ly-518674 and Metabolic-Syndrome

ly-518674 has been researched along with Metabolic-Syndrome* in 2 studies

Trials

2 trial(s) available for ly-518674 and Metabolic-Syndrome

ArticleYear
Potent peroxisome proliferator-activated receptor-α agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome.
    European heart journal, 2015, Nov-14, Volume: 36, Issue:43

    Fibrate medications weakly stimulate the nuclear receptor peroxisome proliferator-activated receptor-α (PPAR-α) and are currently employed clinically in patients with dyslipidaemia. The potent and selective agonist of PPAR-α LY518674 is known to substantially increase apolipoprotein A-I (apoA-I) turnover without major impact on steady-state levels of apoA-I or high-density lipoprotein-cholesterol (HDL-C). We sought to determine whether therapy with a PPAR-α agonist impacts cholesterol efflux capacity, a marker of HDL function.. Cholesterol efflux capacity was measured at baseline and after 8 weeks of therapy in a randomized, placebo-controlled trial involving participants with metabolic syndrome treated with either LY518674 100 μg daily (n = 13) or placebo (n = 15). Efflux capacity assessment was quantified using a previously validated ex vivo assay that measures the ability of apolipoprotein-B depleted plasma to mobilize cholesterol from macrophages. LY518674 led to a 15.7% increase from baseline (95% CI 3.3-28.1%; P = 0.02, P vs. placebo = 0.01) in efflux capacity. The change in apoA-I production rate in the active treatment arm was strongly linked to change in cholesterol efflux capacity (r = 0.67, P = 0.01).. Potent stimulation of PPAR-α leads to accelerated turnover of apoA-I and an increase in cholesterol efflux capacity in metabolic syndrome patients despite no change in HDL-C or apoA-I levels. This finding reinforces the notion that changes in HDL-C levels may poorly predict impact on functionality and thus has implications for ongoing pharmacologic efforts to enhance apoA-I metabolism.

    Topics: Apolipoprotein A-I; Apolipoproteins B; Cholesterol, HDL; Female; Humans; Male; Metabolic Syndrome; Middle Aged; PPAR alpha; Propionates; Triazoles

2015
Potent and selective PPAR-alpha agonist LY518674 upregulates both ApoA-I production and catabolism in human subjects with the metabolic syndrome.
    Arteriosclerosis, thrombosis, and vascular biology, 2009, Volume: 29, Issue:1

    The study of PPAR-alpha activation on apoA-I production in humans has been limited to fibrates, relatively weak PPAR-alpha agonists that may have other molecular effects. We sought to determine the effect of a potent and highly specific PPAR-alpha agonist, LY518674, on apoA-I, apoA-II, and apoB-100 kinetics in humans with metabolic syndrome and low levels of HDL cholesterol (C).. Subjects were randomized to receive LY518674 (100 microg) once daily (n=13) or placebo (n=15) for 8 weeks. Subjects underwent a kinetic study using a deuterated leucine tracer to measure apolipoprotein production and fractional catabolic rates (FCR) at baseline and after treatment. LY518674 significantly reduced VLDL-C (-38%, P=0.002) and triglyceride (-23%, P=0.002) levels whereas LDL-C and HDL-C levels were unchanged. LY518674 significantly reduced VLDL apoB-100 (-12%, P=0.01) levels, attributable to an increased VLDL apoB-100 FCR with no change in VLDL apoB-100 production. IDL and LDL apoB-100 kinetics were unchanged. LY518674 significantly increased the apoA-I production rate by 31% (P<0.0001), but this was accompanied by a 33% increase in the apoA-I FCR (P=0.002), resulting in no change in plasma apoA-I. There was a 71% increase in the apoA-II production rate (P<0.0001) accompanied by a 25% increase in the FCR (P<0.0001), resulting in a significant increase in plasma apoA-II.. Activation of PPAR-alpha with LY518674 (100 microg) in subjects with metabolic syndrome and low HDL-C increased the VLDL apoB-100 FCR consistent with enhanced lipolysis of plasma triglyceride. Significant increases in the apoA-I and apoA-II production rates were accompanied by increased FCRs resulting in no change in HDL-C levels. These data indicate a major effect of LY518674 on the production and clearance of apoA-I and HDL despite no change in the plasma concentration. The effect of these changes on reverse cholesterol transport remains to be determined.

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Apolipoprotein A-I; Cholesterol, HDL; Cholesterol, VLDL; Deuterium; Double-Blind Method; Female; Humans; Kinetics; Male; Metabolic Syndrome; Middle Aged; Placebos; PPAR alpha; Propionates; Triazoles; Triglycerides; Young Adult

2009