lysophosphatidylserine has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for lysophosphatidylserine and Disease-Models--Animal
Article | Year |
---|---|
GPR34 in spinal microglia exacerbates neuropathic pain in mice.
Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain.. mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography-tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity.. GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain.. Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain. Topics: Analysis of Variance; Animals; Calcium-Binding Proteins; Cytokines; Disease Models, Animal; Gene Expression Regulation; Interferon Regulatory Factors; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microfilament Proteins; Microglia; Neuralgia; Nitric Oxide Synthase Type II; Pain Measurement; Pain Threshold; Protein Kinase C; Receptors, Lysophospholipid; RNA, Messenger; Spinal Cord; Time Factors | 2019 |
Neutrophils regulate tissue Neutrophilia in inflammation via the oxidant-modified lipid lysophosphatidylserine.
Resolution of neutrophilia characteristic of acute inflammation requires cessation of neutrophil recruitment and removal of tissue neutrophils. Based on in vitro studies, a role in these events was hypothesized for oxidant-generated lysophosphatidylserine (lyso-PS) on recruited neutrophils signaling via the G2A receptor on macrophages. Peritoneal exudate neutrophils harvested from wild type (WT) mice had 5-fold more lyso-PS (lyso-PS(high)) than those of gp91(phox)(-/-) (lyso-PS(low)) mice. Ex vivo engulfment of lyso-PS(high) neutrophils (95% viable) by WT peritoneal macrophages was quantitatively similar to UV-irradiated apoptotic blood neutrophils, although the signaling pathway for the former was uniquely dependent on macrophage G2A. In contrast, lyso-PS(low) neutrophils were poorly engulfed unless presented with exogenous lyso-PS. Enhanced clearance of lyso-PS(high) neutrophils was also seen in vivo following their adoptive transfer into inflamed peritonea of WT but not G2A(-/-) mice, further supporting a requirement for signaling via G2A. To investigate downstream effects of lyso-PS/G2A signaling, antibody blockade of G2A in WT mice reduced macrophage CD206 expression and efferocytosis during peritonitis. Conversely, adoptive transfer of lyso-PS(high) neutrophils early in inflammation in gp91(phox)(-/-) mice led to accelerated development of efferocytic(high) and CD206(high) macrophages. This macrophage reprogramming was associated with suppressed production of pro-inflammatory mediators and reduced neutrophilia. These effects were not seen if G2A was blocked or lyso-PS(low) neutrophils were transferred. Taken together, the results demonstrate that oxidant-generated lyso-PS made by viable tissue neutrophils is an endogenous anti-inflammatory mediator working in vivo to orchestrate the "early" and rapid clearance of recruited neutrophils as well as the reprogramming of "resolving" macrophages. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Cytokines; Disease Models, Animal; Female; Inflammation; Leukocyte Disorders; Lipids; Lysophospholipids; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; NADPH Oxidases; Neutrophils; Oxidants; Peritonitis; Signal Transduction | 2013 |
ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC.
Advances in human genetics are leading to the discovery of new disease-causing mutations at a remarkable rate. Many such mutations, however, occur in genes that encode for proteins of unknown function, which limits our molecular understanding of, and ability to devise treatments for, human disease. Here, we use untargeted metabolomics combined with a genetic mouse model to determine that the poorly characterized serine hydrolase α/β-hydrolase domain-containing (ABHD)12, mutations in which cause the human neurodegenerative disorder PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and cataract), is a principal lysophosphatidylserine (LPS) lipase in the mammalian brain. ABHD12(-/-) mice display massive increases in a rare set of very long chain LPS lipids that have been previously reported as Toll-like receptor 2 activators. We confirm that recombinant ABHD12 protein exhibits robust LPS lipase activity, which is also substantially reduced in ABHD12(-/-) brain tissue. Notably, elevations in brain LPS lipids in ABHD12(-/-) mice occur early in life (2-6 mo) and are followed by age-dependent increases in microglial activation and auditory and motor defects that resemble the behavioral phenotypes of human PHARC patients. Taken together, our data provide a molecular model for PHARC, where disruption of ABHD12 causes deregulated LPS metabolism and the accumulation of proinflammatory lipids that promote microglial and neurobehavioral abnormalities. Topics: Animals; Ataxia; Behavior, Animal; Brain; Cataract; Disease Models, Animal; Humans; Lipid Metabolism; Lysophospholipids; Metabolic Networks and Pathways; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Models, Neurological; Monoacylglycerol Lipases; Mutation; Phenotype; Polyneuropathies; Retinitis Pigmentosa | 2013 |