lutetium-lu-177-dotatate and Proteinuria

lutetium-lu-177-dotatate has been researched along with Proteinuria* in 2 studies

Other Studies

2 other study(ies) available for lutetium-lu-177-dotatate and Proteinuria

ArticleYear
Dynamic and static small-animal SPECT in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2010, Volume: 51, Issue:12

    High kidney radiation doses during clinical peptide receptor radionuclide therapy (PRRT) with β-particle-emitting radiolabeled somatostatin analogs will lead to renal failure several months after treatment, urging the coinfusion of the cationic amino acids lysine and arginine to reduce the renal radiation dose. In rat PRRT studies, renal protection by the coadministration of lysine was confirmed by histologic examination of kidney specimens indicating nephrotoxicity. In the current study, we investigated dedicated small-animal SPECT/CT renal imaging in rats to monitor renal function in vivo during follow-up of PRRT, with and without lysine.. The following 3 groups of rats were imaged using a multipinhole SPECT/CT camera: controls (group 1) and rats at more than 90 d after therapy with 460 MBq (15 μg) of (177)Lu-DOTA-Tyr(3)-octreotate without (group 2) or with (group 3) a 400-mg/kg lysine coinjection as kidney protection (n ≥ 6 per group). At 90 and 140 d after therapy, static kidney scintigraphy was performed at 2 h after injection of 25 MBq of (99m)Tc-dimercaptosuccinic acid ((99m)Tc-DMSA). In addition, dynamic dual-isotope renography was performed using 50 MBq of (111)In-diethylenetriaminepentaacetic acid ((111)In-DTPA) and 50 MBq of (99m)Tc-mercaptoacetyltriglycine ((99m)Tc-MAG3) at 100-120 d after therapy.. (111)In-DTPA and (99m)Tc-MAG3 studies revealed a time-activity pattern comparable to those in patients, with a peak at 2-6 min followed by a decline of renal radioactivity. Reduced (111)In-DTPA, (99m)Tc-MAG3, and (99m)Tc-DMSA uptake indicated renal damage in group 2, whereas group 3 showed only a decrease of (99m)Tc-MAG3 peak activity. These results indicating nephrotoxicity in group 2 and renal protection in group 3 correlated with levels of urinary protein and serum creatinine and urea and were confirmed by renal histology.. Quantitative dynamic dual-isotope imaging using both (111)In-DTPA and (99m)Tc-MAG3 and static (99m)Tc-DMSA imaging in rats is feasible using small-animal SPECT, enabling longitudinal monitoring of renal function. (99m)Tc-MAG3 renography, especially, appears to be a more sensitive marker of tubular function after PRRT than serum chemistry or (99m)Tc-DMSA scintigraphy.

    Topics: Albumins; Animals; Autoradiography; Creatinine; Glomerular Filtration Rate; Kidney; Kidney Diseases; Kidney Tubules; Lysine; Male; Octreotide; Organometallic Compounds; Pentetic Acid; Proteinuria; Radiation Injuries; Radioisotope Renography; Radiopharmaceuticals; Rats; Rats, Inbred Lew; Technetium Tc 99m Dimercaptosuccinic Acid; Technetium Tc 99m Mertiatide; Tomography, Emission-Computed, Single-Photon

2010
Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate.
    European journal of nuclear medicine and molecular imaging, 2007, Volume: 34, Issue:5

    In peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues, the kidneys are the major dose-limiting organs, because of tubular reabsorption and retention of radioactivity. Preventing renal uptake or toxicity will allow for higher tumour radiation doses. We tested the cytoprotective drug amifostine, which selectively protects healthy tissue during chemo- and radiotherapy, for its renoprotective capacities after PRRT with high-dose [(177)Lu-DOTA(0),Tyr(3)]octreotate.. Male Lewis rats were injected with 278 or 555 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to create renal damage and were followed up for 130 days. For renoprotection, rats received either amifostine or co-injection with lysine. Kidneys, blood and urine were collected for toxicity measurements. At 130 days after PRRT, a single-photon emission computed tomography (SPECT) scan was performed to quantify tubular uptake of (99m)Tc-dimercaptosuccinic acid (DMSA), a measure of tubular function.. Treatment with 555 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate resulted in body weight loss, elevated creatinine and proteinuria. Amifostine and lysine treatment significantly prevented this rise in creatinine and the level of proteinuria, but did not improve the histological damage. In contrast, after 278 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate, creatinine values were slightly, but not significantly, elevated compared with the control rats. Proteinuria and histological damage were different from controls and were significantly improved by amifostine treatment. Quantification of (99m)Tc-DMSA SPECT scintigrams at 130 days after [(177)Lu-DOTA(0),Tyr(3)]octreotate therapy correlated well with 1/creatinine (r(2)=0.772, p<0.001).. Amifostine and lysine effectively decreased functional renal damage caused by high-dose [(177)Lu-DOTA(0),Tyr(3)]octreotate. Besides lysine, amifostine might be used in clinical PRRT as well as to maximise anti-tumour efficacy.

    Topics: Amifostine; Animals; Body Weight; Creatinine; Kidney; Lysine; Male; Neoplasms; Octreotide; Organometallic Compounds; Proteinuria; Radiation Injuries; Radiopharmaceuticals; Rats; Rats, Inbred Lew; Tomography, Emission-Computed, Single-Photon

2007