lyoniresinol has been researched along with Brain-Injuries* in 2 studies
2 other study(ies) available for lyoniresinol and Brain-Injuries
Article | Year |
---|---|
Lyoniresinol attenuates cerebral ischemic stroke injury in MCAO rat based on oxidative stress suppression via regulation of Akt/GSK-3β/Nrf2 signaling.
Stroke is one of the predominant causes of death and disability. Currently, besides thrombolytic therapy, neuroprotection is also generally recognized as a promising way for stroke treatment, which would be very important for the functional recovery of stroke patients. However, it's reported that all the current available neuroprotective drugs have failed in clinical investigations of stroke treatments so far. Lyoniresinol (LNO) is a natural lignan with powerful antioxidant and cytoprotective activities. In this study, OGD/R leaded HT22 cell damage models and Middle Cerebral Artery Occlusion (MCAO) rats were used to investigate the effect of LNO on cerebral ischemic stroke injury and related mechanisms. The cell experiments revealed LNO can suppress the oxygen glucose deprivation-reoxygenation (OGD/R) induced apoptosis of HT22 cells. Subsequently, LNO can improve nerve function deficit and brain injury in MCAO rats with a higher neurological function scores and less infarct size. And the further molecular mechanisms studies suggested LNO activated the PI3K/AKT/GSK-3β/NRF2 signaling and improved the oxidative stress in cells to inhibit the OGD/R induced apoptosis in HT22 cells. Collectively, our findings would be useflu for the further drug development of LNO as new drug for stroke and its related diseases. Topics: Animals; Brain Injuries; Brain Ischemia; Glycogen Synthase Kinase 3 beta; Humans; Infarction, Middle Cerebral Artery; Ischemic Stroke; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Reperfusion Injury; Stroke | 2023 |
[Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer's disease].
The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on β-amyloid protein 25-35(Aβ_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aβ_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of β-amyloid protein 1-42(Aβ_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aβ_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol with β-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aβ_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aβ_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aβ_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brai Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Aspartic Acid; Brain Injuries; Cornus; Cysteine; Disease Models, Animal; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Molecular Docking Simulation; Neuroinflammatory Diseases; Peptide Hydrolases; Tumor Necrosis Factor-alpha | 2023 |