ghrelin has anticonvulsant and neuroprotective effects in models of chemoconvulsant-induced seizures and status epilepticus. In this study we investigated whether deletion of the ghrelin receptor could alter the kindling process in the 6 Hz corneal kindling model and whether ghrelin receptor ligands possess anticonvulsant effects in fully kindled mice. Ghrelin receptor wild-type and knockout mice were electrically stimulated at a subconvulsive current twice daily via corneal electrodes until they reached the fully kindled state. Mice lacking the ghrelin receptor showed similar seizure severity during kindling acquisition as well as in the maintenance phase when compared to their wild-type littermates. Subsequently we proceeded by investigating possible anticonvulsant effects of the ghrelin receptor ligands in the acute 6 Hz seizure model and the fully 6 Hz kindled mice. The ghrelin receptor agonist JMV-1843 decreased the seizure severity score both in acutely 6 Hz stimulated mice and in fully kindled ghrelin receptor wild-type mice, but not in fully kindled ghrelin receptor knockout mice. No effect on seizure severity was observed following the ghrelin receptor antagonist JMV-2959 in both models. This finding indicates that JMV-1843 exerts an anticonvulsant effect in kindled mice via the ghrelin receptor. Topics: Animals; Anticonvulsants; Cornea; Disease Models, Animal; Electric Stimulation; Glycine; Indoles; Kindling, Neurologic; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Oligopeptides; Receptors, Ghrelin; Status Epilepticus; Triazoles; Tryptophan | 2016 |