ly-146032 and Disease-Models--Animal

ly-146032 has been researched along with Disease-Models--Animal* in 8 studies

Other Studies

8 other study(ies) available for ly-146032 and Disease-Models--Animal

ArticleYear
Ceftobiprole is superior to vancomycin, daptomycin, and linezolid for treatment of experimental endocarditis in rabbits caused by methicillin-resistant Staphylococcus aureus.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:2

    Beta lactam agents are the most active drugs for the treatment of streptococci and methicillin-susceptible Staphylococcus aureus endocarditis. However, methicillin-resistant S. aureus (MRSA) is resistant to all beta lactam agents licensed to date, and alternative treatments are limited. Ceftobiprole is a novel broad-spectrum cephalosporin that binds with high affinity to PBP 2a, the penicillin binding protein that mediates the methicillin resistance of staphylococci and is active against MRSA. Ceftobiprole was compared to vancomycin, daptomycin, and linezolid in a rabbit model of MRSA aortic valve endocarditis caused by the homogeneously methicillin-resistant laboratory strain COL. Residual organisms in vegetations were significantly fewer in ceftobiprole-treated rabbits than in any other treatment group (P<0.05 for each comparison). In addition, the numbers of organisms in spleens and in kidneys were significantly lower in ceftobiprole-treated rabbits than in linezolid- and vancomycin-treated animals (P<0.05 for each comparison). Anti-MRSA beta lactam agents such as ceftobiprole may represent a significant therapeutic advance over currently available agents for the treatment of MRSA endocarditis.

    Topics: Acetamides; Animals; Anti-Bacterial Agents; Cephalosporins; Chromatography, High Pressure Liquid; Daptomycin; Disease Models, Animal; Endocarditis, Bacterial; Linezolid; Methicillin-Resistant Staphylococcus aureus; Oxazolidinones; Rabbits; Random Allocation; Vancomycin

2010
Efficacy profiles of daptomycin for treatment of invasive and noninvasive pulmonary infections with Streptococcus pneumoniae.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:2

    Daptomycin is a novel lipopeptide antibiotic with excellent activity against Gram-positive bacterial pathogens, but its therapeutic value for the treatment of invasive pneumococcal disease compared to that for the treatment of pneumococcal pneumonia is incompletely defined. We investigated the efficacy of daptomycin in two models of Streptococcus pneumoniae-induced lung infection, i.e., pneumococcal pneumonia and septic pneumococcal disease. Mice were infected with a bioluminescent, invasive serotype 2 S. pneumoniae strain or a less virulent serotype 19 S. pneumoniae strain and were then given semitherapeutic or therapeutic daptomycin or ceftriaxone. Readouts included survival; bacterial loads; and septic disease progression, as determined by biophotonic imaging. Semitherapeutic daptomycin treatment fully protected the mice against the progression of septic disease induced by serotype 2 S. pneumoniae, while therapeutic treatment of the mice with daptomycin or ceftriaxone led to approximately 70% or approximately 60% survival, respectively. In contrast, mice infected with serotype 19 S. pneumoniae developed severe pneumonia and lung leakage even in the presence of increased intra-alveolar daptomycin levels, resulting in only 40% survival, whereas the ceftriaxone-treated mice had 100% survival. Together, although daptomycin demonstrates little efficacy in the treatment of pneumococcal pneumonia, daptomycin is highly effective in preventing S. pneumoniae-induced septic death, thus possibly offering a therapeutic option for patients with life-threatening septic pneumococcal disease.

    Topics: Animals; Anti-Bacterial Agents; Ceftriaxone; Daptomycin; Disease Models, Animal; Mice; Mice, Inbred C57BL; Pneumococcal Infections; Pneumonia, Pneumococcal; Sepsis; Streptococcus pneumoniae

2010
Attenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:3

    Antibiotic-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and temporal kinetics of cerebrospinal fluid (CSF) inflammation were assessed in an infant rat pneumococcal meningitis model for the nonbacteriolytic antibiotic daptomycin versus ceftriaxone. Daptomycin led to lower CSF concentrations of interleukin 1beta (IL-1beta), IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1 alpha (MIP-1alpha) (P < 0.05). In experimental pneumococcal meningitis, daptomycin treatment resulted in more rapid bacterial killing, lower CSF inflammation, and less brain damage than ceftriaxone treatment.

    Topics: Animals; Animals, Newborn; Anti-Bacterial Agents; Ceftriaxone; Cerebrospinal Fluid; Daptomycin; Disease Models, Animal; Humans; Inflammation; Meningitis, Pneumococcal; Rats; Rats, Wistar; Treatment Outcome

2010
Comparative efficacies of human simulated exposures of telavancin and vancomycin against methicillin-resistant Staphylococcus aureus with a range of vancomycin MICs in a murine pneumonia model.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:12

    Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log(10) CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.

    Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Disease Models, Animal; Female; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Pneumonia; Staphylococcal Infections; Vancomycin

2010
Relationship between susceptibility to daptomycin in vitro and activity in vivo in a rabbit model of aortic valve endocarditis.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:4

    Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 microg/ml and the other with a MIC of 2 microg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 microg/ml had a survival advantage over the strain with a MIC of 0.5 microg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log(10) units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility.

    Topics: Animals; Anti-Bacterial Agents; Aortic Valve; Area Under Curve; Daptomycin; Disease Models, Animal; Dose-Response Relationship, Drug; Endocarditis, Bacterial; Heart Valve Diseases; Microbial Sensitivity Tests; Rabbits; Staphylococcal Infections; Staphylococcus aureus

2009
Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:7

    Daptomycin is a lipopeptide antibiotic with potent in vitro activity against gram-positive cocci, including Staphylococcus aureus. This study evaluated the in vitro and in vivo efficacies of daptomycin against two clinical isolates: methicillin-resistant S. aureus (MRSA) 277 (vancomycin MIC, 2 microg/ml) and glycopeptide-intermediate S. aureus (GISA) ATCC 700788 (vancomycin MIC, 8 microg/ml). Time-kill experiments demonstrated that daptomycin was bactericidal in vitro against these two strains. The in vivo activity of daptomycin (6 mg/kg of body weight every 24 h) was evaluated by using a rabbit model of infective endocarditis and was compared with the activities of a high-dose (HD) vancomycin regimen (1 g intravenously every 6 h), the recommended dose (RD) of vancomycin regimen (1 g intravenously every 12 h) for 48 h, and no treatment (as a control). Daptomycin was significantly more effective than the vancomycin RD in reducing the density of bacteria in the vegetations for the MRSA strains (0 [interquartile range, 0 to 1.5] versus 2 [interquartile range, 0 to 5.6] log CFU/g vegetation; P = 0.02) and GISA strains (2 [interquartile range, 0 to 2] versus 6.6 [interquartile range, 2.0 to 6.9] log CFU/g vegetation; P < 0.01) studied. In addition, daptomycin sterilized more MRSA vegetations than the vancomycin RD (13/18 [72%] versus 7/20 [35%]; P = 0.02) and sterilized more GISA vegetations than either vancomycin regimen (12/19 [63%] versus 4/20 [20%]; P < 0.01). No statistically significant difference between the vancomycin HD and the vancomycin RD for MRSA treatment was noted. These results support the use of daptomycin for the treatment of aortic valve endocarditis caused by GISA and MRSA.

    Topics: Animals; Anti-Bacterial Agents; Daptomycin; Disease Models, Animal; Endocarditis, Bacterial; Glycopeptides; Heart Valve Diseases; Humans; Methicillin Resistance; Microbial Sensitivity Tests; Models, Biological; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Vancomycin; Vancomycin Resistance

2008
Daptomycin produces an enhanced bactericidal activity compared to ceftriaxone, measured by [3H]choline release in the cerebrospinal fluid, in experimental meningitis due to a penicillin-resistant pneumococcal strain without lysing its cell wall.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:6

    Daptomycin monotherapy was superior to ceftriaxone monotherapy and was highly efficacious in experimental pneumococcal meningitis, sterilizing the cerebrospinal fluid (CSF) of three of three rabbits after 4 to 6 h. With daptomycin therapy only a negligible release of [(3)H]choline as marker of cell wall lysis was detectable in the CSF, peaking around 250 cpm/min after 4 h, compared to a peak of around 2,400 cpm/min after 4 to 6 h for the ceftriaxone-treated rabbits.

    Topics: Animals; Anti-Bacterial Agents; Bacteriolysis; Ceftriaxone; Cell Wall; Cerebrospinal Fluid; Choline; Daptomycin; Disease Models, Animal; Humans; Meningitis, Pneumococcal; Microbial Sensitivity Tests; Penicillin Resistance; Rabbits; Streptococcus pneumoniae; Treatment Outcome; Tritium

2007
Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:6

    Bacteriolytic antibiotics cause the release of bacterial components that augment the host inflammatory response, which in turn contributes to the pathophysiology of brain injury in bacterial meningitis. In the present study, antibiotic therapy with nonbacteriolytic daptomycin was compared with that of bacteriolytic ceftriaxone in experimental pneumococcal meningitis, and the treatments were evaluated for their effects on inflammation and brain injury. Eleven-day-old rats were injected intracisternally with 1.3 x 10(4) +/- 0.5 x 10(4) CFU of Streptococcus pneumoniae serotype 3 and randomized to therapy with ceftriaxone (100 mg/kg of body weight subcutaneously [s.c.]; n = 55) or daptomycin (50 mg/kg s.c.; n = 56) starting at 18 h after infection. The cerebrospinal fluid (CSF) was assessed for bacterial counts, matrix metalloproteinase-9 levels, and tumor necrosis factor alpha levels at different time intervals after infection. Cortical brain damage was evaluated at 40 h after infection. Daptomycin cleared the bacteria more efficiently from the CSF than ceftriaxone within 2 h after the initiation of therapy (log(10) 3.6 +/- 1.0 and log(10) 6.3 +/- 1.4 CFU/ml, respectively; P < 0.02); reduced the inflammatory host reaction, as assessed by the matrix metalloproteinase-9 concentration in CSF 40 h after infection (P < 0.005); and prevented the development of cortical injury (cortical injury present in 0/30 and 7/28 animals, respectively; P < 0.004). Compared to ceftriaxone, daptomycin cleared the bacteria from the CSF more rapidly and caused less CSF inflammation. This combined effect provides an explanation for the observation that daptomycin prevented the development of cortical brain injury in experimental pneumococcal meningitis. Further research is needed to investigate whether nonbacteriolytic antibiotic therapy with daptomycin represents an advantageous alternative over current bacteriolytic antibiotic therapies for the treatment of pneumococcal meningitis.

    Topics: Animals; Anti-Bacterial Agents; Brain Injuries; Ceftriaxone; Cerebral Cortex; Cerebrospinal Fluid; Daptomycin; Disease Models, Animal; Humans; Inflammation; Meningitis, Pneumococcal; Random Allocation; Rats; Treatment Outcome

2007