m-40403 has been researched along with Body-Weight* in 2 studies
2 other study(ies) available for m-40403 and Body-Weight
Article | Year |
---|---|
Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve.
1. To further explore the effect of antioxidants in preventing diabetes-induced vascular and neural dysfunction we treated streptozotocin-induced diabetic rats daily with subcutaneous injections of 10 mg kg(-1) of M40403 (n=11) and compared the results obtained from 17 control rats and 14 untreated diabetic rats. M40403 is a manganese(II) complex with a bis(cyclo-hexylpyridine)-substituted macrocyclic ligand that was designed to be a selective functional mimetic of superoxide dismutase. Thus, M40403 provides a useful tool to evaluate the roles of superoxide in disease states. 2. Treatment with M40403 significantly improved diabetes-induced decrease in endoneurial blood flow, acetylcholine-mediated vascular relaxation in arterioles that provide circulation to the region of the sciatic nerve, and motor nerve conduction velocity (P<0.05). M40403 treatment also reduced the appearance of superoxide in the aorta and epineurial vessels and peroxynitrite in epineurial vessels. Treating diabetic rats with M40403 reduced the diabetes-induced increase in thiobarbituric acid reactive substances in serum but did not prevent the decrease in lens glutathione level. Treating diabetic rats with M40403 did not improve sciatic nerve Na(+)/K(+) ATPase activity or the sorbitol, fructose or myo-inositol content of the sciatic nerve. 3. These studies provide additional evidence that diabetes-induced oxidative stress and the generation of superoxide and perhaps peroxynitrite may be partially responsible for the development of diabetic vascular and neural complications. Topics: Acetylcholine; Animals; Blood Glucose; Blood Vessels; Body Weight; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Fatty Acids, Nonesterified; Fructose; Inositol; Male; Manganese; Neural Conduction; Organometallic Compounds; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Sciatic Nerve; Sodium-Potassium-Exchanging ATPase; Sorbitol; Superoxides; Thiobarbituric Acid Reactive Substances; Triglycerides; Tyrosine; Vasodilation; Vasodilator Agents | 2001 |
Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis.
Inflammatory bowel disease is characterised by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of intercellular adhesion molecule 1 (ICAM-1) expression in the colon. The aim of the present study was to examine the effects of M40403, a superoxide dismutase mimetic, in rats subjected to experimental colitis. Colitis was induced in rats by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS). Rats experienced bloody diarrhoea and significant loss of body weight. At 4 days after TNBS administration, the colon damage was characterised by areas of mucosal necrosis. Neutrophil infiltration (indicated by myeloperoxidase activity in the mucosa) was associated with up-regulation of ICAM-1 and expression of P-selectin and high levels of malondialdehyde. Immunohistochemistry for nitrotyrosine and poly (ADP-ribose) synthetase showed an intense staining in the inflamed colon. Treatment with M40403 (5 mg/kg daily i.p.) significantly reduced the appearance of diarrhoea and the loss of body weight. This was associated with a remarkable amelioration of the disruption of the colonic architecture as well as a significant reduction of colonic myeloperoxidase activity and malondialdehyde levels. M40403 also reduced the appearance of nitrotyrosine and poly (ADP-ribose) synthetase immunoreactivity in the colon as well as reduced the up-regulation of ICAM-1 and the expression of P-selectin. The results of this study suggested that administration of a superoxide dismutase mimetic may be beneficial for treatment of inflammatory bowel disease. Topics: Animals; Body Weight; Colitis; Colon; Cytokines; Enzyme Activation; Free Radical Scavengers; Immunohistochemistry; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Male; Manganese; Organometallic Compounds; P-Selectin; Peroxidase; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Survival Analysis; Time Factors; Tyrosine | 2001 |