ly-146032 has been researched along with Heart-Valve-Diseases* in 2 studies
2 other study(ies) available for ly-146032 and Heart-Valve-Diseases
Article | Year |
---|---|
Relationship between susceptibility to daptomycin in vitro and activity in vivo in a rabbit model of aortic valve endocarditis.
Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 microg/ml and the other with a MIC of 2 microg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 microg/ml had a survival advantage over the strain with a MIC of 0.5 microg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log(10) units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility. Topics: Animals; Anti-Bacterial Agents; Aortic Valve; Area Under Curve; Daptomycin; Disease Models, Animal; Dose-Response Relationship, Drug; Endocarditis, Bacterial; Heart Valve Diseases; Microbial Sensitivity Tests; Rabbits; Staphylococcal Infections; Staphylococcus aureus | 2009 |
Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus.
Daptomycin is a lipopeptide antibiotic with potent in vitro activity against gram-positive cocci, including Staphylococcus aureus. This study evaluated the in vitro and in vivo efficacies of daptomycin against two clinical isolates: methicillin-resistant S. aureus (MRSA) 277 (vancomycin MIC, 2 microg/ml) and glycopeptide-intermediate S. aureus (GISA) ATCC 700788 (vancomycin MIC, 8 microg/ml). Time-kill experiments demonstrated that daptomycin was bactericidal in vitro against these two strains. The in vivo activity of daptomycin (6 mg/kg of body weight every 24 h) was evaluated by using a rabbit model of infective endocarditis and was compared with the activities of a high-dose (HD) vancomycin regimen (1 g intravenously every 6 h), the recommended dose (RD) of vancomycin regimen (1 g intravenously every 12 h) for 48 h, and no treatment (as a control). Daptomycin was significantly more effective than the vancomycin RD in reducing the density of bacteria in the vegetations for the MRSA strains (0 [interquartile range, 0 to 1.5] versus 2 [interquartile range, 0 to 5.6] log CFU/g vegetation; P = 0.02) and GISA strains (2 [interquartile range, 0 to 2] versus 6.6 [interquartile range, 2.0 to 6.9] log CFU/g vegetation; P < 0.01) studied. In addition, daptomycin sterilized more MRSA vegetations than the vancomycin RD (13/18 [72%] versus 7/20 [35%]; P = 0.02) and sterilized more GISA vegetations than either vancomycin regimen (12/19 [63%] versus 4/20 [20%]; P < 0.01). No statistically significant difference between the vancomycin HD and the vancomycin RD for MRSA treatment was noted. These results support the use of daptomycin for the treatment of aortic valve endocarditis caused by GISA and MRSA. Topics: Animals; Anti-Bacterial Agents; Daptomycin; Disease Models, Animal; Endocarditis, Bacterial; Glycopeptides; Heart Valve Diseases; Humans; Methicillin Resistance; Microbial Sensitivity Tests; Models, Biological; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Vancomycin; Vancomycin Resistance | 2008 |