m40401 has been researched along with Brain-Ischemia* in 2 studies
2 other study(ies) available for m40401 and Brain-Ischemia
Article | Year |
---|---|
Protective effect of a new nonpeptidyl mimetic of SOD, M40401, against focal cerebral ischemia in the rat.
We tested the neuroprotective effects of M40401, a new, low molecular weight (511.4 Da) maganese superoxide dismutase mimetic, against 90 min of middle cerebral artery occlusion (MCAO) in male Wistar rats. Animals received a single injection of vehicle (n=8), 1 mg/kg (n=6), or 3 mg/kg (n=7) 30 min before MCAO. Total lesion volume was reduced only in the group receiving 3 mg/kg M40401 (163.5+/-18.7 versus 43.4+/-7.0 mm(3), for vehicle and M40401, respectively; P<0.05), with almost complete reduction of lesion volume in the cortex but little protection in the basal ganglia. Neurological score was also improved in this group. The dose of 1 mg/kg M40401 had smaller and inconsistent effects on lesion parameters. Administration of a single dose of 3 mg/kg M40401 at 60 min of MCAO or at the end of MCAO (90 min) failed to significantly reduce lesion volume. A single dose of M40401 plus prolonged infusion into the post-MCAO period also failed to decrease lesion volume significantly. These data indicate that M40401 protects cerebral tissue from ischemic insult when administered before MCAO, probably by limiting damage mediated by detrimental actions of superoxide anion. Topics: Animals; Blood Pressure; Brain Ischemia; Cell Death; Cerebral Cortex; Cerebrovascular Circulation; Free Radical Scavengers; Infarction, Middle Cerebral Artery; Male; Middle Cerebral Artery; Neuroprotective Agents; Organometallic Compounds; Rats; Rats, Wistar; Reperfusion Injury; Superoxide Dismutase | 2003 |
The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils.
Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils.. In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1-7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1-40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion.. Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances. Topics: Animals; Brain Ischemia; Disease Models, Animal; Gerbillinae; Male; Malondialdehyde; Organometallic Compounds; Protective Agents; Reperfusion Injury; Superoxide Dismutase | 2003 |