lumacaftor and Cystic-Fibrosis

lumacaftor has been researched along with Cystic-Fibrosis* in 190 studies

Reviews

37 review(s) available for lumacaftor and Cystic-Fibrosis

ArticleYear
Drug-drug interactions involving CFTR modulators: a review of the evidence and clinical implications.
    Expert opinion on drug metabolism & toxicology, 2023, Volume: 19, Issue:4

    Cystic fibrosis (CF) is characterized by mucus accumulation impairing the lungs, gastrointestinal tract, and other organs. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators (ivacaftor, tezacaftor, elexacaftor, and lumacaftor) significantly improve lung function and nutritional status; however, they are substrates, inhibitors, and/or inducers of certain CYP enzymes and transporters, raising the risk of drug-drug interactions (DDI) with common CF medications.. A literature search was conducted for DDIs involving CFTR modulators by reviewing new drug applications, drug package inserts, clinical studies, and validated databases of substrates, inhibitors, and inducers. Clinically, CYP3A inducers and inhibitors significantly decrease and increase systemic concentrations of elexacaftor/tezacaftor/ivacaftor, respectively. Additionally, lumacaftor and ivacaftor alter concentrations of CYP3A and P-gp substrates. Potential DDIs without current clinical evidence include ivacaftor and elexacaftor's effect on CYP2C9 and OATP1B1/3 substrates, respectively, and OATP1B1/3 and P-gp inhibitors' effect on tezacaftor. A literature review was conducted using PubMed.. Dosing recommendations for CFTR modulators with DDIs are relatively comprehensive; however, recommendations on timing of dosing transition of CFTR modulators when CYP3A inhibitors are initiated or discontinued is incomplete. Certain drug interactions may be managed by choosing an alternative treatment to avoid/minimize DDIs. Next generation CFTR modulator therapies under development are expected to provide increased activity with reduced DDI risk.

    Topics: Aminopyridines; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Drug Interactions; Humans; Mutation

2023
Use of CFTR modulators in special populations, part 1: Pregnancy and lactation.
    Pediatric pulmonology, 2023, Volume: 58, Issue:12

    Safety and efficacy data regarding cystic fibrosis transmembrane conductance regulator (CFTR) modulator use in the setting of pregnancy or breastfeeding remains lacking due to exclusion from key trials and lack of multicenter prospective and retrospective studies in the post-CFTR modulator era. A scoping review of English articles from the period of January 1, 2012, to July 31, 2023, was conducted utilizing PubMed and EmBase databases with the following terms: "special population (pregnancy, lactation, breastfeeding)" AND "ivacaftor OR lumacaftor OR tezacaftor OR elexacaftor"; "cystic fibrosis transmembrane conductance regulator" AND "off label drug use." Search results were reviewed by title and abstract for duplications and relevance. Relative to pregnancy or breastfeeding, a total of 18 publications were included for review. Majority of case reports and surveys concluded maternal and infant health were preserved throughout gestation. Likewise, breastfeeding infant case reports show possible changes in liver function and lens opacities, though risk may be increased with both in-utero and breastfeeding exposure. Ivacaftor (IVA) and lumacaftor (LUM) concentrations in fetal cord blood and maternal blood were found to be equivalent. Yet, low concentrations of IVA and LUM were detectable in breastmilk and infant plasma. Current safety data surrounding CFTR modulator use in the setting of pregnancy and lactation is relatively reassuring; however, long-term safety remains unclear, necessitating ongoing observation, and reporting by care teams. As such, treatment decisions should be individualized and coproduced.

    Topics: Aminophenols; Benzodioxoles; Breast Feeding; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Humans; Lactation; Mutation; Off-Label Use; Pregnancy; Prospective Studies; Retrospective Studies

2023
Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del).
    The Cochrane database of systematic reviews, 2023, 11-20, Volume: 11

    Cystic fibrosis (CF) is a common life-shortening genetic condition caused by a variant in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. A class II CFTR variant F508del is the commonest CF-causing variant (found in up to 90% of people with CF (pwCF)). The F508del variant lacks meaningful CFTR function - faulty protein is degraded before reaching the cell membrane, where it needs to be to effect transepithelial salt transport. Corrective therapy could benefit many pwCF. This review evaluates single correctors (monotherapy) and any combination of correctors (most commonly lumacaftor, tezacaftor, elexacaftor, VX-659, VX-440 or VX-152) and a potentiator (e.g. ivacaftor) (dual and triple therapies).. To evaluate the effects of CFTR correctors (with or without potentiators) on clinically important benefits and harms in pwCF of any age with class II CFTR mutations (most commonly F508del).. We searched the Cochrane CF Trials Register (28 November 2022), reference lists of relevant articles and online trials registries (3 December 2022).. Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to control in pwCF with class II mutations.. Two authors independently extracted data, assessed risk of bias and judged evidence certainty (GRADE); we contacted investigators for additional data.

    Topics: Adult; Aminophenols; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dyspnea; Humans; Mutation

2023
Entering the era of highly effective modulator therapies.
    Pediatric pulmonology, 2021, Volume: 56 Suppl 1

    Since the discovery of the gene responsible for cystic fibrosis (CF) in 1989, hopes have been pinned on a future with novel therapies tackling the basis of the disease rather than its symptoms. These have become a reality over the last decade with the development through to the clinic of CF transmembrane conductance regulator (CFTR) modulators. These are oral drugs which improve CFTR protein function through either increasing the time the channel pore is open (potentiators) or facilitating its trafficking through the cell to its location on the cell membrane (correctors). The first potentiator, ivacaftor, is now licensed and available clinically in many parts of the world. It is highly effective with impressive clinical impact in the lungs and gastrointestinal tract; longer-term data from patient registries show fewer exacerbations, a slower rate of lung function loss and reduced need for transplantation in patients receiving ivacaftor. However, as a single drug, it is suitable for only a small minority of patients. The commonest CFTR mutation, F508del, requires both correction and potentiation for clinical efficacy. Two dual-agent drugs (lumacaftor/ivacaftor and tezacaftor/ivacaftor) have progressed through to licensing, although their short term impact is more modest than that of ivacaftor; this is likely due to only partial correction of protein misfolding and trafficking. Most recently, triple compounds have been developed: two different corrector molecules (elexacaftor and tezacaftor) which, by addressing different regions in the misfolded F508del protein, more effectively improve trafficking. In addition to large improvements in clinical outcomes in people with two copies of F508del, the combination is sufficiently effective that it works in patients with only one copy of F508del and a second, nonmodulator responsive mutation. For the first time, we thus have a drug suitable for around 85% of people with CF. Even more gains are likely to be possible when these drugs can be used in younger children, although more sensitive outcome measures are needed for this age group. Special consideration is needed for people with very rare mutations; those with nonmodulatable mutation combinations will likely require gene or messenger RNA-based therapeutic approaches, many of which are being explored. Although this progress is hugely to be celebrated, we still have more work to do. The international collaboration between trials networks, pharma, patient organizat

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Indoles; Mutation; Pyrazoles; Pyridines; Pyrrolidines; Quinolones

2021
Modulators of CFTR. Updates on clinical development and future directions.
    European journal of medicinal chemistry, 2021, Mar-05, Volume: 213

    Cystic fibrosis (CF) is the most frequent life-limiting autosomal recessive disorder in the Caucasian population. It is due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Current symptomatic CF therapies, which treat the downstream consequences of CFTR mutations, have increased survival. Better knowledge of the CFTR protein has enabled pharmacologic therapy aiming to restore mutated CFTR expression and function. These CFTR "modulators" have revolutionised the CF therapeutic landscape, with the potential to transform prognosis for a considerable number of patients. This review provides a brief summary of their mechanism of action and presents a thorough review of the results obtained from clinical trials of CFTR modulators.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Development; Humans; Indoles; Quinolones

2021
Cystic fibrosis transmembrane conductance regulator modulators for cystic fibrosis: a new dawn?
    Archives of disease in childhood, 2021, Volume: 106, Issue:10

    Cystic fibrosis (CF) is the most common life-limiting inherited condition in Caucasians. It is a multisystem autosomal recessive disorder caused by variants in the gene for cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cell-surface localised chloride channel that regulates absorption and secretion of salt and water across epithelia. Until recently, the treatment for CF was predicated on ameliorating and preventing the downstream symptoms of CFTR dysfunction, primarily recurrent respiratory infections and pancreatic exocrine failure. But a new class of therapy-the CFTR modulators, which treat the basic defect and decrease the complications of CF, leads to significantly improved pulmonary function, decreased respiratory infections and improved nutrition. The newest agent, a combination of elexacaftor, tezacaftor and ivacaftor, will be suitable for approximately 90% of all people with CF and is likely to decrease the morbidity and significantly increase the life expectancy for most people with CF. The major barrier to their widespread introduction has been their cost, with many countries unwilling or unable to fund them. Nevertheless, such is their therapeutic efficacy and their likely potent effect on life expectancy that their advent has wider societal implications for the care of children and adults with CF.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Genetic Variation; Humans; Indoles; Outcome Assessment, Health Care; Pyrazoles; Pyridines; Pyrrolidines; Quinolones

2021
Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis.
    International journal of molecular sciences, 2021, Jul-16, Volume: 22, Issue:14

    Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.

    Topics: Aminophenols; Aminopyridines; Anti-Inflammatory Agents; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Indoles; Inflammation; Ion Transport; Lung; Macrophages; Pneumonia; Quinolones; Signal Transduction

2021
Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications.
    American journal of respiratory and critical care medicine, 2020, 05-15, Volume: 201, Issue:10

    Cystic fibrosis (CF) remains the most common life-shortening hereditary disease in white populations, with high morbidity and mortality related to chronic airway mucus obstruction, inflammation, infection, and progressive lung damage. In 1989, the discovery that CF is caused by mutations in the

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Sodium Channel Blockers; Humans; Indoles; Molecular Targeted Therapy; Mucociliary Clearance; Mutation; Precision Medicine; Pyrazoles; Pyridines; Pyrrolidines; Quinolones

2020
Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy: A Review for the Otolaryngologist.
    American journal of rhinology & allergy, 2020, Volume: 34, Issue:4

    Cystic fibrosis (CF) is a genetic disease that may result in multiple systemic disorders and potentially fatal severe respiratory compromise. However, the advent of CF transmembrane conductance regulator (CFTR) modulators has changed the management of CF for patients with select mutations. Although clinical trials have highlighted increased pulmonary function and decreased exacerbations as a result of these novel therapies, their effect on the sinuses has not been well-described.. Our objective is to review the CFTR modulators to provide otolaryngologists, physicians who frequently care for patients with CF, a basic understanding of these drugs and their effects on chronic rhinosinusitis (CRS) in patients with CF.. The clinically approved and available CFTR modulators and specific indications for their use are reviewed. Additionally, a systematic review of these therapies and effects on CRS in CF was performed.. Four Food and Drug Administration approved CFTR modulators are available for patients with CF. Current drugs are approved for gating, residual function, or F508del mutations. Multiple reports describe CFTR modulators' increase in transepithelial ion transport in nasal epithelial cultures; however, clinical studies regarding effects of these modulators on sinonasal health are limited to 5 studies that present new data of the effects of CFTR modulators in CRS.. CFTR modulators have changed management of CF. Initial studies of these medications demonstrate promising results in CF; however, there is a paucity of literature describing the effect of CFTR modulators on CF-associated CRS, although initial results are encouraging.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chronic Disease; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Approval; Humans; Indoles; Mutation; Nasal Mucosa; Otolaryngologists; Pyrazoles; Pyridines; Pyrrolidines; Quinolones

2020
The bidirectional relationship between CFTR and lipids.
    Communications biology, 2020, 04-20, Volume: 3, Issue:1

    Cystic Fibrosis (CF) is the most common life-shortening genetic disease among Caucasians, resulting from mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). While work to understand this protein has resulted in new treatment strategies, it is important to emphasize that CFTR exists within a complex lipid bilayer - a concept largely overlooked when performing structural and functional studies. In this review we discuss cellular lipid imbalances in CF, mechanisms by which lipids affect membrane protein activity, and the specific impact of detergents and lipids on CFTR function.

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Epithelial Cells; Humans; Lung; Membrane Lipids; Membrane Microdomains; Mutation; Protein Conformation; Protein Stability; Protein Transport; Quinolones; Structure-Activity Relationship

2020
Pharmacological approaches for targeting cystic fibrosis nonsense mutations.
    European journal of medicinal chemistry, 2020, Aug-15, Volume: 200

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder. The clinical manifestations of the disease are caused by ∼2,000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. It is unlikely that any one approach will be efficient in correcting all defects. The recent approvals of ivacaftor, lumacaftor/ivacaftor and elexacaftor/tezacaftor/ivacaftor represent the genesis of a new era of precision combination medicine for the CF patient population. In this review, we discuss targeted translational readthrough approaches as mono and combination therapies for CFTR nonsense mutations. We examine the current status of efficacy of translational readthrough/nonsense suppression therapies and their limitations, including non-native amino acid incorporation at PTCs and nonsense-mediated mRNA decay (NMD), along with approaches to tackle these limitations. We further elaborate on combining various therapies such as readthrough agents, NMD inhibitors, and corrector/potentiators to improve the efficacy and safety of suppression therapy. These mutation specific strategies that are directed towards the basic CF defects should positively impact CF patients bearing nonsense mutations.

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Codon, Nonsense; Cystic Fibrosis; Dose-Response Relationship, Drug; Humans; Indoles; Molecular Structure; Mutation; Pyrazoles; Pyridines; Pyrrolidines; Quinolones; Structure-Activity Relationship

2020
An overview on chemical structures as ΔF508-CFTR correctors.
    European journal of medicinal chemistry, 2019, Oct-15, Volume: 180

    Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed "correctors". Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key chemical structures and modifications that are required for mutant protein rescue.

    Topics: Animals; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Protein Folding; Pyrimidinones; Thiazoles

2019
Treating the Underlying Cystic Fibrosis Transmembrane Conductance Regulator Defect in Patients with Cystic Fibrosis.
    Seminars in respiratory and critical care medicine, 2019, Volume: 40, Issue:6

    Detailed knowledge of how mutations in the cystic fibrosis transmembrane conductance regulator (

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Clinical Trials, Phase II as Topic; Clinical Trials, Phase III as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genetic Therapy; Humans; Indoles; Mutation; Quinolones; Randomized Controlled Trials as Topic

2019
Cystic fibrosis precision therapeutics: Emerging considerations.
    Pediatric pulmonology, 2019, Volume: 54 Suppl 3

    Small molecules that address fundamental defects underlying cystic fibrosis (CF), including modulators such as the approved drugs ivacaftor, lumacaftor, tezacaftor, and elexacaftor, have advanced dramatically over the past few years and are transforming care and prognosis among individuals with this disease. The new treatment strategies are predicated on established scientific insight concerning pathogenesis, and applying "personalized" or "precision" interventions for specific abnormalities of the cystic fibrosis transmembrane conductance regulator (CFTR). Even with the advent of highly effective triple drug combinations-which hold great promise for the majority of patients with CF worldwide-barriers to precision therapy remain. These include refractory CFTR variants (premature truncation codons, splice defects, large indels, severe missense mutations, and others) not addressed by available modulators, and access to leading-edge therapeutic compounds for patients with ultrarare forms of CF. In addition to describing the remarkable progress that has occurred regarding CF precision medicine, this review outlines some of the remaining challenges. The CF experience is emblematic of many conditions for which personalized interventions are actively being sought.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Indoles; Precision Medicine; Quinolones

2019
A systematic Cochrane Review of correctors (specific therapies for class II CFTR mutations) for cystic fibrosis.
    Paediatric respiratory reviews, 2019, Volume: 30

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Indoles; Quinolones; Treatment Outcome

2019
Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids.
    Drug discovery today, 2019, Volume: 24, Issue:11

    Cystic fibrosis (CF) is a life-shortening genetic disease caused by mutations of CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator. Despite considerable progress in CF therapies, targeting specific CFTR genotypes based on small molecules has been hindered because of the substantial genetic heterogeneity of CFTR mutations in patients with CF, which is difficult to assess by animal models in vivo. There are broadly four classes (e.g., II, III, and IV) of CF genotypes that differentially respond to current CF drugs (e.g., VX-770 and VX-809). In this review, we shed light on the pharmacogenomics of diverse CFTR mutations and the emerging role of stem cell-based organoids in predicting the CF drug response. We discuss mechanisms that underlie differential CF drug responses both in organoid-based assays and in CF clinical trials, thereby facilitating the precision design of safer and more effective therapies for individual patients with CF.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biological Assay; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genotype; Humans; Molecular Targeted Therapy; Mutation; Organoids; Pharmacogenomic Variants; Quinolones; Stem Cells

2019
Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis.
    Current opinion in pediatrics, 2018, Volume: 30, Issue:3

    The aim of this study was to describe the newest development in cystic fibrosis (CF) care, CF transmembrane conductance regulator (CFTR) modulator therapies.. Phase II results showing CFTR modulator triple therapies are more effective than current CFTR modulators.. CFTR modulator therapy targets the protein defective in CF and boosts its function, but the drug must match mutation pathobiology. Ivacaftor, a CFTR potentiator, was the first modulator approved in 2012, with impressive improvement in lung function and other measures of disease in patients with gating and other residual function mutations (∼10% of CF patients). In 2015, the combination of lumacaftor, a CFTR corrector, and ivacaftor was approved for patients homozygous for the F508del mutation (∼40-50% of the CF population) with positive but less impressive clinical response and 10-20% incidence of intolerance. A next-generation CFTR corrector, tezacaftor, with ivacaftor equally effective and better tolerated than lumacaftor, has also received US Food and Drug Administration approval. Novel CFTR correctors, entering Phase 3 trials in triple modulator combination with tezacaftor-ivacaftor, appear substantially more effective for patients who are homozygous for the F508del mutation and can provide benefit for patients with a single F508del mutation. This offers promise of effective CFTR modulator therapy for nearly 90% of CF patients.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biomarkers; Clinical Trials, Phase II as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Indoles; Precision Medicine; Quinolones; Respiratory System Agents

2018
Ion Channel Modulators in Cystic Fibrosis.
    Chest, 2018, Volume: 154, Issue:2

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cyclic adenosine monophosphate-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces, and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacologic modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High-throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking, and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently, the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. The present review focuses on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel as additional targets in CF lung disease. We further discuss how patient-derived precision medicine models may aid the translation of emerging next-generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Genotype; Humans; Indoles; Ion Channels; Precision Medicine; Quinolones

2018
Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis.
    The Cochrane database of systematic reviews, 2018, 08-02, Volume: 8

    Cystic fibrosis (CF) is a common life-shortening condition caused by mutation in the gene that codes for that codes for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a salt transporter. F508del, the most common CFTR mutation that causes CF, is found in up to 80% to 90% of people with CF. In people with this mutation, a full length of protein is transcribed, but recognised as misfolded by the cell and degraded before reaching the cell membrane, where it needs to be positioned to effect transepithelial salt transport. This severe mutation is associated with no meaningful CFTR function. A corrective therapy for this mutation could positively impact on an important proportion of the CF population.. To evaluate the effects of CFTR correctors on clinically important outcomes, both benefits and harms, in children and adults with CF and class II CFTR mutations (most commonly F508del).. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Cystic Fibrosis Trials Register. We also searched reference lists of relevant articles and online trials registries. Most recent search: 24 February 2018.. Randomised controlled trials (RCTs) (parallel design) comparing CFTR correctors to placebo in people with CF with class II mutations. We also included RCTs comparing CFTR correctors combined with CFTR potentiators to placebo.. Two authors independently extracted data, assessed risk of bias and quality of the evidence using the GRADE criteria. Study authors were contacted for additional data.. We included 13 RCTs (2215 participants), lasting between 1 day and 24 weeks. Additional safety data from an extension study of two lumacaftor-ivacaftor studies were available at 96 weeks (1029 participants). We assessed monotherapy in seven RCTs (317 participants) (4PBA (also known as Buphenyl), CPX, lumacaftor or cavosonstat) and combination therapy in six RCTs (1898 participants) (lumacaftor-ivacaftor or tezacaftor-ivacaftor) compared to placebo. Twelve RCTs recruited individuals homozygous for F508del, one RCT recruited participants with one F508del mutation and a second mutation with residual function.Risk of bias varied in its impact on the confidence we have in our results across different comparisons. Some findings were based on single RCTs that were too small to show important effects. For five RCTs, results may not be applicable to all individuals with CF due to age limits of recruited populations (i.e. adults only, children only) or non-standard design of converting from monotherapy to combination therapy.Monotherapy versus placeboNo deaths were reported and there were no clinically relevant improvements in quality of life in any RCT. There was insufficient evidence available from individual studies to determine the effect of any of the correctors examined on lung function outcomes.No placebo-controlled study of monotherapy demonstrated a difference in mild, moderate or severe adverse effects; however, it is difficult to assess the clinical relevance of these events with the variety of events and the small number of participants.Combination therapy versus placeboNo deaths were reported during any RCT (moderate- to high-quality evidence). The quality of life scores (respiratory domain) favoured combination therapy (both lumacaftor-ivacaftor and tezacaftor-ivacaftor) compared to placebo at all time points. At six months lumacaftor (600 mg once daily or 400 mg once daily) plus ivacaftor improved Cystic Fibrosis Questionnaire (CFQ) scores by a small amount compared with placebo (mean difference (MD) 2.62 points (95% confidence interval (CI) 0.64 to 4.59); 1061 participants; high-quality evidence). A similar effect size was observed for twice-daily lumacaftor (200 mg) plus ivacaftor (250 mg) although the quality of evidence was low (MD 2.50 points (95% CI 0.10 to 5.10)). The mean increase in CFQ scores with twice-daily tezacaftor (100 mg) and ivacaftor (150 mg) was approximately five points (95% CI 3.20 to 7.00; 504 participants; moderate-quality evi. There is insufficient evidence that monotherapy with correctors has clinically important effects in people with CF who have two copies of the F508del mutation.Combination therapies (lumacaftor-ivacaftor and tezacaftor-ivacaftor) each result in similarly small improvements in clinical outcomes in people with CF; specifically improvements quality of life (moderate-quality evidence), in respiratory function (high-quality evidence) and lower pulmonary exacerbation rates (moderate-quality evidence). Lumacaftor-ivacaftor is associated with an increase in early transient shortness of breath and longer-term increases in blood pressure (high-quality evidence). These adverse effects were not observed for tezacaftor-ivacaftor. Tezacaftor-ivacaftor has a better safety profile, although data are not available for children younger than 12 years. In this age group, lumacaftor-ivacaftor had an important impact on respiratory function with no apparent immediate safety concerns, but this should be balanced against the increase in blood pressure and shortness of breath seen in longer-term data in adults when considering this combination for use in young people with CF.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Genetic Therapy; Humans; Indoles; Mutation; Phenylbutyrates; Quinolones; Randomized Controlled Trials as Topic

2018
CFTR modulator therapy in patients with cystic fibrosis and an organ transplant.
    Paediatric respiratory reviews, 2018, Volume: 27

    CFTR modulators are a class of drugs which directly target the defective CFTR protein in cystic fibrosis (CF), improving its function with resultant clinical improvements. Currently these drugs are confined to people with a limited selection of genetic mutations. New modulators are in development which will lead to the majority of patients with CF becoming eligible for treatment. CFTR modulators are currently considered contraindicated in patients with a solid organ transplant. This excludes many patients who may benefit from the multisystem effects of CFTR modulator treatment. In this review, we discuss issues regarding drug interactions, organ transplantation and CFTR modulation.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Male; Molecular Targeted Therapy; Organ Transplantation; Quinolones; Young Adult

2018
[Treatment of Cystic Fibrosis with CFTR Modulators].
    Pneumologie (Stuttgart, Germany), 2016, Volume: 70, Issue:5

    Personalized medicine promises that medical decisions, practices and products are tailored to the individual patient. Cystic fibrosis, an inherited disorder of chloride and bicarbonate transport in exocrine glands, is the first successful example of customized drug development for mutation-specific therapy. There are two classes of CFTR modulators: potentiators that increase the activity of CFTR at the cell surface, and correctors that either promote the read-through of nonsense mutations or facilitate the translation, folding, maturation and trafficking of mutant CFTR to the cell surface. The potentiator ivacaftor and the corrector lumacaftor are approved in Germany for the treatment of people with cystic fibrosis who carry a gating mutation such as p.Gly551Asp or who are homozygous for the most common mutation p.Phe508del, respectively. This report provides an overview of the basic defect in cystic fibrosis, the population genetics of CFTR mutations in Germany and the bioassays to assess CFTR function in humans together with the major achievements of preclinical research and clinical trials to bring CFTR modulators to the clinic. Some practical information on the use of ivacaftor and lumacaftor in daily practice and an update on pitfalls, challenges and novel strategies of bench-to-bedside development of CFTR modulators are also provided.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biomarkers, Tumor; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dose-Response Relationship, Drug; Drug Combinations; Evidence-Based Medicine; Genetic Markers; Genetic Predisposition to Disease; Humans; Precision Medicine; Quinolones; Treatment Outcome

2016
New and emerging targeted therapies for cystic fibrosis.
    BMJ (Clinical research ed.), 2016, Mar-30, Volume: 352

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Discovery; Drug Therapy, Combination; Forced Expiratory Volume; Forecasting; Genetic Therapy; Homozygote; Humans; Molecular Targeted Therapy; Mutation; Oxadiazoles; Phosphodiesterase 5 Inhibitors; Practice Guidelines as Topic; Precision Medicine; Quinolones

2016
Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR.
    Drugs of today (Barcelona, Spain : 1998), 2016, Volume: 52, Issue:4

    Cystic fibrosis (CF) is a life-shortening inherited disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel activity resulting from mutations in the CFTR gene. Phe508del is the most prevalent mutation, with approximately 90% of all CF patients carrying it on at least one allele. Over the past two or three decades, significant progress has been made in understanding the pathogenesis of CF, and in the development of effective CF therapies. The approval of Orkambi® (lumacaftor/ivacaftor) marks another milestone in CF therapeutics development, which, with the advent of personalized medicine, could potentially revolutionize CF care and management. This article reviews the rationale, progress and future direction in the development of lumacaftor/ivacaftor combination to treat CF patients homozygous for the Phe508del-CFTR mutation.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Mutation; Precision Medicine; Quinolones

2016
Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis.
    The Lancet. Respiratory medicine, 2016, Volume: 4, Issue:8

    Lumacaftor/ivacaftor combination therapy has shown clinical benefits in patients with cystic fibrosis homozygous for the Phe508del CFTR mutation; however, pretreatment lung function is a confounding factor that potentially affects the efficacy and safety of this therapy. We aimed to assess the efficacy and safety of lumacaftor/ivacaftor therapy in these patients, defined by specific categories of lung function.. Both trials (TRAFFIC and TRANSPORT) included in this pooled analysis were multinational, randomised, double-blind, placebo-controlled, parallel-group, phase 3 studies. Eligible patients from 187 participating centres in North America, Australia, and the European Union (both trials) were aged 12 years or older with a confirmed diagnosis of cystic fibrosis, homozygous for the Phe508del CFTR mutation, and with a percent predicted FEV1 (ppFEV1) of 40-90 at the time of screening. Patients were randomly assigned with an interactive web response system (1:1:1) to receive placebo, lumacaftor (600 mg once daily) plus ivacaftor (250 mg every 12 h), or lumacaftor (400 mg every 12 h) plus ivacaftor (250 mg every 12 h) for 24 weeks. Prespecified subgroup analyses of pooled efficacy and safety data by lung function, as measured by ppFEV1, were done for patients with baseline ppFEV1 (<40 and ≥40) and screening ppFEV1 (<70 and ≥70). The primary endpoint was the absolute change from baseline in ppFEV1 at week 24 analysed in all randomised patients who received at least one dose of study drug. Both trials are registered with ClinicalTrials.gov (TRAFFIC: NCT01807923; TRANSPORT: NCT01807949).. Both trials were done between April, 2013, and April, 2014. Of the 1108 patients included in the efficacy analysis, 81 patients had a ppFEV1 that decreased to lower than 40 between screening and baseline and 1016 had a ppFEV1 of 40 or higher at baseline. At screening, 730 had a ppFEV1 of less than 70, and 342 had a ppFEV1 of 70 or higher. Improvements in the absolute change from baseline at week 24 in ppFEV1 were observed with both lumacaftor/ivacaftor doses in the subgroup with baseline ppFEV1 levels lower than 40 (least-squares mean difference vs placebo was 3·7 percentage points [95% CI 0·5-6·9; p=0·024] in the lumacaftor [600 mg/day]-ivacaftor group and 3·3 percentage points [0·2-6·4; p=0·036] in the lumacaftor [400 mg/12 h]-ivacaftor group). Improvements in ppFEV1 compared with placebo were also reported in the subgroup with baseline ppFEV1 levels of 40 or higher (3·3 percentage points [2·3-4·4; p<0·0001] in the lumacaftor [600 mg per day]-ivacaftor group and 2·8 percentage points [1·7-3·8; p<0·0001] in the lumacaftor [400 mg/12 h]-ivacaftor group). Similar absolute improvements in ppFEV1 compared with placebo were observed in subgroups with screening ppFEV1 levels lower than 70 and ppFEV1 levels of 70 or higher. Increases in body-mass index and reduction in number of pulmonary exacerbation events were observed in both lumacaftor/ivacaftor dose groups compared with placebo across all lung function subgroups. Treatment was generally well tolerated, although the incidence of some respiratory adverse events was higher with lumacaftor/ivacaftor than with placebo in all subgroups. In patients with baseline ppFEV1 levels lower than 40, these adverse events included cough, dyspnoea, and abnormal respiration.. These analyses confirm that lumacaftor/ivacaftor combination therapy benefits patients with cystic fibrosis homozygous for Phe508del CFTR who have varying degrees of lung function impairment.. Vertex Pharmaceuticals.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Clinical Trials, Phase III as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Double-Blind Method; Drug Therapy, Combination; Female; Forced Expiratory Volume; Homozygote; Humans; Lung; Male; Middle Aged; Quinolones; Randomized Controlled Trials as Topic; Respiratory Function Tests; Treatment Outcome; Young Adult

2016
Lumacaftor/Ivacaftor: A Review in Cystic Fibrosis.
    Drugs, 2016, Volume: 76, Issue:12

    Lumacaftor/ivacaftor (Orkambi™) is a fixed-dose tablet containing a corrector (lumacaftor) and potentiator (ivacaftor) of the cystic fibrosis transmembrane conductance regulator (CFTR) and is the first therapy approved to treat the underlying cause of cystic fibrosis in patients (aged ≥12 years) homozygous for the most common CFTR mutation, F508del. Lumacaftor improves the processing of F508del CFTR and its transport to the cell surface, while ivacaftor increases the channel's open probability and transport of chloride. In two 24-week trials in the approved patient population (TRAFFIC and TRANSPORT), lumacaftor 400 mg plus ivacaftor 250 mg, administered every 12 h in combination with standard therapy, was associated with an ≈3 % statistically significant improvement in lung function relative to placebo (as measured by the percent predicted forced expiratory volume in 1 s). Lumacaftor plus ivacaftor did not significantly improve respiratory symptoms, although reduced pulmonary exacerbations to a clinically meaningful extent and, in one trial (TRANSPORT), significantly improved body mass index (BMI). In an ongoing extension of these studies (PROGRESS), lumacaftor plus ivacaftor provided clinical benefit over a further 72 weeks of treatment. Lumacaftor plus ivacaftor had an acceptable tolerability profile, with the most common adverse events being respiratory or gastrointestinal in nature. Thus, lumacaftor/ivacaftor expands the treatment options available for patients with cystic fibrosis homozygous for the F508del-CFTR mutation, although its precise place in clinical practice remains to be determined.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Lung; Mutation; Quinolones

2016
New Therapeutic Approaches to Modulate and Correct Cystic Fibrosis Transmembrane Conductance Regulator.
    Pediatric clinics of North America, 2016, Volume: 63, Issue:4

    Cystic fibrosis transmembrane conductance regulator (CFTR) modulators are clinically available personalized medicines approved for some individuals with cystic fibrosis (CF) to target the underlying defect of disease. This review summarizes strategies used to develop CFTR modulators as therapies that improve function and availability of CFTR protein. Lessons learned from dissemination of ivacaftor across the CF population responsive to this therapy and future approaches to predict and monitor treatment response of CFTR modulators are discussed. The goal remains to expand patient-centered and personalized therapy to all patients with CF, ultimately improving life expectancy and quality of life for this disease.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Molecular Targeted Therapy; Mutation; Quinolones

2016
F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
    Expert opinion on therapeutic patents, 2015, Volume: 25, Issue:9

    Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options.. This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures.. Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Design; Humans; Mutation; Patents as Topic; Quinolones

2015
Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors.
    Pediatric pulmonology, 2015, Volume: 50 Suppl 40

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators are also emphasized.

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Design; Homozygote; Humans; Mice; Molecular Targeted Therapy; Mutation; Protein Folding; Quinolones

2015
Cystic Fibrosis: A Novel Pharmacologic Approach to Cystic Fibrosis Transmembrane Regulator Modulation Therapy.
    The Journal of the American Osteopathic Association, 2015, Volume: 115, Issue:9

    Therapy for cystic fibrosis (CF) has progressed during the past several decades. Much of this progress is because of advances in genetic testing to precisely identify the underlying cause of CF transmembrane regulator (CFTR) dysfunction. However, with more than 1900 mutations that can produce a faulty CFTR, the management of CF can remain a challenge. Several innovative drugs recently approved by the Food and Drug Administration, termed genetic modulators, target the underlying disease by modulating the CFTR defect. This review provides physicians with an established simple classification scheme to guide their use of these drugs. The treatment challenge of 1900 CFTR mutations has been simplified into 6 physiologic classes, each paired with an available therapy to offer patients the most functional improvement. Drug therapy monitoring, adverse effects, and indications for discontinuation must also be considered.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; DNA; DNA Mutational Analysis; Humans; Mutation; Oxadiazoles; Quinolones

2015
Update in Cystic Fibrosis 2014.
    American journal of respiratory and critical care medicine, 2015, Sep-15, Volume: 192, Issue:6

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genetic Markers; Humans; Mucociliary Clearance; Quinolones; Treatment Outcome

2015
Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
    Therapeutic advances in respiratory disease, 2015, Volume: 9, Issue:6

    Cystic fibrosis (CF) is a genetic disorder that causes multiorgan morbidity and premature death, most commonly from pulmonary dysfunction. Mutations in the CF transmembrane conductance regulator (CFTR) gene, of which almost 2000 have been described, result in a dysfunctional CFTR protein. This protein is an adenosine triphosphate binding anion channel, present primarily at the surface of epithelial cells. Loss of function mutations in this anion channel result in decreased or absent chloride/bicarbonate transport. The subsequent abnormal salt and water transport at epithelial cell surfaces leads to thickened secretions, and infection or inflammation in affected organs. In the last 20 years, therapeutics have been developed to treat the signs and symptoms of CF. However, in 2012, the small molecule drug, ivacaftor, became the first approved therapy that addresses the basic defect in CF. Ivacaftor is a potentiator of CFTR channels defective in their chloride/bicarbonate gating/conductance, but present at the epithelial cell surface. It is only approved for 10 mutations carried by approximately 7% of the population of patients with CF. F508del is the most common CFTR mutation, present in homozygosity in approximately 50% of patients with CF. The F508del mutation results in multiple CFTR channel defects that require both correction (stabilization of misfolded CFTR and trafficking to the epithelial cell membrane) and potentiation. This article reviews the in vitro and clinical trial data for the potential use of the potentiator, ivacaftor, and the corrector, lumacaftor, in patients with CF.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; DNA Mutational Analysis; Drug Combinations; Genetic Predisposition to Disease; Humans; Lung; Mutation; Patient Selection; Phenotype; Precision Medicine; Quinolones; Respiratory System Agents; Treatment Outcome

2015
[Therapeutic update in cystic fibrosis].
    La Revue de medecine interne, 2014, Volume: 35, Issue:6

    We present the recent therapeutic advances in the cystic fibrosis care. It concerns improvements in symptomatic treatment with the development of dry powder inhaled antibiotics that improved quality of life, and innovative treatments namely the modulators of the cystic fibrosis transmembrane protein conductance regulator (CFTR), molecules which act specifically at the level of the defective mechanisms implied in the disease. The life expectancy of cystic fibrosis patients born after 2000, is estimated now to be about 50 years. This improvement of survival was obtained with the organization of the care within the specialized centers for cystic fibrosis (Centre de ressource et de compétences de la mucoviscidose) and remains still based on heavy symptomatic treatments. Dry powder inhaled antibiotics constitute a significant time saving for patients to whom all the care can achieve two hours daily. Since 2012, the modulators of CFTR, molecules allowing a pharmacological approach targeted according to the type of the mutations, allows a more specific approach of the disease. Ivacaftor (Kalydeco(®)) which potentialises the function of the CFTR protein expressed on the cellular surface is now available for patients with the G551D mutation. Lumacaftor is going to be tested in association with ivacaftor in patients with the F508del mutation, that is present in at least 75% of the patients. The ataluren which allows the production of a functional protein CFTR in patients with a no sense mutation is the third representing of this new therapeutic class. We presently have numerous symptomatic treatments for the cystic fibrosis care. The development of CFTR modulators, today available to a restricted number of patients treated with ivacaftor represents a very promising therapeutic avenue. It will represent probably the first step to a personalized treatment according to CFTR genotype.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Oxadiazoles; Quinolones

2014
Pharmacological correction of misfolding of ABC proteins.
    Drug discovery today. Technologies, 2014, Volume: 12

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis.

    Topics: Aminopyridines; Animals; ATP-Binding Cassette Transporters; Benzodioxoles; Cholestasis, Intrahepatic; Clinical Trials as Topic; Cystic Fibrosis; Drug Discovery; Humans; Protein Binding; Protein Folding; Protein Transport; Proteostasis Deficiencies; Small Molecule Libraries

2014
Cystic fibrosis--what are the prospects for a cure?
    European journal of internal medicine, 2014, Volume: 25, Issue:9

    Significant improvements in the treatment of cystic fibrosis over the last few decades have altered this lethal disease in children to a multisystem disorder with survival into adult life now common. In most developed countries the numbers of adult cystic fibrosis patients outnumber children. This is mainly due to improvements in care during early life. The principal cause of morbidity and mortality is pulmonary disease, and so the focus of new treatments has targeted the lungs. Identification of the underlying gene defect in the cystic fibrosis transmembrane conductance regulator has ushered in a new era in cystic fibrosis research, with prospects of a cure. In this article, we review the most exciting recent advances that correct defects in cellular processing, chloride channel function and gene therapy.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genetic Therapy; Humans; Quinolones

2014
Managing the underlying cause of cystic fibrosis: a future role for potentiators and correctors.
    Paediatric drugs, 2013, Volume: 15, Issue:5

    Cystic fibrosis (CF), a severe genetic disease, is caused by mutations that alter the structure and function of CFTR, a plasma membrane channel permeable to chloride and bicarbonate. Defective anion transport in CF irreversibly damages the lungs, pancreas, liver, and other organs. CF mutations cause loss of CFTR function in multiple ways. In particular, class 3 mutations such as p.Gly551Asp strongly decrease the time spent by CFTR in the open state (gating defect). Instead, class 2 mutations impair the maturation of CFTR protein and its transport from the endoplasmic reticulum to the plasma membrane (trafficking defect). The deletion of phenylalanine 508 (p.Phe508del), the most frequent mutation among CF patients (70-90 %), destabilizes the CFTR protein, thus causing both a trafficking and a gating defect. These two defects can be overcome with drug-like molecules generically called correctors and potentiators, respectively. The potentiator Kalydeco™ (also known as Ivacaftor or VX-770), developed by Vertex Pharmaceuticals, has been recently approved by the US FDA and the European Medicines Agency (EMA) for the treatment of CF patients carrying at least one CFTR allele with the p.Gly551Asp mutation (2-5 % of all patients). In contrast, the corrector VX-809, which significantly improves p.Phe508del-CFTR trafficking in vitro, is still under study in clinical trials. Because of multiple defects caused by the p.Phe508del mutation, it is probable that rescue of the mutant protein will require combined treatment with correctors having different mechanisms of action. This review evaluates the status of experimental and clinical research in pharmacotherapy for the CF basic defect.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Clinical Trials as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Molecular Targeted Therapy; Mutation; Quinolones

2013
Cystic fibrosis transmembrane regulator correctors and potentiators.
    Cold Spring Harbor perspectives in medicine, 2013, Jul-01, Volume: 3, Issue:7

    Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) protein, a cAMP-regulated anion channel expressed primarily at the apical plasma membrane of secretory epithelia. Nearly 2000 mutations in the CFTR gene have been identified that cause disease by impairing its translation, cellular processing, and/or chloride channel gating. The fundamental premise of CFTR corrector and potentiator therapy for CF is that addressing the underlying defects in the cellular processing and chloride channel function of CF-causing mutant CFTR alleles will result in clinical benefit by addressing the basic defect underlying CF. Correctors are principally targeted at F508del cellular misprocessing, whereas potentiators are intended to restore cAMP-dependent chloride channel activity to mutant CFTRs at the cell surface. This article reviews the discovery of CFTR potentiators and correctors, what is known regarding their mechanistic basis, and encouraging results achieved in clinical testing.

    Topics: Aminophenols; Aminopyridines; Bayes Theorem; Benzodioxoles; Chloride Channels; Clinical Trials, Phase II as Topic; Clinical Trials, Phase III as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Discovery; Humans; Mutation; Quinolones; Randomized Controlled Trials as Topic; Technology, Pharmaceutical

2013
Update on new pulmonary therapies.
    Current opinion in pulmonary medicine, 2009, Volume: 15, Issue:6

    Understanding the molecular and cellular processes responsible for the development of lung disease in cystic fibrosis (CF) has led to evaluation of a broad range of new therapies within multiple therapeutic classes. For these reasons, clinical research in CF is accelerating, as new agents progress through the early stages of drug development, move into clinical trials and are offered to study patients. This review focuses on the most notable clinical trials of pulmonary therapies reported in the last year.. Progress in gene therapy remains slow, but is offset by significant gains in development of cystic fibrosis transmembrane conductance regulator modulators and drugs that restore airway surface liquid. Although addressing downstream consequences of CF lung pathophysiology, the substantial burden of chronic infection makes both antibiotic and anti-inflammatory therapies a critical component of treatment, such that additional agents to manage sustained inflammation and resistant microorganisms along with improved delivery systems are needed.. The pace of drug development in CF will require an expanding pool of patients willing to participate in clinical research to test new agents. Although these potential therapies will likely improve quality of life for people with CF and contribute to improved survival, it will be important to avoid adding excessively to the already high burden of treatment. If the demands on patients' time continue to grow, a decrease in adherence to effective therapies may paradoxically lead to worse outcomes and negate the benefits new treatments bring.

    Topics: Aminophenols; Aminopyridines; Anti-Infective Agents; Anti-Inflammatory Agents; Benzodioxoles; Biomarkers; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genetic Markers; Genetic Therapy; Humans; Mutation; Oxadiazoles; Quinolones; Respiratory System Agents; Saline Solution, Hypertonic

2009

Trials

6 trial(s) available for lumacaftor and Cystic-Fibrosis

ArticleYear
VO
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2021, Volume: 20, Issue:3

    The impact of lumacaftor/ivacaftor on exercise tolerance in people with cystic fibrosis (CF) has not been thoroughly studied.. We conducted a multisite Phase 4 trial comparing the impact of lumacaftor/ivacaftor on exercise tolerance with that of placebo in participants ≥ 12 years of age with CF homozygous for F508del-CFTR. The primary endpoint was relative change from baseline in maximum oxygen consumption (VO. Definitive conclusions regarding the impact of lumacaftor/ivacaftor on exercise tolerance cannot be drawn from these results; however, multicenter studies using CPETs can be reliably performed with multiple time points and conventional methods, provided that calibration can be achieved. Future studies of exercise tolerance may benefit from lessons learned from this study. NCT02875366.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Cystic Fibrosis; Double-Blind Method; Exercise Test; Exercise Tolerance; Female; Humans; Male; Oxygen Consumption; Quinolones

2021
Short-term effects of Lumacaftor/Ivacaftor (Orkambi™) on exertional symptoms, exercise performance, and ventilatory responses in adults with cystic fibrosis.
    Respiratory research, 2020, Jun-01, Volume: 21, Issue:1

    Lumacaftor/ivacaftor (LUM/IVA) modestly improves lung function following 1 month of treatment but it is unknown if this translates into improvements in exercise endurance and exertional symptoms.. Adult CF participants completed a symptom-limited constant load cycling test with simultaneous assessments of dyspnea and leg discomfort ratings pre- and 1 month post-initiation of LUM/IVA.. Endurance time, exertional dyspnea and leg discomfort ratings at submaximal exercise did not change significantly. There was a significant inverse correlation between changes in leg discomfort and endurance time (r = - 0.88; p = 0.009) following 1-month of LUM/IVA.. Overall, 1-month of LUM/IVA did not increase endurance time or modify exertional dyspnea or leg discomfort ratings. However, individuals who experienced a reduction in leg discomfort following LUM/IVA had an improvement in endurance time. Future studies with a larger sample size are needed to verify these findings and to assess the long-term effects of LUM/IVA on exercise outcomes.. ClinicalTrials.gov Identifier: NCT02821130. Registered July 1, 2016.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Drug Combinations; Exercise Test; Female; Forced Expiratory Volume; Humans; Male; Physical Exertion; Pulmonary Ventilation; Quinolones; Treatment Outcome; Young Adult

2020
Safety, pharmacokinetics, and pharmacodynamics of lumacaftor and ivacaftor combination therapy in children aged 2-5 years with cystic fibrosis homozygous for F508del-CFTR: an open-label phase 3 study.
    The Lancet. Respiratory medicine, 2019, Volume: 7, Issue:4

    The efficacy, safety, and tolerability of lumacaftor and ivacaftor are established in patients aged 6 years and older with cystic fibrosis, homozygous for the F508del-CFTR mutation. We assessed the safety, pharmacokinetics, pharmacodynamics, and efficacy of lumacaftor and ivacaftor in children aged 2-5 years.. In this multicentre, phase 3, open-label, two-part study, we enrolled children aged 2-5 years, weighing at least 8 kg at enrolment, with a confirmed diagnosis of cystic fibrosis who were homozygous for the F508del-CFTR mutation. Children received lumacaftor 100 mg and ivacaftor 125 mg (bodyweight <14 kg) or lumacaftor 150 mg and ivacaftor 188 mg (bodyweight ≥14 kg) orally every 12 h for 15 days in part A (to assess pharmacokinetics and safety) and for 24 weeks in part B (to assess safety, pharmacokinetics, pharmacodynamics, and efficacy). Children could participate in part A, part B, or both. Children were enrolled into part A at five sites in the USA and into part B at 20 sites in North America (USA, 17 sites; Canada, three sites). The primary endpoints of the study were the pharmacokinetics (part A) and safety (part B) of lumacaftor and ivacaftor; all analyses were done in children who received at least one dose of lumacaftor and ivacaftor. Secondary endpoints in part A were safety and pharmacokinetics of the metabolites of lumacaftor and ivacaftor, and in part B included pharmacokinetics in children who received at least one dose of lumacaftor and ivacaftor and absolute changes from baseline in sweat chloride concentration, growth parameters, and markers of pancreatic function. This study is registered with ClinicalTrials.gov, number NCT02797132.. The study was done from May 13, 2016, to Sept 8, 2017. 12 children enrolled in part A, 11 of whom completed the 15-day treatment period and enrolled in part B. 60 children enrolled in part B, 56 of whom completed the 24-week treatment period. Safety and pharmacokinetics were consistent with the well characterised safety profile of lumacaftor and ivacaftor. In part B, most children (59 [98%] of 60 children) had one or more treatment-emergent adverse events; most events were mild to moderate in severity. The most common adverse events were cough (38 [63%] of 60), vomiting (17 [28%]), pyrexia (17 [28%]), and rhinorrhoea (15 [25%]). Serious adverse events occurred in four children: infective pulmonary exacerbation of cystic fibrosis (n=2), gastroenteritis viral (n=1), and constipation (n=1). Three (5%) of 60 children discontinued treatment because of elevated serum aminotransferase concentrations. Mean sweat chloride concentrations decreased by 31·7 mmol/L, biomarkers of pancreatic function improved (fecal elastase-1 concentrations increased and serum immunoreactive trypsinogen concentrations decreased), and growth parameters increased at week 24.. Lumacaftor and ivacaftor were generally safe and well tolerated in children aged 2-5 years with cystic fibrosis for 24 weeks. Efficacy findings also suggest that early intervention with lumacaftor and ivacaftor has the potential to modify the course of disease.. Vertex Pharmaceuticals Incorporated.

    Topics: Age Factors; Aminophenols; Aminopyridines; Benzodioxoles; Child, Preschool; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Female; Homozygote; Humans; Male; Quinolones

2019
Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR.
    The New England journal of medicine, 2015, 07-16, Volume: 373, Issue:3

    Cystic fibrosis is a life-limiting disease that is caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Phe508del is the most common CFTR mutation.. We conducted two phase 3, randomized, double-blind, placebo-controlled studies that were designed to assess the effects of lumacaftor (VX-809), a CFTR corrector, in combination with ivacaftor (VX-770), a CFTR potentiator, in patients 12 years of age or older who had cystic fibrosis and were homozygous for the Phe508del CFTR mutation. In both studies, patients were randomly assigned to receive either lumacaftor (600 mg once daily or 400 mg every 12 hours) in combination with ivacaftor (250 mg every 12 hours) or matched placebo for 24 weeks. The primary end point was the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1) at week 24.. A total of 1108 patients underwent randomization and received study drug. The mean baseline FEV1 was 61% of the predicted value. In both studies, there were significant improvements in the primary end point in both lumacaftor-ivacaftor dose groups; the difference between active treatment and placebo with respect to the mean absolute improvement in the percentage of predicted FEV1 ranged from 2.6 to 4.0 percentage points (P<0.001), which corresponded to a mean relative treatment difference of 4.3 to 6.7% (P<0.001). Pooled analyses showed that the rate of pulmonary exacerbations was 30 to 39% lower in the lumacaftor-ivacaftor groups than in the placebo group; the rate of events leading to hospitalization or the use of intravenous antibiotics was lower in the lumacaftor-ivacaftor groups as well. The incidence of adverse events was generally similar in the lumacaftor-ivacaftor and placebo groups. The rate of discontinuation due to an adverse event was 4.2% among patients who received lumacaftor-ivacaftor versus 1.6% among those who received placebo.. These data show that lumacaftor in combination with ivacaftor provided a benefit for patients with cystic fibrosis homozygous for the Phe508del CFTR mutation. (Funded by Vertex Pharmaceuticals and others; TRAFFIC and TRANSPORT ClinicalTrials.gov numbers, NCT01807923 and NCT01807949.).

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Double-Blind Method; Drug Therapy, Combination; Female; Forced Expiratory Volume; Homozygote; Hospitalization; Humans; Male; Middle Aged; Mutation; Quinolones; Young Adult

2015
A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial.
    The Lancet. Respiratory medicine, 2014, Volume: 2, Issue:7

    The phe508del CFTR mutation causes cystic fibrosis by limiting the amount of CFTR protein that reaches the epithelial cell surface. We tested combination treatment with lumacaftor, an investigational CFTR corrector that increases trafficking of phe508del CFTR to the cell surface, and ivacaftor, a CFTR potentiator that enhances chloride transport of CFTR on the cell surface.. In this phase 2 clinical trial, we assessed three successive cohorts, with the results of each cohort informing dose selection for the subsequent cohort. We recruited patients from 24 cystic fibrosis centres in Australia, Belgium, Germany, New Zealand, and the USA. Eligibility criteria were: confirmed diagnosis of cystic fibrosis, age at least 18 years, and a forced expiratory volume in 1 s (FEV1) of 40% or more than predicted. Cohort 1 included phe508del CFTR homozygous patients randomly assigned to either lumacaftor 200 mg once per day for 14 days followed by addition of ivacaftor 150 mg or 250 mg every 12 h for 7 days, or 21 days of placebo. Together, cohorts 2 and 3 included phe508del CFTR homozygous and heterozygous patients, randomly assigned to either 56 days of lumacaftor (cohort 2: 200 mg, 400 mg, or 600 mg once per day, cohort 3: 400 mg every 12 h) with ivacaftor 250 mg every 12 h added after 28 days, or 56 days of placebo. The primary outcomes for all cohorts were change in sweat chloride concentration during the combination treatment period in the intention-to-treat population and safety (laboratory measurements and adverse events). The study is registered with ClinicalTrials.gov, number NCT01225211, and EudraCT, number 2010-020413-90.. Cohort 1 included 64 participants. Cohort 2 and 3 combined contained 96 phe508del CFTR homozygous patients and 28 compound heterozygotes. Treatment with lumacaftor 200 mg once daily and ivacaftor 250 mg every 12 h decreased mean sweat chloride concentration by 9.1 mmol/L (p<0.001) during the combination treatment period in cohort 1. In cohorts 2 and 3, mean sweat chloride concentration did not decrease significantly during combination treatment in any group. Frequency and nature of adverse events were much the same in the treatment and placebo groups during the combination treatment period; the most commonly reported events were respiratory. 12 of 97 participants had chest tightness or dyspnoea during treatment with lumacaftor alone. In pre-planned secondary analyses, a significant decrease in sweat chloride concentration occurred in the treatment groups between day 1 and day 56 (lumacaftor 400 mg once per day group -9.1 mmol/L, p<0.001; lumacaftor 600 mg once per day group -8.9 mmol/L, p<0.001; lumacaftor 400 mg every 12 h group -10.3 mmol/L, p=0.002). These changes were significantly greater than the change in the placebo group. In cohort 2, the lumacaftor 600 mg once per day significantly improved FEV1 from day 1 to 56 (difference compared with placebo group: +5.6 percentage points, p=0.013), primarily during the combination period. In cohort 3, FEV1 did not change significantly across the entire study period compared with placebo (difference +4.2 percentage points, p=0.132), but did during the combination period (difference +7.7 percentage points, p=0·003). Phe508del CFTR heterozygous patients did not have a significant improvement in FEV1.. We provide evidence that combination lumacaftor and ivacaftor improves FEV1 for patients with cystic fibrosis who are homozygous for phe508del CFTR, with a modest effect on sweat chloride concentration. These results support the further exploration of combination lumacaftor and ivacaftor as a treatment in this setting.. Vertex Pharmaceuticals, Cystic Fibrosis Foundation Therapeutics Development Network.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Base Sequence; Benzodioxoles; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Double-Blind Method; Drug Therapy, Combination; Female; Forced Expiratory Volume; Heterozygote; Homozygote; Humans; Male; Quinolones; Sequence Deletion; Sweat; Young Adult

2014
Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation.
    Thorax, 2012, Volume: 67, Issue:1

    VX-809, a cystic fibrosis transmembrane conductance regulator (CFTR) modulator, has been shown to increase the cell surface density of functional F508del-CFTR in vitro.. A randomised, double-blind, placebo-controlled study evaluated the safety, tolerability and pharmacodynamics of VX-809 in adult patients with cystic fibrosis (n=89) who were homozygous for the F508del-CFTR mutation. Subjects were randomised to one of four VX-809 28 day dose groups (25, 50, 100 and 200 mg) or matching placebo.. The type and incidence of adverse events were similar among VX-809- and placebo-treated subjects. Respiratory events were the most commonly reported and led to discontinuation by one subject in each active treatment arm. Pharmacokinetic data supported a once-daily oral dosing regimen. Pharmacodynamic data suggested that VX-809 improved CFTR function in at least one organ (sweat gland). VX-809 reduced elevated sweat chloride values in a dose-dependent manner (p=0.0013) that was statistically significant in the 100 and 200 mg dose groups. There was no statistically significant improvement in CFTR function in the nasal epithelium as measured by nasal potential difference, nor were there statistically significant changes in lung function or patient-reported outcomes. No maturation of immature F508del-CFTR was detected in the subgroup that provided rectal biopsy specimens.. In this study, VX-809 had a similar adverse event profile to placebo for 28 days in F508del-CFTR homozygous patients, and demonstrated biological activity with positive impact on CFTR function in the sweat gland. Additional data are needed to determine how improvements detected in CFTR function secondary to VX-809 in the sweat gland relate to those measurable in the respiratory tract and to long-term measures of clinical benefit.. NCT00865904.

    Topics: Adolescent; Adult; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; DNA; DNA Mutational Analysis; Dose-Response Relationship, Drug; Double-Blind Method; Female; Follow-Up Studies; Homozygote; Humans; Male; Middle Aged; Mutation; Prospective Studies; Sweat Glands; Treatment Outcome; Young Adult

2012

Other Studies

147 other study(ies) available for lumacaftor and Cystic-Fibrosis

ArticleYear
Changes in Shear Wave Elastography after Lumacaftor/Ivacaftor Treatment in Children with Cystic Fibrosis.
    Current drug safety, 2023, Volume: 18, Issue:1

    Lumacaftor/Ivacaftor (LUM/IVA) is an approved combination therapy for cystic fibrosis (CF) patients homozygous for F508del.. This study aimed to detect changes in liver stiffness measurement (LSM) in patients under this treatment.. The study population consisted of CF patients homozygous for F508del, 6 to 11 years old, who had been treated for six months with LUM/IVA. Shear wave elastography (SWE) was performed in all of them, before and 6 months after the commencement of treatment.. Thirty-one patients were included in the study. LSM values after treatment were significantly higher than the values before treatment (medians and interquartile ranges of LSM values before and after treatment: 5.6, 5.3-6.3 kPa and, 6.4, 6.0-7.6 kPa, respectively, p<0.001).. SWE can detect early changes in LSM in some CF patients treated with LUM/IVA.

    Topics: Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Elasticity Imaging Techniques; Humans; Mutation

2023
Characterizing CFTR modulated sweat chloride response across the cf population: Initial results from the CHEC-SC study.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2023, Volume: 22, Issue:1

    CHEC-SC is an ongoing epidemiologic study characterizing modulator-induced sweat chloride (SC) responses across the CF population, with interim results available prior to the availability of triple combination modulator therapy.. Eligible participants had been prescribed a modulator for ≥90 days with re-enrollment allowed upon establishment of a new modulator. Pre-modulator SC values were obtained from chart review; post-modulator sweat was collected and analyzed locally. SC changes were descriptively summarized with biologic sex effects adjusted for age, weight, and CFTR genotype. Heterogeneity in ivacaftor SC response was characterized in relation to published CFTR functional responses.. 1848 participants provided 2004 SC measurements, 26.2% on ivacaftor, 39.1% on lumacaftor/ivacaftor, and 34.7% on tezacaftor/ivacaftor. Average SC changes for all modulators were consistent with those reported in previous clinical studies, with greater variation in SC response observed among rarer mutations and notable shifts in the proportion with SC <60mmol/L independent of the magnitude of SC change. Ivacaftor induced in vitro CFTR functional change was significantly correlated with ivacaftor-modulated SC response (Pearson correlation= ‒0.52, 95% CI: ‒0.773, ‒0.129). Average SC change from ivacaftor to tezacaftor/ivacaftor was ‒4.9 mmol/L (n=17,95% CI:‒9.3, ‒0.5) and differed from those switching from lumacaftor/ivacaftor (10.0 mmol/L, n=139, 95% CI:7.8,12.3). Sex at birth was not associated with SC response.. CHEC-SC is the largest study characterizing modulator-induced SC changes across the CF population. There was a strong association between ivacaftor induced in vitro CFTR function and SC response across a genotypically heterogenous cohort. Biological sex was not associated with SC response.

    Topics: Aminophenols; Benzodioxoles; Chloride Channel Agonists; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Mutation; Sweat

2023
Impact of cholesterol and Lumacaftor on the folding of CFTR helical hairpins.
    Biochimica et biophysica acta. Biomembranes, 2023, 01-01, Volume: 1865, Issue:1

    Cystic fibrosis (CF) is caused by mutations in the gene that codes for the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). Recent advances in CF treatment have included use of small-molecule drugs known as modulators, such as Lumacaftor (VX-809), but their detailed mechanism of action and interplay with the surrounding lipid membranes, including cholesterol, remain largely unknown. To examine these phenomena and guide future modulator development, we prepared a set of wild type (WT) and mutant helical hairpin constructs consisting of CFTR transmembrane (TM) segments 3 and 4 and the intervening extracellular loop (termed TM3/4 hairpins) that represent minimal membrane protein tertiary folding units. These hairpin variants, including CF-phenotypic loop mutants E217G and Q220R, and membrane-buried mutant V232D, were reconstituted into large unilamellar phosphatidylcholine (POPC) vesicles, and into corresponding vesicles containing 70 mol% POPC +30 mol% cholesterol, and studied by single-molecule FRET and circular dichroism experiments. We found that the presence of 30 mol% cholesterol induced an increase in helicity of all TM3/4 hairpins, suggesting an increase in bilayer cross-section and hence an increase in the depth of membrane insertion compared to pure POPC vesicles. Importantly, when we added the corrector VX-809, regardless of the presence or absence of cholesterol, all mutants displayed folding and helicity largely indistinguishable from the WT hairpin. Fluorescence spectroscopy measurements suggest that the corrector alters lipid packing and water accessibility. We propose a model whereby VX-809 shields the protein from the lipid environment in a mutant-independent manner such that the WT scaffold prevails. Such 'normalization' to WT conformation is consistent with the action of VX-809 as a protein-folding chaperone.

    Topics: Benzodioxoles; Cholesterol; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Lipids

2023
Effects of CFTR modulators on serum biomarkers of liver fibrosis in children with cystic fibrosis.
    Hepatology communications, 2023, Jan-20, Volume: 7, Issue:2

    The cystic fibrosis (CF) transmembrane conductance regulator corrector/potentiator combinations lumacaftor/ivacaftor and elexacaftor/tezacaftor/ivacaftor improve sweat chloride, pulmonary function, and nutrition. Yet it is unclear whether they may also impact the progression of liver fibrosis, which is a substantial source of morbidity and mortality for patients with CF. We conducted a retrospective, single-center analysis of children and adolescents with CF treated with lumacaftor/ivacaftor and/or elexacaftor/tezacaftor/ivacaftor therapy, focusing on alterations in liver function tests and fibrosis indices using previously-established thresholds that corresponded with increased liver elastography. In pairwise comparisons of before and during treatment timepoints, we found that those with CF-associated liver involvement experienced significant decreases in gamma-glutamyl transferase, aspartate aminotransferase-to-platelet index, and gamma-glutamyl transferase-to-platelet ratio while on lumacaftor/ivacaftor. These differences were not observed in patients treated with elexacaftor/tezacaftor/ivacaftor, nor were they observed in patients without underlying CF-associated liver disease. These results provide the first evidence that lumacaftor/ivacaftor may improve liver fibrosis in children and adolescents with CF and suggest it may be beneficial in the treatment of CF-associated liver disease.

    Topics: Adolescent; Biomarkers; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Liver Cirrhosis; Retrospective Studies; Transferases

2023
Vx-809, a CFTR Corrector, Acts through a General Mechanism of Protein Folding and on the Inflammatory Process.
    International journal of molecular sciences, 2023, Feb-20, Volume: 24, Issue:4

    Correct protein folding is the basis of cellular well-being; thus, accumulation of misfolded proteins within the endoplasmic reticulum (ER) leads to an imbalance of homeostasis that causes stress to the ER. Various studies have shown that protein misfolding is a significant factor in the etiology of many human diseases, including cancer, diabetes, and cystic fibrosis. Misfolded protein accumulation in the ER triggers a sophisticated signal transduction pathway, the unfolded protein response (UPR), which is controlled by three proteins, resident in ER: IRE1α, PERK, and ATF6. Briefly, when ER stress is irreversible, IRE1α induces the activation of pro-inflammatory proteins; PERK phosphorylates eIF2α which induces ATF4 transcription, while ATF6 activates genes encoding ER chaperones. Reticular stress causes an alteration of the calcium homeostasis, which is released from the ER and taken up by the mitochondria, leading to an increase in the oxygen radical species production, and consequently, to oxidative stress. Accumulation of intracellular calcium, in combination with lethal ROS levels, has been associated with an increase of pro-inflammatory protein expression and the initiation of the inflammatory process. Lumacaftor (Vx-809) is a common corrector used in cystic fibrosis treatment which enhances the folding of mutated F508del-CFTR, one of the most prevalent impaired proteins underlying the disease, promoting a higher localization of the mutant protein on the cell membrane. Here, we demonstrate that this drug reduces the ER stress and, consequently, the inflammation that is caused by such events. Thus, this molecule is a promising drug to treat several pathologies that present an etiopathogenesis due to the accumulation of protein aggregates that lead to chronic reticular stress.

    Topics: Calcium; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; eIF-2 Kinase; Endoplasmic Reticulum Stress; Endoribonucleases; Humans; Protein Folding; Protein Serine-Threonine Kinases; Unfolded Protein Response

2023
Clinical and functional course of patients with cystic fibrosis treated with lumacaftor/ivacaftor at a children's hospital. A case series.
    Archivos argentinos de pediatria, 2023, 10-01, Volume: 121, Issue:5

    Cystic fibrosis transmembrane regulator (CFTR) modulators treat defective CFTR protein. Our objective is to describe the course of children with cystic fibrosis treated with lumacaftor/ivacaftor. This is a case series of 13 patients aged 6 to 18 years with ≥ 6 months of treatment. Forced expiratory volume in the first second (FEV1), body mass index (BMI) Z-score, antibiotic therapy/year, before treatment and for 24 months after treatment were analyzed. At 12 months (9/13) and 24 months (5/13), the median change in the percent predicted FEV1 (ppFEV1) was 0.5 pp (-2-12) and 15 pp (8.7-15.2) and the BMI Z-score was 0.32 points (-0.2-0.5) and 1.23 points (0.3-1.6). In the first year, in 11/13 patients, the median number of days of antibiotic use decreased from 57 to 28 (oral) and from 27 to 0 (intravenous). Two children had associated adverse events.. Los moduladores de la proteína reguladora transmembrana de fibrosis quística (CFTR) tratan el defecto de esta proteína. El objetivo es describir la evolución de niños con fibrosis quística tratados con lumacaftor/ivacaftor. Se trata de una serie de 13 pacientes de 6 a 18 años con ≥ 6 meses de tratamiento. Se analizaron el volumen espiratorio forzado en el primer segundo (VEF1), puntaje Z del índice de masa corporal (IMC), antibioticoterapia/año, antes del tratamiento y durante 24 meses posteriores. A los 12 meses (9/13) y 24 meses (5/13), la mediana de cambio del porcentaje del predicho VEF1 (ppVEF1) fue de 0,5 pp [-2-12] y 15 pp [8,7-15,2], y del puntaje Z de IMC de 0,32 puntos [-0,2-0,5] y 1,23 puntos [0,3-1,6]. El primer año (11/13) la mediana de días de uso de antibiótico disminuyó de 57 a 28 (oral) y de 27 a 0 (intravenoso). Dos niños evidenciaron eventos adversos asociados.

    Topics: Aminophenols; Anti-Bacterial Agents; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Forced Expiratory Volume; Hospitals; Humans; Mutation

2023
Drug desensitization to lumacaftor/ivacaftor: A fast lane to drug tolerance.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2023, Volume: 22, Issue:5

    We present the case of a girl (now 11 years and 9 months old) with cystic fibrosis (F508del homozygote), who developed pruritic rash and urticaria six days after the first dose of the CFTR modulators lumacaftor/ivacaftor. The treatment was paused and had to be interrupted due to an immediate recurrence of the urticarial rash after rechallenge. We developed a drug desensitization protocol, aligned to protocols used for desensitization against oral antibiotics. In contrast to other published protocols, it was performed by rapidly increasing the dose of lumacaftor/ivacaftor granulate at 15 min intervals. The medication was continued without interruption, the rash did not reappear during follow-up of two years. This drug desensitization protocol provides a potential new therapeutic option for patients with drug hypersensitivity reactions to CFTR modulators, especially when there are no alternative treatments. Lumacaftor/ivacaftor is available as granulate, doses can be titrated during desensitization and used for long-term treatment.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Drug Tolerance; Exanthema; Female; Forced Expiratory Volume; Humans; Infant; Mutation

2023
Clinical and Functional Characteristics of the E92K
    International journal of molecular sciences, 2023, Mar-28, Volume: 24, Issue:7

    The pathogenic variant E92K (c.274G > A) of the

    Topics: Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Russia; Turkey

2023
Identification of single nucleotide variants in SLC26A9 gene in patients with cystic fibrosis (p.Phe508del homozygous) and its association to Orkambi® (Lumacaftor and Ivacaftor) response in vitro.
    Gene, 2023, Jun-30, Volume: 871

    Since patients with cystic fibrosis with different Cystic Fibrosis Transmembrane Regulator (CFTR) genotypes present a wide response variability for modulator drugs such as Orkambi®, it is important to screen variants in candidate genes with an impact on precision and personalized medicine, such as Solute Carrier Family 26, member 9 (SLC26A9) gene.. Sanger sequencing for the exons and intron-exon boundary junctions of the SLC26A9 gene was employed in nine individuals with p.Phe508del homozygous genotype for the CFTR gene who were not under CFTR modulators therapy. The sequencing variants were evaluated by in silico prediction tools. The CFTR function was measured by cAMP-stimulated current (ΔIsc-eq-FSK) in polarized CFTR of human nasal epithelial cells cultured in micro-Ussing chambers with Orkambi®.. We found 24 intronic variants, three in the coding region (missense variants - rs74146719 and rs16856462 and synonymous - rs33943971), and three in the three prime untranslated region (3' UTR) region in the SLC26A9 gene. Twenty variants were considered benign according to American College of Medical Genetics and Genomics guidelines, and ten were classified as uncertain significance. Although some variants had deleterious predictions or possible alterations in splicing, the majority of predictions were benign or neutral. When we analyzed the ΔIsc-eq-FSK response to Orkambi®, there were no significant differences within the genotypes and alleles for all 30 variants in the SLC26A9 gene.. Among the nine individuals with p.Phe508del homozygous genotype for the CFTR gene, no pathogenic SLC26A9 variants were found, and we did not detect associations from the 30 SLC26A9 variants and the response to the Orkambi® in vitro.

    Topics: Antiporters; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Nucleotides; Sulfate Transporters

2023
Human epididymis protein 4 (HE4) plasma concentration inversely correlates with the improvement of cystic fibrosis lung disease in p.Phe508del-CFTR homozygous cases treated with the CFTR modulator lumacaftor/ivacaftor combination.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2023, Volume: 22, Issue:6

    We previously documented that elevated HE4 plasma concentration decreased in people with CF (pwCF) bearing the p.Gly551Asp-CFTR variant in response to CFTR modulator (CFTRm) ivacaftor (IVA), and this level was inversely correlated with the FEV1% predicted values (ppFEV1). Although the effectiveness of lumacaftor (LUM)/IVA in pwCF homozygous for the p.Phe508del-CFTR variant has been evaluated, plasma biomarkers were not used to monitor treatment efficacy thus far.. Plasma HE4 concentration was examined in 68 pwCF drawn from the PROSPECT study who were homozygous for the p.Phe508del-CFTR variant before treatment and at 1, 3, 6 and 12 months after administration of LUM/IVA therapy. Plasma HE4 was correlated with ppFEV1 using their absolute and delta values. The discriminatory power of delta HE4 was evaluated for the detection of lung function improvements based on ROC-AUC analysis and multiple regression test.. HE4 plasma concentration was significantly reduced below baseline following LUM/IVA administration during the entire study period. The mean change of ppFEV1 was 2.6% (95% CI, 0.6 to 4.5) by 6 months of therapy in this sub-cohort. A significant inverse correlation between delta values of HE4 and ppFEV1 was observed especially in children with CF (r=-0.7053; p<0.0001). Delta HE4 predicted a 2.6% mean change in ppFEV1 (AUC: 0.7898 [95% CI 0.6823-0.8972]; P < 0.0001) at a cut-off value of -10.7 pmol/L. Moreover, delta HE4 independently represented the likelihood of being a responder with ≥ 5% delta ppFEV1 at 6 months (OR: 0.89, 95% CI: 0.82-0.95; P = 0.001).. Plasma HE4 level negatively correlates with lung function improvement assessed by ppFEV1 in pwCF undergoing LUM/IVA CFTRm treatment.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Homozygote; Humans; Mutation

2023
Novel tricyclic pyrrolo-quinolines as pharmacological correctors of the mutant CFTR chloride channel.
    Scientific reports, 2023, 05-10, Volume: 13, Issue:1

    F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.

    Topics: Aminopyridines; Benzodioxoles; Chloride Channels; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Quinolines

2023
Impact of lumacaftor/ivacaftor and tezacaftor/ivacaftor on treatment response in pulmonary exacerbations of F508del/F508del cystic fibrosis.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2023, Volume: 22, Issue:5

    Pulmonary exacerbations (PEx) remain a major cause of morbidity and mortality in people with cystic fibrosis (PWCF). Although the combination cystic fibrosis transmembrane conductance regulator (CFTR) modulators lumacaftor/ivacaftor and tezacaftor/ivacaftor have been shown to reduce PEx frequency, their influence on clinical and biochemical responses to acute PEx treatment is unknown.. We performed a secondary analysis of STOP2, a large multicenter randomized controlled trial of antimicrobial treatment durations for adult PWCF presenting with PEx. Propensity score matching was used to compare outcomes in antibiotic-treated F508del/F508del PWCF receiving lumacaftor/ivacaftor or tezacaftor/ivacaftor with those observed in antibiotic-treated F508del/F508del controls not receiving CFTR modulator therapy. The primary outcome measure was the change in percent predicted FEV. Among 982 PEx events in randomized PWCF, 480 were homozygous for F508del, of whom 289 were receiving lumacaftor/ivacaftor or tezacaftor/ivacaftor at initiation of antibiotic therapy. Modulator-treated F508del/F508del PWCF did not demonstrate greater improvements in ppFEV. In the acute setting, CFTR modulator therapy with lumacaftor/ivacaftor or tezacaftor/ivacaftor does not convey additional clinical or biochemical advantage above standardized PEx treatment in F508del/F508del PWCF.

    Topics: Adult; Aminophenols; Anti-Bacterial Agents; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Female; Humans; Male; Multicenter Studies as Topic; Mutation; Randomized Controlled Trials as Topic

2023
Computational Exploration of Potential CFTR Binding Sites for Type I Corrector Drugs.
    Biochemistry, 2023, 08-15, Volume: 62, Issue:16

    Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.

    Topics: Aminopyridines; Benzodioxoles; Binding Sites; Cryoelectron Microscopy; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Ligands; Mutation

2023
Real-life experience with a generic formulation of lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for the Phe508del CFTR mutation.
    Pediatric pulmonology, 2023, Volume: 58, Issue:12

    Cystic fibrosis (CF) is the most frequent recessive autosomal disorder in the Caucasian population. It is caused by mutations that result in a deficient or dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein activity. Among CFTR modulators, potentiator compounds increase channel opening, whereas corrector compounds increase CFTR quantity in the cell surface.. To report real-life effects of a generic formulation of lumacaftor-ivacaftor use in patients with CF homozygous for the Phe508del CFTR mutation.. Clinical variables (body mass index [BMI], pulmonary exacerbations, sweat test, and pulmonary function) were analyzed in 30 CF patients homozygous for the Phe508del CFTR mutation, treated with lumacaftor-ivacaftor for 12 months, at the Respiratory Center of Hospital de Niños Ricardo Gutiérrez. These clinical variables were compared with those before the use of modulators.. A total of 30 patients with CF homozygous for the Phe508del CFTR mutation receiving lumacaftor-ivacaftor therapy were included in this study. The median (interquartile range [IQR]) age at the start of treatment was 10.79 (7.08-14.05) years. Nineteen patients were male. Before treatment, median (IQR) sweat chloride concentration was 80 (72-92) mEq/L, and it had decreased to 74 (68-78) mEq/L (p = .05) 12 months after treatment. Median (IQR) BMI z-score improved from -0.33 (-0.86 to 0.21) to -0.13 (-0.66 to 0.54) (p = .003). A spirometry was performed in 28 of 30 patients. Median (IQR) ppFEV. The use of a generic formulation of lumacaftor-ivacaftor in patients homozygous for the Phe508del CFTR mutation was associated with improvement in nutritional status and respiratory symptoms, and a significant reduction in severe pulmonary exacerbations.

    Topics: Adolescent; Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Female; Humans; Male; Mutation

2023
Restoration of exocrine pancreatic function in child with lumacaftor/ivacaftor therapy in cystic fibrosis.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2022, Volume: 21, Issue:2

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Quinolones

2022
Isotope dilution LC-MS/MS quantification of the cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their major metabolites in human serum.
    Clinical chemistry and laboratory medicine, 2022, 01-26, Volume: 60, Issue:1

    Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators have revolutionized the therapeutic landscape in CF treatment. These vital drugs are extensively metabolized via CYP3A, so caution must be exercised in multimodal CF therapy because of the risk of adverse drug interactions. Our goal was to develop a highly sensitive assay for the purpose of therapeutic drug monitoring (TDM) in diagnostic laboratories.. After protein precipitation, the CFTR modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their metabolites ivacaftor-M1, ivacaftor-M6, and tezacaftor-M1 were separated with a two-dimensional chromatography setup within 5 min, and quantified with stable isotope-labeled internal standards. The method was validated according to the European Medicines Agency (EMA) guideline on bioanalytical method validation and applied to CF patient samples.. Inaccuracy was ≤7.0% and the imprecision coefficient of variation (CV) was ≤8.3% for all quality controls (QCs). The method consistently compensated for matrix effects, recovery, and process efficiency were 105-115 and 96.5-103%, respectively. Analysis of CF serum samples provided concentrations comparable to the pharmacokinetic profile data reported in the EMA assessment report for the triple combination therapy Kaftrio.. We hereby present a robust and highly selective isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) assay for the simultaneous quantification of the so far approved CFTR modulators and their metabolites in human serum. The assay is suitable for state-of-the-art pharmacovigilance of CFTR modulator therapy in CF patients, in order to maximize safety and efficacy, and also to establish dose-response relationships in clinical trials.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chromatography, Liquid; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Indoles; Isotopes; Mutation; Pyrazoles; Pyridines; Pyrrolidines; Quinolones; Tandem Mass Spectrometry

2022
Mechanism of CFTR correction by type I folding correctors.
    Cell, 2022, 01-06, Volume: 185, Issue:1

    Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.

    Topics: Aminopyridines; Animals; Benzodioxoles; Binding Sites; Cell Membrane; CHO Cells; Cricetulus; Cryoelectron Microscopy; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; HEK293 Cells; Humans; Hydrophobic and Hydrophilic Interactions; Indoles; Molecular Chaperones; Mutation; Protein Domains; Protein Folding; Sf9 Cells; Transfection

2022
Radiomics-derived morphological features predict pulmonary function response during lumacaftor/ivacaftor therapy in patients with cystic fibrosis.
    The European respiratory journal, 2022, Volume: 60, Issue:1

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Drug Combinations; Humans; Quinolones; Tomography, X-Ray Computed; Unsupervised Machine Learning

2022
Diversity of approaches in artificial intelligence: an opportunity for discoveries in thoracic imaging.
    The European respiratory journal, 2022, Volume: 60, Issue:1

    Topics: Aminophenols; Aminopyridines; Artificial Intelligence; Benzodioxoles; Cystic Fibrosis; Humans; Quinolones; Tomography, X-Ray Computed; Unsupervised Machine Learning

2022
Changes in Glucose Breath Test in Cystic Fibrosis Patients Treated With 1 Month of Lumacaftor/Ivacaftor.
    Journal of pediatric gastroenterology and nutrition, 2022, 07-01, Volume: 75, Issue:1

    Alteration of the airway microbiota is a hallmark of cystic fibrosis (CF) pulmonary disease. Dysfunction of cystic fibrosis transmembrane regulator (CFTR) in the intestine also promotes changes in local microbiota such as small intestinal bacterial overgrowth (SIBO), which is common in CF. We evaluated whether therapy with the CFTR modulator combination lumacaftor/ivacaftor (luma/iva) has a beneficial impact on SIBO as measured by breath testing (BT).. A multicenter longitudinal study of CFTR-dependent disease profiling (NCT02477319) included a prospective evaluation for SIBO by BT. Tidal breath samples were collected after fasting and 15, 30, 45, 60, 90, and 120 minutes after ingestion of glucose, before and 1 month after subjects initiated luma + iva.. Forty-two subjects enrolled in the sub-study (mean age = 23.3 years; 51% female; 9.5% Latinx); 38 completed a hydrogen BT at both time points, of which 73.7% had a positive BT before luma/iva (baseline) and 65.8% had a positive test after luma/iva ( P = 0.44); shifts from negative to positive were also seen. Use of azithromycin (63.1%) and inhaled antibiotics (60.5%) were not associated with positive BT. Acid-blocking medications were taken by 73% of those with a negative BT at baseline and by 35% with a positive baseline BT ( P = 0.04).. We found a high rate of positive hydrogen breath tests in individuals with CF, confirming that SIBO is common. One month of luma/iva did not significantly change the proportion of those with positive breath hydrogen measurements.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Breath Tests; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Glucose; Humans; Hydrogen; Longitudinal Studies; Male; Mutation; Quinolones; Young Adult

2022
Change in exercise capacity measured by Cardio-pulmonary Exercise Testing (CPET) in Danish people with cystic fibrosis after initiation of treatment with Lumacaftor/Ivacaftor and Tezacaftor/Ivacaftor.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2022, Volume: 21, Issue:5

    Since 2015, when the first cystic fibrosis transmembrane conductance regulator (CFTR) modulators were approved for people with cystic fibrosis (CF) homozygous for F508del-CFTR, studies have shown improved lung function after initiation of the treatment and patients experience improved physical capacity. The aim of this study was to investigate change in exercise capacity after initiation of Lumacaftor/Ivacaftor and Tezacaftor/Ivacaftor treatment (LUM/IVA, TEZ/IVA).. We performed a single group prospective observational cohort study with follow-up at six and 12 months. The study examined change in exercise capacity in people with CF initiating treatment with LUM/IVA and TEZ/IVA, measured by cardio-pulmonary exercise testing (CPET). Inclusion criteria were people with CF homozygous for F508del-CFTR aged 12 years or older eligible for LUM/IVA and TEZ/IVA treatment from June 2017 until June 2019. Primary outcomes were change in VO

    Topics: Aminophenols; Aminopyridines; Bacterial Toxins; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Denmark; Drug Combinations; Exercise Test; Exercise Tolerance; Humans; Indoles; Mutation; Prospective Studies; Quinolones

2022
CFTR Rescue by Lumacaftor (VX-809) Induces an Extensive Reorganization of Mitochondria in the Cystic Fibrosis Bronchial Epithelium.
    Cells, 2022, 06-16, Volume: 11, Issue:12

    Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome.. We used high-resolution mass spectrometry, differential ultracentrifugation, machine learning and bioinformatics to investigate both changes in the expression and localization of the human bronchial epithelium CF model (F508del-CFTR CFBE41o-) proteome following treatment with VX-809 (Lumacaftor), a drug able to improve the trafficking of CFTR.. The data suggested no stark changes in protein expression, yet subtle localization changes of proteins of the mitochondria and peroxisomes were detected. We then used high-content confocal microscopy to further investigate the morphological and compositional changes of peroxisomes and mitochondria under these conditions, as well as in patient-derived primary cells. We profiled several thousand proteins and we determined the subcellular localization data for around 5000 of them using the LOPIT-DC spatial proteomics protocol.. We observed that treatment with VX-809 induces extensive structural and functional remodelling of mitochondria and peroxisomes that resemble the phenotype of healthy cells. Our data suggest additional rescue mechanisms of VX-809 beyond the correction of aberrant folding of F508del-CFTR and subsequent trafficking to the PM.

    Topics: Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelium; Humans; Infant, Newborn; Mitochondria; Proteome

2022
T-cell-mediated hypersensitivity to lumacaftor and ivacaftor in cystic fibrosis.
    Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology, 2022, Volume: 33, Issue:6

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Drug Combinations; Humans; Mutation; Quinolones; T-Lymphocytes

2022
Ivacaftor, not ivacaftor/lumacaftor, associated with lower pulmonary inflammation in preschool cystic fibrosis.
    Pediatric pulmonology, 2022, Volume: 57, Issue:10

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child, Preschool; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Mutation; Pneumonia; Quinolones

2022
A New Era for Cystic Fibrosis and Cystic Fibrosis Transmembrane Conductance Regulator Modulator Trials in Infants.
    American journal of respiratory and critical care medicine, 2022, 11-15, Volume: 206, Issue:10

    Topics: Aminophenols; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Infant

2022
Profiling the response to lumacaftor-ivacaftor in children with cystic between fibrosis and new insight from a French-Italian real-life cohort.
    Pediatric pulmonology, 2022, Volume: 57, Issue:12

    Clinical trials for CFTR modulators consider mean changes of clinical status at the cohort level, and thus fail to assess the heterogeneity of the response. We aimed to study the different response profiles to lumacaftor-ivacaftor according to age in children with cystic fibrosis (CF).. A mathematical framework, including principal component analysis, data clustering, and data completion, was applied to a multicenter cohort of 112 children aged 6-18 years, treated with lumacaftor-ivacaftor. Studied parameters at baseline and 6 months included body mass index (BMI), number of days of antibiotics (ATB), Sweat test (ST), forced expiratory volume in 1 s expressed in percentage predicted (ppFEV. Change in ppFEV

    Topics: Adolescent; Aminophenols; Aminopyridines; Anti-Bacterial Agents; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Fibrosis; Forced Expiratory Volume; Humans; Mutation

2022
Real life evaluation of the multi-organ effects of Lumacaftor/Ivacaftor on F508del homozygous cystic fibrosis patients.
    BMC pharmacology & toxicology, 2022, 10-20, Volume: 23, Issue:1

    Lumacaftor/Ivacaftor (LUM-IVA), a cystic fibrosis transmembrane conductance regulator (CFTR) protein corrector-potentiator combination, improves lung function and reduces pulmonary exacerbations (PEx) in F508del homozygous CF patients. However, the systemic effects of LUM-IVA outside the respiratory system have not yet been thoroughly investigated.. A prospective, real-world, yearlong study was performed on F508del homozygous adult CF patients who commenced treatment with LUM-IVA. Pancreatic function, bone metabolism, fertility status, nutritional and pulmonary factors were evaluated.. Twelve patients, mean age 28.3 years (18.6-43.9) were recruited. Following 12 months of treatment, no changes were detected in glucose, insulin, c-peptide or BMI values. A significant relative decrease in mean alkaline-phosphatase levels (122.8 U/L vs 89.4, p = 0.002) and a trend toward an increase in calcium levels (9.5 vs 9.9 mg/dL, p = 0.074) were observed. A non-significant improvement in mean DEXA spine t-score after a year of treatment (-2.1 vs -1.6, n = 4, p = 0.11) was detected. Sweat chloride concentrations decreased significantly (-21.4 mEq/L; p = 0.003). Pulmonary outcome revealed improvement in spirometry values during the first three months (FEV. After one year of treatment, stabilization was observed in the pancreatic indices, nutritional status, structure and function of the lungs, with a beneficial effect on bone mineral metabolism and CFTR function. Additional studies should investigate the effect of CFTR modulators on extra-pulmonary manifestations.

    Topics: Adolescent; Adult; Anti-Bacterial Agents; C-Peptide; Calcium; Chloride Channel Agonists; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Glucose; Humans; Mutation; Prospective Studies; Young Adult

2022
Lumacaftor-ivacaftor effects on cystic fibrosis-related liver involvement in adolescents with homozygous F508 del-CFTR.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2022, Volume: 21, Issue:2

    The effects of lumacaftor-ivacaftor on cystic fibrosis transmembrane conductance regulator (CFTR)-associated liver disease remain unclear. The objective of the study was to describe the effect of this treatment on features of liver involvement in a cystic fibrosis (CF) adolescent population homozygous for F508del.. Clinical characteristics, liver blood tests, abdominal ultrasonography (US), and pancreas and liver proton density fat fraction (PDFF) by magnetic resonance imaging, were obtained at treatment initiation and at 12 months for all patients. Biomarkers of CFTR activity (sweat chloride test, nasal potential difference, and intestinal current measurement) were assessed at initiation and at 6 months therapy.. Of the 37 patients who started ivacaftor/lumacaftor treatment, 28 were eligible for analysis. In this group, before treatment initiation, 4 patients were diagnosed with multinodular liver and portal hypertension, 19 with other forms of CF liver involvement, and 5 with no signs of liver involvement. During treatment, no hepatic adverse reactions were documented, and no patient developed liver failure. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gammaglutamyl transferase (GGT) decreased significantly following initiation of lumacaftor-ivacaftor, and remained so after 12 months treatment. This was not correlated with changes in clinical status, liver and pancreas US and PDFF, fecal elastase, or lumacaftor-ivacaftor serum levels. The most "responsive" patients demonstrated a significant increase in biomarkers of CFTR activity.. These results may suggest a potential beneficial effect of CFTR modulators on CF liver disease and warrant further investigation in larger, prospective studies.

    Topics: Adolescent; Aminophenols; Aminopyridines; Benzodioxoles; Biomarkers; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Liver; Mutation; Prospective Studies; Quinolones

2022
NBD2 Is Required for the Rescue of Mutant F508del CFTR by a Thiazole-Based Molecule: A Class II Corrector for the Multi-Drug Therapy of Cystic Fibrosis.
    Biomolecules, 2021, 09-28, Volume: 11, Issue:10

    Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) protein, an anion channel that regulates epithelial surface fluid secretion. The deletion of phenylalanine at position 508 (F508del) is the most common CFTR mutation. F508del CFTR is characterized by folding and trafficking defects, resulting in decreased functional expression of the protein on the plasma membrane. Several classes of small molecules, named correctors, have been developed to rescue defective F508del CFTR. Although individual correctors failed to improve the clinical status of CF patients carrying the F508del mutation, better results were obtained using correctors combinations. These results were obtained according to the premise that the administration of correctors having different sites of action should enhance F508del CFTR rescue. We investigated the putative site of action of an aminoarylthiazole 4-(3-chlorophenyl)-N-(3-(methylthio)phenyl)thiazol-2-amine, named FCG, with proven CFTR corrector activity, and its synergistic effect with the corrector VX809. We found that neither the total expression nor the maturation of WT CFTR transiently expressed in human embryonic kidney 293 cells was influenced by FCG, administrated alone or in combination with VX809. On the contrary, FCG was able to enhance F508del CFTR total expression, and its combination with VX809 provided a further effect, being able to increase not only the total expression but also the maturation of the mutant protein. Analyses on different CFTR domains and groups of domains, heterologously expressed in HEK293 cells, show that NBD2 is necessary for FCG corrector activity. Molecular modelling analyses suggest that FCG interacts with a putative region located into the NBD2, ascribing this molecule to class II correctors. Our study indicates that the continuous development and testing of combinations of correctors targeting different structural and functional defects of mutant CFTR is the best strategy to ensure a valuable therapeutic perspective to a larger cohort of CF patients.

    Topics: Aminopyridines; Benzodioxoles; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Gene Expression Regulation; HEK293 Cells; Humans; Mutant Proteins; Phenylalanine; Thiazoles

2021
Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR.
    Cellular and molecular life sciences : CMLS, 2021, Volume: 78, Issue:23

    Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.

    Topics: Aminopyridines; Benzodioxoles; Binding Sites; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; HEK293 Cells; Humans; Mutation; Protein Domains; Protein Folding; Protein Structure, Tertiary; Pyrazoles; Pyridines; Pyrrolidines

2021
Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene.
    International journal of molecular sciences, 2021, Nov-04, Volume: 22, Issue:21

    Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the

    Topics: Aminopyridines; Benzodioxoles; Bronchi; Chloride Channel Agonists; Codon, Nonsense; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Nonsense Mediated mRNA Decay; Pyrazoles; Pyridines; Pyrrolidines

2021
Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9.
    International journal of molecular sciences, 2021, Dec-02, Volume: 22, Issue:23

    SLC26A9, a constitutively active Cl

    Topics: Aminophenols; Aminopyridines; Antiporters; Benzodioxoles; Bronchi; Cell Line; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Gene Expression Regulation; Gene Knockdown Techniques; HEK293 Cells; Humans; Indoles; Molecular Targeted Therapy; Mutation; Organ Culture Techniques; Pyrazoles; Pyridines; Quinolines; Sulfate Transporters; Zonula Occludens-1 Protein

2021
Drug allergy to CFTR modulator therapy associated with lumacaftor-specific CD4
    The Journal of allergy and clinical immunology, 2021, Volume: 147, Issue:2

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; CD4-Positive T-Lymphocytes; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Drug Hypersensitivity; Female; Humans; Quinolones; Young Adult

2021
CFTR modulator therapy for cystic fibrosis caused by the rare c.3700A>G mutation.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2021, Volume: 20, Issue:3

    The c.3700A>G mutation, a rare cystic fibrosis (CF)-causing CFTR mutation found mainly in the Middle East, produces full-length transcript encoding a missense mutation (I1234V-CFTR), and a cryptic splice site that deletes 6 amino acids in nucleotide binding domain 2 (I1234del-CFTR).. FRT cell models expressing I1234V-CFTR and I1234del-CFTR were generated. We also studied an I1234del-CFTR-expressing gene-edited human bronchial (16HBE14o-) cell model, and primary cultures of nasal epithelial cells from a c.3700A>G homozygous subject. To identify improved mutation-specific CFTR modulators, high-throughput screening was done using I1234del-CFTR-expressing FRT cells. Motivated by the in vitro findings, Trikafta was tested in two c.3700A>G homozygous CF subjects.. FRT cells expressing full-length I1234V-CFTR had similar function to that of wildtype CFTR. I1234del-CFTR showed reduced activity, with modest activation seen with potentiators VX-770 and GLPG1837, correctors VX-809, VX-661 and VX-445, and low-temperature incubation. Screening identified novel arylsulfonyl-piperazine and spiropiperidine-quinazolinone correctors, which when used in combination with VX-445 increased current ~2-fold compared with the VX-661/VX-445 combination. The combination of VX-770 with arylsulfonamide-pyrrolopyridine, piperidine-pyridoindole or pyrazolo-quinoline potentiators gave 2-4-fold greater current than VX-770 alone. Combination potentiator (co-potentiator) efficacy was also seen in gene-edited I1234del-CFTR-expressing human bronchial epithelial cells. In two CF subjects homozygous for the c.3700A>G mutation, one subject had a 27 mmol/L decrease in sweat chloride and symptomatic improvement on Trikafta, and a second subject showed a small improvement in lung function.. These results support the potential benefit of CFTR modulators, including co-potentiators, for CF caused by the c.3700A>G mutation.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cells, Cultured; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Indoles; Mutant Proteins; Mutation, Missense; Pyrazoles; Pyridines; Pyrrolidines; Quinolones

2021
Quantitative Method for the Analysis of Ivacaftor, Hydroxymethyl Ivacaftor, Ivacaftor Carboxylate, Lumacaftor, and Tezacaftor in Plasma and Sputum Using Liquid Chromatography With Tandem Mass Spectrometry and Its Clinical Applicability.
    Therapeutic drug monitoring, 2021, 08-01, Volume: 43, Issue:4

    The novel cystic fibrosis transmembrane conductance regulator (CFTR) modulators, ivacaftor, lumacaftor, and tezacaftor, are the first drugs directly targeting the underlying pathophysiological mechanism in cystic fibrosis (CF); however, independent studies describing their pharmacokinetics are lacking. The aim of this study was to develop a quantification method for ivacaftor and its 2 main metabolites, lumacaftor and tezacaftor, in plasma and sputum using liquid chromatography with tandem mass spectrometry.. The developed method used a small sample volume (20 µL) and simple pretreatment method; protein precipitation solution and internal standard were added in one step to each sample. Liquid chromatography with tandem mass spectrometry was performed for a total run time of 6 minutes. The method was validated by assessing selectivity, carryover, linearity, accuracy and precision, dilution, matrix effects, and stability.. The selectivity was good as no interference from matrices was observed. In the concentration range from 0.01 to 10.0 mg/L, calibration curves were linear with a correlation coefficient >0.9997 for all compounds. The within-run and between-run accuracy were between 99.7% and 116% at the lower limit of quantitation (LLOQ) and between 95.8% and 112.9% for all concentrations above LLOQ for all analytes in plasma and sputum. Within-run and between-run precisions were <12.7% for LLOQ and <6.7% for the higher limit of quantitation. Samples were stable, with no significant degradation at examined temperatures and time points. Clinical applicability was revealed by analyzing samples from 2 patients with CF.. The presented method enables simultaneous quantification of ivacaftor, lumacaftor, and tezacaftor in plasma and sputum and is an improvement over previous methods because it uses smaller sample volumes, a simple pretreatment protocol, and includes tezacaftor. In future studies, it can be applied for examining pharmacokinetics characteristics of new CF transmembrane conductance regulator modulators.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chromatography, Liquid; Cystic Fibrosis; Drug Combinations; Humans; Indoles; Mutation; Plasma; Quinolones; Sputum; Tandem Mass Spectrometry

2021
The PROSPECT Is Bright for CFTR Modulators.
    Annals of the American Thoracic Society, 2021, Volume: 18, Issue:1

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones; Treatment Outcome

2021
Lumacaftor/ivacaftor in cystic fibrosis: effects on glucose metabolism and insulin secretion.
    Journal of endocrinological investigation, 2021, Volume: 44, Issue:10

    The question whether the new cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs aimed at restoring CFTR protein function might improve glucose metabolism is gaining attention, but data on the effect of lumacaftor/ivacaftor treatment (LUMA/IVA) on glucose tolerance are limited. We evaluated the variation in glucose metabolism and insulin secretion in CF patients homozygous for Phe508del CFTR mutation after one-year treatment with LUMA/IVA in comparison to patients with the same genotype who did not receive such treatment.. We performed a retrospective case-control study on 13 patients with a confirmed diagnosis of CF, homozygous for the Phe508del CFTR mutation, who received LUMA/IVA for one year (cases) and 13 patients with identical genotype who did not receive this treatment (controls). At the beginning and conclusion of the follow-up, all subjects received a modified 3 h OGTT, sampling at baseline, and at 30 min intervals for plasma glucose, serum insulin, and c-peptide concentrations to evaluate glucose tolerance, and quantify by modeling beta-cell insulin secretion responsiveness to glucose, insulin clearance and insulin sensitivity.. LUMA/IVA did not produce differences in glucose tolerance, insulin secretory parameters, clearance and sensitivity with respect to matched controls over one-year follow-up.. We found no evidence of improvements in glucose tolerance mechanisms in patients with CF after one-year treatment with LUMA/IVA.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Blood Glucose; Case-Control Studies; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Follow-Up Studies; Homozygote; Humans; Insulin Secretion; Male; Mutation; Prognosis; Quinolones; Retrospective Studies; Young Adult

2021
Novel Correctors and Potentiators Enhance Translational Readthrough in CFTR Nonsense Mutations.
    American journal of respiratory cell and molecular biology, 2021, Volume: 64, Issue:5

    Topics: Aminophenols; Aminopyridines; Animals; Benzoates; Benzodioxoles; Benzopyrans; Cell Line; Chlorides; Codon, Nonsense; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Ion Transport; Protein Biosynthesis; Pyrans; Pyrazoles; Quinolones; Rats; Recovery of Function; Thyroid Epithelial Cells

2021
Ex vivo model predicted in vivo efficacy of CFTR modulator therapy in a child with rare genotype.
    Molecular genetics & genomic medicine, 2021, Volume: 9, Issue:4

    New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases.. We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found.. Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cells, Cultured; Child, Preschool; Chloride Channel Agonists; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Female; Genotype; Humans; Mutation, Missense; Nasal Mucosa; Pancreatic Elastase; Quinolones

2021
Lumacaftor and Matrine: Possible Therapeutic Combination to Counteract the Inflammatory Process in Cystic Fibrosis.
    Biomolecules, 2021, 03-13, Volume: 11, Issue:3

    Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.

    Topics: A549 Cells; Alkaloids; Aminopyridines; Benzodioxoles; Cell Death; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Synergism; Drug Therapy, Combination; Humans; Inflammation; Matrines; Models, Biological; Oxidative Stress; Quinolizidines; Quinolizines; Reactive Oxygen Species; Signal Transduction

2021
Long-term safety of lumacaftor-ivacaftor in children aged 2-5 years with cystic fibrosis homozygous for the F508del-CFTR mutation: a multicentre, phase 3, open-label, extension study.
    The Lancet. Respiratory medicine, 2021, Volume: 9, Issue:9

    A previous phase 3 study showed that lumacaftor-ivacaftor was generally safe and well tolerated over 24 weeks of treatment in children aged 2-5 years with cystic fibrosis homozygous for the F508del-CFTR mutation. In this study, we aimed to assess the long-term safety of lumacaftor-ivacaftor in a rollover study of children who participated in this previous phase 3 study.. In this multicentre, phase 3, open-label, extension study (study 116; VX16-809-116), we assessed safety of lumacaftor-ivacaftor in children included in a previous multicentre, phase 3, open-label study (study 115; VX15-809-115). The study was done at 20 cystic fibrosis care centres in the USA and Canada. Children aged 2-5 years with cystic fibrosis homozygous for the F508del-CFTR mutation who completed 24 weeks of lumacaftor-ivacaftor treatment in study 115 received weight-based and age-based doses of oral lumacaftor-ivacaftor: children weighing less than 14 kg and aged younger than 6 years at study 116 screening received lumacaftor 100 mg-ivacaftor 125 mg every 12 h; children weighing 14 kg or more and aged younger than 6 years at screening received lumacaftor 150 mg-ivacaftor 188 mg every 12 h; and children aged 6 years or older received lumacaftor 200 mg-ivacaftor 250 mg every 12 h. Children received treatment for up to 96 weeks, equivalent to up to 120 weeks of treatment in total from the start of study 115 to completion of study 116. The primary endpoint was the safety and tolerability of the study drug in all participants who had received lumacaftor-ivacaftor for 24 weeks in study 115 and had received at least one dose in study 116. Secondary endpoints included change from baseline in study 115 at week 96 of study 116 in sweat chloride concentration, growth parameters, markers of pancreatic function, and lung clearance index (LCI) parameters in all children who received at least one dose of lumacaftor-ivacaftor in study 116. This study is registered with ClinicalTrials.gov, NCT03125395.. This extension study ran from May 12, 2017, to July 17, 2019. Of 60 participants enrolled and who received lumacaftor-ivacaftor in study 115, 57 (95%) were included in study 116 and continued to receive the study drug. A total of 47 (82%) of 57 participants completed 96 weeks of treatment. Most participants (56 [98%] of 57) had at least one adverse event during study 116, most of which were mild (19 [33%] participants) or moderate (29 [51%] participants) in severity. The most common adverse events were cough (47 [82%] participants), nasal congestion (25 [44%] participants), pyrexia (23 [40%] participants), rhinorrhoea (18 [32%] participants), and vomiting (17 [30%] participants). A total of 15 (26%) participants had at least one serious adverse event; most were consistent with underlying cystic fibrosis or common childhood illnesses. Respiratory adverse events occurred in five (9%) participants, none of which were serious or led to treatment discontinuation. Elevated aminotransferase concentrations, most of which were mild or moderate in severity, occurred in ten (18%) participants. Three (5%) participants discontinued treatment due to adverse events (two due to increased aminotransferase concentrations [one of whom had concurrent pancreatitis], considered as possibly related to study drug; and one due to gastritis and metabolic acidosis, considered unlikely to be related to study drug). No clinically significant abnormalities or changes were seen in electrocardiograms, vital signs, pulse oximetry, ophthalmological examinations, or spirometry assessments. Improvements in secondary endpoints observed in study 115 were generally maintained up to week 96 of study 116, including improvements in sweat chloride concentration (mean absolute change from study 115 baseline at week 96 of study 116 -29·6 mmol/L [95% CI -33·7 to -25·5]), an increase in growth parameters and pancreatic function, and stable lung function relative to baseline, as measured by the LCI.. Lumacaftor-ivacaftor was generally safe and well tolerated, and treatment effects were generally maintained for the duration of the extension study. These findings support the use of lumacaftor-ivacaftor for up to 120 weeks in young children with cystic fibrosis aged 2 years and older homozygous for the F508del-CFTR mutation.. Vertex Pharmaceuticals Incorporated.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Child, Preschool; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Quinolones

2021
Combination Therapy with Lumacaftor-Ivacaftor in Cystic Fibrosis. Keeping It Real.
    American journal of respiratory and critical care medicine, 2020, 01-15, Volume: 201, Issue:2

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Humans; Quinolones

2020
CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor.
    The Journal of biological chemistry, 2020, 02-14, Volume: 295, Issue:7

    Topics: Amino Acid Sequence; Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Molecular Conformation; Mutation; Protein Folding; Structure-Activity Relationship

2020
Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis.
    eLife, 2020, 03-02, Volume: 9

    Previously, we showed that serum and monocytes from patients with CF exhibit an enhanced NLRP3-inflammasome signature with increased IL-18, IL-1β, caspase-1 activity and ASC speck release (Scambler et al. eLife 2019). Here we show that CFTR modulators down regulate this exaggerated proinflammatory response following LPS/ATP stimulation. In vitro application of ivacaftor/lumacaftor or ivacaftor/tezacaftor to CF monocytes showed a significant reduction in IL-18, whereas IL-1β was only reduced with ivacaftor/tezacaftor. Thirteen adults starting ivacaftor/lumacaftor and eight starting ivacaftor/tezacaftor were assessed over three months. Serum IL-18 and TNF decreased significantly with treatments, but IL-1β only declined following ivacaftor/tezacaftor. In (LPS/ATP-stimulated) PBMCs, IL-18/TNF/caspase-1 were all significantly decreased and IL-10 was increased with both combinations. Ivacaftor/tezacaftor alone showed a significant reduction in IL-1β and pro-IL-1β mRNA. This study demonstrates that these CFTR modulator combinations have potent anti-inflammatory properties, in addition to their ability to stimulate CFTR function, which could contribute to improved clinical outcomes.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Cytokines; Down-Regulation; Drug Therapy, Combination; Female; Humans; Indoles; Inflammation; Interleukin-18; Interleukin-1beta; Male; Monocytes; Quinolones; Tumor Necrosis Factor-alpha; Young Adult

2020
Combined Use of CFTR Correctors in LGMD2D Myotubes Improves Sarcoglycan Complex Recovery.
    International journal of molecular sciences, 2020, Mar-06, Volume: 21, Issue:5

    Sarcoglycanopathies are rare limb girdle muscular dystrophies, still incurable, even though symptomatic treatments may slow down the disease progression. Most of the disease-causing defects are missense mutations leading to a folding defective protein, promptly removed by the cell's quality control, even if possibly functional. Recently, we repurposed small molecules screened for cystic fibrosis as potential therapeutics in sarcoglycanopathy. Indeed, cystic fibrosis transmembrane regulator (CFTR) correctors successfully recovered the defective sarcoglycan-complex in vitro. Our aim was to test the combined administration of some CFTR correctors with C17, the most effective on sarcoglycans identified so far, and evaluate the stability of the rescued sarcoglycan-complex. We treated differentiated myogenic cells from both sarcoglycanopathy and healthy donors, evaluating the global rescue and the sarcolemma localization of the mutated protein, by biotinylation assays and western blot analyses. We observed the additive/synergistic action of some compounds, gathering the first ideas on possible mechanism/s of action. Our data also suggest that a defective α-sarcoglycan is competent for assembly into the complex that, if helped in cell traffic, can successfully reach the sarcolemma. In conclusion, our results strengthen the idea that CFTR correctors, acting probably as proteostasis modulators, have the potential to progress as therapeutics for sarcoglycanopathies caused by missense mutations.

    Topics: Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; HEK293 Cells; Humans; Muscle Fibers, Skeletal; Mutation; Proteasome Endopeptidase Complex; Sarcoglycanopathies; Sarcoglycans

2020
Structural Consequences of the 1,2,3-Triazole as an Amide Bioisostere in Analogues of the Cystic Fibrosis Drugs VX-809 and VX-770.
    ChemMedChem, 2020, 09-16, Volume: 15, Issue:18

    Although the 1,2,3-triazole is a commonly used amide bioisostere in medicinal chemistry, the structural implications of this replacement have not been fully studied. Employing X-ray crystallography and computational studies, we report the spatial and electronic consequences of replacing an amide with the triazole in analogues of cystic fibrosis drugs in the VX-770 and VX-809 series. Crystallographic analyses quantify subtle differences in the relative positions and conformational preferences of the R

    Topics: Amides; Aminophenols; Aminopyridines; Benzodioxoles; Crystallography, X-Ray; Cystic Fibrosis; Humans; Models, Molecular; Molecular Structure; Quantum Theory; Quinolones; Triazoles

2020
Can lumacaftor-ivacaftor reverse glucose-tolerance abnormalities in cystic fibrosis?
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2020, Volume: 19, Issue:4

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Glucose; Humans; Quinolones

2020
Correctors modify the bicarbonate permeability of F508del-CFTR.
    Scientific reports, 2020, 05-21, Volume: 10, Issue:1

    One of the most common mutations in Cystic Fibrosis (CF) patients is the deletion of the amino acid phenylalanine at position 508. This mutation causes both the protein trafficking defect and an early degradation. Over time, small molecules, called correctors, capable of increasing the amount of mutated channel in the plasma membrane and causing an increase in its transport activity have been developed. This study shows that incubating in vitro cells permanently transfected with the mutated channel with the correctors VX809, VX661 and Corr4a, and the combination of VX809 and Corr4a, a recovery of anion transport activity is observed. Interestingly, the permeability of bicarbonate increases in the cells containing corrected p.F508del CFTR channels is greater than the increase of the halide permeability. These different increases of the permeability of bicarbonate and halides are consistent with the concept that the structural conformation of the pore of the corrector-rescued p.F508del channels would be different than the normal wild type CFTR protein.

    Topics: Aminopyridines; Animals; Benzodioxoles; Bicarbonates; Cell Membrane; Cell Membrane Permeability; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Protein Transport; Rats; Thyroid Gland

2020
Comment on "Effect of one-year lumacaftor-ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients".
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2020, Volume: 19, Issue:5

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Glucose; Humans; Quinolones

2020
Changes in LCI in F508del/F508del patients treated with lumacaftor/ivacaftor: Results from the prospect study.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2020, Volume: 19, Issue:6

    The PROSPECT study, a post-approval observational study in the U.S., showed no significant changes in lung function as measured by spirometry with clinical initiation of lumacaftor/ivacaftor. A sub-study within the PROSPECT study assessed the lung clearance index (LCI), as measured by multiple breath washout (MBW), a measure of lung function demonstrated to be sensitive among people with normal spirometry. Participants performed MBW prior to clinically initiating lumacaftor/ivacaftor therapy and for one year of follow-up. Similar to the whole PROSPECT study, this sub-study cohort (N = 49) had no significant absolute or relative changes in FEV

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Humans; Male; Middle Aged; Mutation; Quinolones; Respiratory Function Tests; United States

2020
GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease.
    International journal of molecular sciences, 2020, Jun-24, Volume: 21, Issue:12

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.

    Topics: Adjuvants, Immunologic; Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; G(M1) Ganglioside; Humans; Mutation; Quinolones; Therapies, Investigational

2020
Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR.
    Biochemical pharmacology, 2020, Volume: 180

    Despite progress in developing pharmacotherapies to rescue F508del-CFTR, the most prevalent Cystic Fibrosis (CF)-causing mutation, individuals homozygous for this mutation still face several disease-related symptoms. Thus, more potent compound combinations are still needed. Here, we investigated the mechanism of action (MoA) of RDR01752, a novel F508del-CFTR trafficking corrector. F508del-CFTR correction by RDR01752 was assessed by biochemical, immunofluorescence microscopy and functional assays in cell lines and in intestinal organoids. To determine the MoA of RDR01752, we assessed its additive effects to those of genetic revertants of F508del-CFTR, the FDA-approved corrector drugs VX-809 and VX-661, and low temperature. Our data demonstrated that RDR01752 rescues F508del-CFTR processing and plasma membrane (PM) expression to similar levels of VX-809 in cell lines, although RDR01752 produced lower functional rescue. However, in functional assays using intestinal organoids (F508del/F508del), RDR01752, VX-809 and VX-661 had similar efficacy. RDR01752 demonstrated additivity to revertants 4RK and G550E, but not to R1070W, as previously shown for VX-809. RDR01752 was also additive to low temperature. Co-treatment of RDR01752 and VX-809 did not increase F508del-CFTR PM expression and function compared to each corrector alone. The lack of additivity of RDR01752 with the genetic revertant R1070W suggests that this compound has the same effect as the insertion of tryptophan at 1070, i.e., filling the pocket at the NBD1:ICL4 interface in F508del-CFTR, similarly to VX-809. Combination of RDR01752 with correctors mimicking the rescue by revertants G550E or 4RK could thus maximize rescue of F508del-CFTR.

    Topics: Aminopyridines; Benzodioxoles; Bronchi; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Discovery; Humans; Indoles; Mutation; Organoids; Protein Transport

2020
Full Rescue of F508del-CFTR Processing and Function by CFTR Modulators Can Be Achieved by Removal of Two Regulatory Regions.
    International journal of molecular sciences, 2020, Jun-25, Volume: 21, Issue:12

    Cystic Fibrosis (CF) is caused by mutations in the CF Transmembrane conductance Regulator (CFTR), the only ATP-binding cassette (ABC) transporter functioning as a channel. Unique to CFTR is a regulatory domain which includes a highly conformationally dynamic region-the regulatory extension (RE). The first nucleotide-binding domain of CFTR contains another dynamic region-regulatory insertion (RI). Removal of RI rescues the trafficking defect of CFTR with F508del, the most common CF-causing mutation. Here we aimed to assess the impact of RE removal (with/without RI or genetic revertants) on F508del-CFTR trafficking and how CFTR modulator drugs VX-809/lumacaftor and VX-770/ivacaftor rescue these variants. We generated cell lines expressing ΔRE and ΔRI CFTR (with/without genetic revertants) and assessed CFTR expression, stability, plasma membrane levels, and channel activity. Our data demonstrated that ΔRI significantly enhanced rescue of F508del-CFTR by VX-809. While the presence of the RI seems to be precluding full rescue of F508del-CFTR processing by VX-809, this region appears essential to rescue its function by VX-770, suggesting some contradictory role in rescue of F508del-CFTR by these two modulators. This negative impact of RI removal on VX-770-stimulated currents on F508del-CFTR can be compensated by deletion of the RE which also leads to the stabilization of this mutant. Despite both regions being conformationally dynamic, RI precludes F508del-CFTR processing while RE affects mostly its stability and channel opening.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Protein Domains; Quinolones; Regulatory Sequences, Nucleic Acid; Signal Transduction

2020
Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR.
    International journal of molecular sciences, 2020, Jul-08, Volume: 21, Issue:14

    Cystic Fibrosis is a lethal monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The most frequent mutation is the deletion of phenylalanine at position 508 of the protein. This F508del-CFTR mutation leads to misfolded protein that is detected by the quality control machinery within the endoplasmic reticulum and targeted for destruction by the proteasome. Modulating quality control proteins as molecular chaperones is a promising strategy for attenuating the degradation and stabilizing the mutant CFTR at the plasma membrane. Among the molecular chaperones, the small heat shock protein HspB1 and HspB4 were shown to promote degradation of F508del-CFTR. Here, we investigated the impact of HspB5 expression and phosphorylation on transport to the plasma membrane, function and stability of F508del-CFTR. We show that a phosphomimetic form of HspB5 increases the transport to the plasma membrane, function and stability of F508del-CFTR. These activities are further enhanced in presence of therapeutic drugs currently used for the treatment of cystic fibrosis (VX-770/Ivacaftor, VX-770+VX-809/Orkambi). Overall, this study highlights the beneficial effects of a phosphorylated form of HspB5 on F508del-CFTR rescue and its therapeutic potential in cystic fibrosis.

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Cell Line; Cell Membrane; Crystallins; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Heat-Shock Proteins; HEK293 Cells; Humans; Male; Mice; Molecular Chaperones; Mutation; Phenylalanine; Phosphorylation; Proteasome Endopeptidase Complex; Protein Transport; Quinolones

2020
Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: The case of S955P and 1717-2A>G.
    Biochimica et biophysica acta. Molecular basis of disease, 2020, 11-01, Volume: 1866, Issue:11

    For most of the >2000 CFTR gene variants reported, neither the associated disease liability nor the underlying basic defect are known, and yet these are essential for disease prognosis and CFTR-based therapeutics. Here we aimed to characterize two ultra-rare mutations - 1717-2A > G (c.1585-2A > G) and S955P (p.Ser955Pro) - as case studies for personalized medicine.. Patient-derived rectal biopsies and intestinal organoids from two individuals with each of these mutations and F508del (p.Phe508del) in the other allele were used to assess CFTR function, response to modulators and RNA splicing pattern. In parallel, we used cellular models to further characterize S955P independently of F508del and to assess its response to CFTR modulators.. Results in both rectal biopsies and intestinal organoids from both patients evidence residual CFTR function. Further characterization shows that 1717-2A > G leads to alternative splicing generating <1% normal CFTR mRNA and that S955P affects CFTR gating. Finally, studies in organoids predict that both patients are responders to VX-770 alone and even more to VX-770 combined with VX-809 or VX-661, although to different levels.. This study demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs to patients with rare mutations.

    Topics: Alleles; Aminophenols; Aminopyridines; Benzodioxoles; Blotting, Western; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electrophysiology; Fluorescent Antibody Technique; Genotype; Humans; Indoles; Mutation; Precision Medicine; Quinolones

2020
Reduced Intestinal Inflammation With Lumacaftor/Ivacaftor in Adolescents With Cystic Fibrosis.
    Journal of pediatric gastroenterology and nutrition, 2020, Volume: 71, Issue:6

    A chronic intestinal inflammation may occur in patients with cystic fibrosis (CF), while no therapeutic management is proposed. Although Lumacaftor/Ivacaftor is well-known to modulate the defective cystic fibrosis transmembrane conductance regulator (CFTR) protein in lungs, no data are available on the impact of this treatment on CF intestinal disorders. We, therefore, investigated the evolution of intestinal inflammation after initiation of Lumacaftor/Ivacaftor in CF adolescents (median of follow-up: 336 days [IQR: 278;435]). Median fecal calprotectin concentrations decreased significantly after Lumacaftor/Ivacaftor initiation (102 μg/g [IQR: 69-210]) compared with the baseline (713 μg/g (IQR:148-852), P = 0.001). To our knowledge, this study showed for the first time that CF-related intestinal inflammation is improved by Lumacaftor/Ivacaftor treatment.

    Topics: Adolescent; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Inflammation; Lung; Mutation; Quinolones

2020
Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells.
    Cells, 2020, 09-21, Volume: 9, Issue:9

    In vitro cultures of primary human airway epithelial cells (hAECs) grown at air-liquid interface have become a valuable tool to study airway biology under normal and pathologic conditions, and for drug discovery in lung diseases such as cystic fibrosis (CF). An increasing number of different differentiation media, are now available, making comparison of data between studies difficult. Here, we investigated the impact of two common differentiation media on phenotypic, transcriptomic, and physiological features of CF and non-CF epithelia. Cellular architecture and density were strongly impacted by the choice of medium. RNA-sequencing revealed a shift in airway cell lineage; one medium promoting differentiation into club and goblet cells whilst the other enriched the growth of ionocytes and multiciliated cells. Pathway analysis identified differential expression of genes involved in ion and fluid transport. Physiological assays (intracellular/extracellular pH, Ussing chamber) specifically showed that ATP12A and CFTR function were altered, impacting pH and transepithelial ion transport in CF hAECs. Importantly, the two media differentially affected functional responses to CFTR modulators. We argue that the effect of growth conditions should be appropriately determined depending on the scientific question and that our study can act as a guide for choosing the optimal growth medium for specific applications.

    Topics: Aminopyridines; Benzodioxoles; Cell Differentiation; Cell Lineage; Culture Media; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Diffusion Chambers, Culture; Epithelial Cells; Gene Expression Regulation; Goblet Cells; H(+)-K(+)-Exchanging ATPase; Humans; Hydrogen-Ion Concentration; Primary Cell Culture; Respiratory Mucosa; Sequence Analysis, RNA; Transcriptome

2020
Molecular Docking and QSAR Studies as Computational Tools Exploring the Rescue Ability of F508del CFTR Correctors.
    International journal of molecular sciences, 2020, Oct-29, Volume: 21, Issue:21

    Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. Different mutations involving the cystic fibrosis transmembrane regulator protein (CFTR) gene, which encodes the CFTR channel, are involved in CF. A number of life-prolonging therapies have been conceived and deeply investigated to combat this disease. Among them, the administration of the so-called CFTR modulators, such as correctors and potentiators, have led to quite beneficial effects. Recently, based on QSAR (quantitative structure activity relationship) studies, we reported the rational design and synthesis of compound

    Topics: Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Molecular Docking Simulation; Mutation; Quantitative Structure-Activity Relationship

2020
Successful Pregnancy of a Patient with Cystic Fibrosis Genotype F508del/ F508del and Progressed Pulmonary Destruction on lumacaftor/ivacaftor.
    Klinische Padiatrie, 2019, Volume: 231, Issue:5

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Genotype; Humans; Lung; Mutation; Pregnancy; Pregnancy Outcome; Quinolones

2019
Effect of Lumacaftor/Ivacaftor on Pulmonary Exacerbation Rates in Members with Cystic Fibrosis in a Medicaid Population.
    Journal of managed care & specialty pharmacy, 2019, Volume: 25, Issue:9

    Lumacaftor/ivacaftor (LUM/IVA) is indicated for patients with cystic fibrosis (CF) homozygous for the F508del mutation in the CFTR gene. In clinical trials, LUM/IVA decreased pulmonary exacerbation rates. To our knowledge, there is no published data evaluating real-world outcomes for Medicaid patients receiving LUM/IVA.. To compare CF pulmonary exacerbation rates before and after initiation of LUM/IVA in 1 state's Medicaid program.. This pre-post claims analysis screened fee-for-service and managed Medicaid members who had ≥ 1 pharmacy claim for LUM/IVA between July 2, 2015, and September 30, 2016. Members were included if they were aged ≥ 6 years with a CF diagnosis and homozygous for the F508del mutation, consistent with the indication at study initiation. Exclusion criteria included Medicaid as a secondary payer or any break in coverage during the study. The index date was defined as the first claim for LUM/IVA. Demographics and outcomes were derived from pharmacy and medical claims. Outcomes included overall rate of pulmonary exacerbations (reported as the total events for the study population 6 months before and after the index date and average annualized rate). Pulmonary exacerbation was defined as any combination of medical claims for an emergency room (ER) visit or inpatient hospitalization with a CF pulmonary exacerbation or respiratory infection (ICD-9/10-CM codes) or pharmacy claims for an oral or intravenous antibiotic (excluding macrolides). A gap of > 7 days was considered a new pulmonary exacerbation. Paired t-test was used to test significance.. 21 patients met inclusion criteria with an average age at treatment initiation of 20.1 years. Average proportion of days covered (SD) was 0.62 (0.29). The number of pulmonary exacerbations increased from 45 to 48 during the 6 months before and after the index date, respectively, and the annualized rate increased from 4.37 to 4.66 (. This analysis did not find a decrease in pulmonary exacerbation rate for Medicaid members receiving LUM/IVA; however, adherence was low. Further study of similar populations is needed to better understand the long-term effect of treatment.. No outside funding supported this study. The authors have nothing to disclose. A poster of this project was presented at the Academy of Managed Care Pharmacy Managed Care & Specialty Pharmacy Annual Meeting 2018 in Boston, MA, on April 23-26, 2018.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Female; Humans; Lung; Male; Medicaid; Middle Aged; Mutation; Quinolones; United States; Young Adult

2019
Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis.
    Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.], 2019, Volume: 19, Issue:8

    Approximately 1 in 5 patients with pancreas sufficient cystic fibrosis (PS-CF) will develop acute pancreatitis (AP). It is not known whether ivacaftor alone or in combination with other CFTR (cystic transmembrane regulator) modulators (tezacaftor or lumacaftor) can reduce the risk of AP in patients with PS-CF and AP history.. We retrospectively queried the CF registry at our institution for adult patients with PS-CF, a documented history of AP and initiation of CFTR modulators for pulmonary indications. Patient characteristics including demographics, CFTR genotype, pancreatitis risk factors, pancreatic exocrine function and other relevant laboratory, imaging parameters were obtained from the time of the sentinel AP episode through the follow-up period.. A total of 15 adult CF patients were identified with mean age of 44.1 years (SD ± 13.8). In the 24 months preceding CFTR modulator initiation, six of these patients had at least 1 episode of AP with median of 2 episodes [1.75, 2.5]. None of the patients had evidence of pancreatic calcifications or exocrine pancreas insufficiency at the time of CFTR modulator initiation. The mean duration of follow-up after CFTR modulator initiation was 36.7 months (SD ± 21.5). None of the patients who remained on CFTR modulators developed an episode of AP or required hospitalization for AP related abdominal pain during follow-up.. CFTR modulators, alone or in combination, substantially reduce the risk of recurrent AP over a mean follow-up period of 3 years in adult patients with PS-CF and a history of prior AP. These data suggest that any augmentation of CFTR function can reduce the risk of pancreatitis.

    Topics: Adult; Aged; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Exocrine Pancreatic Insufficiency; Female; Humans; Indoles; Male; Middle Aged; Quinolones; Retrospective Studies

2019
Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors.
    International journal of molecular sciences, 2019, Nov-01, Volume: 20, Issue:21

    Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1-633). By contrast, the CFTR C-half (M2N2, residues 837-1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.

    Topics: Aminopyridines; Benzamides; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gene Expression Regulation; HEK293 Cells; Humans; Indoles; Mutant Proteins; Mutation; Quinazolines; Thiazoles

2019
Cystic Fibrosis: Emerging Understanding and Therapies.
    Annual review of medicine, 2019, 01-27, Volume: 70

    Cystic fibrosis (CF) is the most common life-limiting genetic disease in Caucasian patients. Continued advances have led to improved survival, and adults with CF now outnumber children. As our understanding of the disease improves, new therapies have emerged that improve the basic defect, enabling patient-specific treatment and improved outcomes. However, recurrent exacerbations continue to lead to morbidity and mortality, and new pathogens have been identified that may lead to worse outcomes. In addition, new complications, such as CF-related diabetes and increased risk of gastrointestinal cancers, are creating new challenges in management. For patients with end-stage disease, lung transplantation has remained one of the few treatment options, but challenges in identifying the most appropriate patients remain.

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chronic Disease; Combined Modality Therapy; Comprehension; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Disease Management; Disease Progression; Drug Approval; Female; Genetic Predisposition to Disease; Humans; Lung Transplantation; Male; Prognosis; Quinolones; Risk Assessment; Severity of Illness Index; Survival Analysis; United States; United States Food and Drug Administration

2019
Might Brushed Nasal Cells Be a Surrogate for CFTR Modulator Clinical Response?
    American journal of respiratory and critical care medicine, 2019, 01-01, Volume: 199, Issue:1

    Topics: Aminopyridines; Benzodioxoles; Biomarkers; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Nasal Cavity; Nasal Mucosa; Treatment Outcome

2019
Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    The Journal of physiology, 2019, Volume: 597, Issue:2

    Electrophysiological characterization of Q1412X-CFTR, a C-terminal truncation mutation of cystic fibrosis transmembrane conductance regulator (CFTR) associated with the severe form of cystic fibrosis (CF), reveals a gating defect that has not been reported previously. Mechanistic investigations of the gating deficit in Q1412X-CFTR suggest that the reduced open probability in Q1412X-CFTR is the result of a disruption of the function of the second ATP binding site (or site 2) in the nucleotide binding domains (NBDs). Detailed comparisons of several mutations with different degrees of truncation in the C-terminal region of NBD2 reveal the importance of the last two beta-strands in NBD2 for maintaining proper gating functions. The results of the present study also show that the application of clinically-approved drugs (VX-770 and VX-809) can greatly enhance the function of Q1412X, providing in vitro evidence for a therapeutic strategy employing both reagents for patients bearing Q1412X or similar truncation mutations.. Cystic fibrosis (CF) is caused by loss-of-function mutations of cystic fibrosis transmembrane conductance regulator (CFTR), a phosphorylation-activated but ATP-gated chloride channel. Based on the molecular mechanism of CF pathogenesis, disease-associated mutations are categorized into six classes. Among them, Class VI, whose members include some of the C-terminal truncation mutations such as Q1412X, is defined as decreased membrane expression because of a faster turnover rate. In the present study, we characterized the functional properties of Q1412X-CFTR, a severe-form premature stop codon mutation. We confirmed previous findings of a ∼90% decrease in membrane expression but found a ∼95% reduction in the open probability (P

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Chloride Channel Agonists; CHO Cells; Cricetulus; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Ion Channel Gating; Mutation; Protein Conformation; Quinolones

2019
Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants.
    Life science alliance, 2019, Volume: 2, Issue:1

    Cystic fibrosis is caused by mutations in the

    Topics: Alleles; Aminophenols; Aminopyridines; Benzodioxoles; Biopsy; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genotype; HEK293 Cells; Humans; Mutation; Organoids; Protein Folding; Protein Structure, Tertiary; Quinolones; Rectum; Transfection

2019
Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers.
    Journal of controlled release : official journal of the Controlled Release Society, 2019, 02-28, Volume: 296

    Cystic fibrosis (CF), a most deadly genetic disorder, is caused by mutations of CF transmembrane receptor (CFTR) - a chloride channel present at the surface of epithelial cells. In general, two steps have to be involved in treatment of the disease: correction of cellular defects and potentiation to further increase channel opening. Consequently, a combinatorial simultaneous treatment with two drugs with different mechanisms of action, lumacaftor and ivacaftor, has been recently proposed. While lumacaftor is used to correct p.Phe508del mutation (the loss of phenylalanine at position 508) and increase the amount of cell surface-localized CFTR protein, ivacaftor serves as a CFTR potentiator that increases the open probability of CFTR channels. Since the main organ that is affected by cystic fibrosis is the lung, the delivery of drugs directly to the lungs by inhalation has a potential to enhance the efficacy of the treatment of CF and limit adverse side effects upon healthy tissues and organs. Based on our extensive experience in inhalation delivering of drugs by different nanocarriers, we selected nanostructured lipid carriers (NLC) for the delivery both drugs directly to the lungs by inhalation and tested NLC loaded with drugs in vitro (normal and CF human bronchial epithelial cells) and in vivo (homozygote/homozygote bi-transgenic mice with CF). The results show that the designed NLCs demonstrated a high drug loading efficiency and were internalized in the cytoplasm of CF cells. It was found that NLC-loaded drugs were able to restore the expression and function of CFTR protein. As a result, the combination of lumacaftor and ivacaftor delivered by lipid nanoparticles directly into the lungs was highly effective in treating lung manifestations of cystic fibrosis.

    Topics: Administration, Inhalation; Aminophenols; Aminopyridines; Animals; Benzodioxoles; Cell Line; Chloride Channel Agonists; Cystic Fibrosis; Drug Carriers; Drug Combinations; Humans; Lipids; Lung; Mice, Transgenic; Nanostructures; Quinolones

2019
The study of CFTR modulators in the very young.
    The Lancet. Respiratory medicine, 2019, Volume: 7, Issue:4

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Child, Preschool; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones

2019
Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients.
    Biochimica et biophysica acta. Molecular basis of disease, 2019, 06-01, Volume: 1865, Issue:6

    We analyzed the CFTR response to VX-809/VX-770 drugs in conditionally reprogrammed cells (CRC) of human nasal epithelium (HNE) from F508del/F508del patients based on SNP rs7512462 in the Solute Carrier Family 26, Member 9 (SLC26A9; MIM: 608481) gene.. The CRC-HNE cells from F508del/F508del patients evidenced high variability in the basal levels of CFTR function. Also, the rs7512462*C allele showed an increased basal CFTR function and higher responses to VX-809 + VX-770. The rs7512462*CC + CT genotypes together evidenced CFTR function levels of 14.89% relatively to wt/wt (rs7512462*CT alone-15.29%) i.e., almost double of rs7512462*TT (7.13%). Furthermore, sweat [Cl. The CFTR function can be performed in F508del/F508del patient-derived CRC-HNEs and its function and responses to VX-809 + VX-770 combination as well as clinical data, are all associated with the rs7512462 variant, which partially sheds light on the generally inter-individual phenotypic variability and in personalized responses to CFTR modulator drugs.

    Topics: Alleles; Aminophenols; Aminopyridines; Antiporters; Base Sequence; Benzodioxoles; Body Mass Index; Case-Control Studies; Cellular Reprogramming; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Diffusion Chambers, Culture; Epithelial Cells; Gene Expression; Genotype; Humans; Models, Biological; Nasal Mucosa; Polymorphism, Single Nucleotide; Primary Cell Culture; Quinolones; Sequence Deletion; Sulfate Transporters; Sweat

2019
Lumacaftor-rescued F508del-CFTR has a modified bicarbonate permeability.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2019, Volume: 18, Issue:5

    Deletion of phenylalanine at position 508, F508del, the most frequent mutation among Cystic fibrosis (CF) patients, destabilizes the protein, thus causing both a folding and a trafficking defect, resulting in a dramatic reduction in expression of CFTR. In vitro treatment with lumacaftor produces an enhancement of anion transport in cells. We studied the permeability properties of the CFTR mutant F508del treated with the corrector lumacaftor, showing that the rescued protein has selectivity properties different than the wild type CFTR, showing an augmented bicarbonate permeability. This difference would indicate a diverse conformation of the rescued F508del-CFTR, that is plausibly reflected on an improper regulation of the airway surface liquid, lessening the efficacy of the corrector. Our findings rather support the idea that a combination of correctors would be required to address the CFTR-dependent bicarbonate permeability.

    Topics: Aminopyridines; Anion Transport Proteins; Benzodioxoles; Bicarbonates; Cell Membrane Permeability; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Ion Transport; Membrane Transport Modulators; Mutation

2019
HDAC inhibitors rescue multiple disease-causing CFTR variants.
    Human molecular genetics, 2019, 06-15, Volume: 28, Issue:12

    Understanding the role of the epigenome in protein-misfolding diseases remains a challenge in light of genetic diversity found in the world-wide population revealed by human genome sequencing efforts and the highly variable response of the disease population to therapeutics. An ever-growing body of evidence has shown that histone deacetylase (HDAC) inhibitors (HDACi) can have significant benefit in correcting protein-misfolding diseases that occur in response to both familial and somatic mutation. Cystic fibrosis (CF) is a familial autosomal recessive disease, caused by genetic diversity in the CF transmembrane conductance regulator (CFTR) gene, a cyclic Adenosine MonoPhosphate (cAMP)-dependent chloride channel expressed at the apical plasma membrane of epithelial cells in multiple tissues. The potential utility of HDACi in correcting the phenylalanine 508 deletion (F508del) CFTR variant as well as the over 2000 CF-associated variants remains controversial. To address this concern, we examined the impact of US Food and Drug Administration-approved HDACi on the trafficking and function of a panel of CFTR variants. Our data reveal that panobinostat (LBH-589) and romidepsin (FK-228) provide functional correction of Class II and III CFTR variants, restoring cell surface chloride channel activity in primary human bronchial epithelial cells. We further demonstrate a synergistic effect of these HDACi with Vx809, which can significantly restore channel activity for multiple CFTR variants. These data suggest that HDACi can serve to level the cellular playing field for correcting CF-causing mutations, a leveling effect that might also extend to other protein-misfolding diseases.

    Topics: Aminopyridines; Benzodioxoles; Cell Membrane; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Mutation; Panobinostat; Protein Transport; Sequence Deletion; Sulfonamides

2019
Phenotyping ciliary dynamics and coordination in response to CFTR-modulators in Cystic Fibrosis respiratory epithelial cells.
    Nature communications, 2019, 04-16, Volume: 10, Issue:1

    Personalized approaches for systematically assessing ciliary beat dynamics and for drug testing would improve the challenging task of diagnosing and treating respiratory disorders. In this pilot study, we show how multiscale differential dynamic microscopy (multi-DDM) can be used to characterize collective ciliary beating in a non-biased automated manner. We use multi-DDM to assess the efficacy of different CFTR-modulating drugs in human airway epithelial cells derived from subjects with cystic fibrosis (ΔF508/ΔF508 and ∆F508/-) based on ciliary beat frequency and coordination. Similar to clinical observations, drug efficacy is variable across donors, even within the same genotype. We show how our assay can quantitatively identify the most efficient drugs for restoring ciliary beating for each individual donor. Multi-DDM provides insight into ciliary beating responses following treatment with drugs, and has application in the broader context of respiratory disease and for drug screening.

    Topics: Algorithms; Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Cilia; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Disease Progression; Epithelial Cells; Genotype; Humans; Microscopy; Oscillometry; Phenotype; Quinolones; Video Recording

2019
Unexpected analytical interference in isavuconazole UV determination in a child in therapy with lumacaftor/ivacaftor for cystic fibrosis.
    Clinical chemistry and laboratory medicine, 2019, Oct-25, Volume: 57, Issue:11

    Topics: Aminophenols; Aminopyridines; Antifungal Agents; Antineoplastic Combined Chemotherapy Protocols; Benzodioxoles; Cystic Fibrosis; Female; Humans; Male; Nitriles; Pyridines; Quinolones; Triazoles

2019
Negotiations between the NHS and Vertex on access to lumacaftor and ivacaftor become protracted.
    The Lancet. Respiratory medicine, 2019, Volume: 7, Issue:9

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Drug Combinations; Drug Industry; England; Humans; Negotiating; Quinolones; State Medicine

2019
Discovery of 4-[(2R,4R)-4-({[1-(2,2-Difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a Potent Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Corrector for
    Journal of medicinal chemistry, 2018, 02-22, Volume: 61, Issue:4

    Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.

    Topics: Amides; Animals; Benzoates; Chromans; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dogs; Drug Discovery; Humans; Mutant Proteins; Rats; Structure-Activity Relationship

2018
Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools.
    European journal of medicinal chemistry, 2018, Jan-20, Volume: 144

    The most common CF mutation, F508del, impairs the processing and gating of CFTR protein. This deletion results in the improper folding of the protein and its degradation before it reaches the plasma membrane of epithelial cells. Present correctors, like VX809 only induce a partial rescue of the mutant protein. Our previous studies reported a class of compounds, called aminoarylthiazoles (AATs), featuring an interesting activity as correctors. Some of them show additive effect with VX809 indicating a different mechanism of action. In an attempt to construct more interesting molecules, it was thought to generate chemically hybrid compounds, blending a portion of VX809 merged to the thiazole scaffold. This approach was guided by the development of QSAR analyses, which were performed based on the F508del correctors so far disclosed in the literature. This strategy was aimed at exploring the key requirements turning in the corrector ability of the collected derivatives and allowed us to derive a predictive model guiding for the synthesis of novel hybrids as promising correctors. The new molecules were tested in functional and biochemical assays on bronchial CFBE41o-cells expressing F508del-CFTR showing a promising corrector activity.

    Topics: Aminopyridines; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Quantitative Structure-Activity Relationship; Thiazoles

2018
Lumacaftor/ivacaftor combination therapy for cystic fibrosis: A nationwide survey among clinicians.
    The clinical respiratory journal, 2018, Volume: 12, Issue:4

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Disease Progression; Drug Combinations; Drug Therapy, Combination; Forced Expiratory Volume; Homozygote; Humans; Italy; Mutation; Quinolones; Surveys and Questionnaires; Treatment Outcome

2018
Src kinase inhibition reduces inflammatory and cytoskeletal changes in ΔF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy.
    Hepatology (Baltimore, Md.), 2018, Volume: 67, Issue:3

    Cystic fibrosis transmembrane conductance regulator (CFTR), the channel mutated in cystic fibrosis (CF), is expressed by the biliary epithelium (i.e., cholangiocytes) of the liver. Progressive clinical liver disease (CF-associated liver disease; CFLD) occurs in around 10% of CF patients and represents the third leading cause of death. Impaired secretion and inflammation contribute to CFLD; however, the lack of human-derived experimental models has hampered the understanding of CFLD pathophysiology and the search for a cure. We have investigated the cellular mechanisms altered in human CF cholangiocytes using induced pluripotent stem cells (iPSCs) derived from healthy controls and a ΔF508 CFTR patient. We have devised a novel protocol for the differentiation of human iPSC into polarized monolayers of cholangiocytes. Our results show that iPSC-cholangiocytes reproduced the polarity and the secretory function of the biliary epithelium. Protein kinase A/cAMP-mediated fluid secretion was impaired in ΔF508 cholangiocytes and negligibly improved by VX-770 and VX-809, two small molecule drugs used to correct and potentiate ΔF508 CFTR. Moreover, ΔF508 cholangiocytes showed increased phosphorylation of Src kinase and Toll-like receptor 4 and proinflammatory changes, including increased nuclear factor kappa-light-chain-enhancer of activated B cells activation, secretion of proinflammatory chemokines (i.e., monocyte chemotactic protein 1 and interleukin-8), as well as alterations of the F-actin cytoskeleton. Treatment with Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) decreased the inflammatory changes and improved cytoskeletal defects. Inhibition of Src, along with administration of VX-770 and VX-809, successfully restored fluid secretion to normal levels.. Our findings have strong translational potential and indicate that targeting Src kinase and decreasing inflammation may increase the efficacy of pharmacological therapies aimed at correcting the basic ΔF508 defect in CF liver patients. These studies also demonstrate the promise of applying iPSC technology in modeling human cholangiopathies. (Hepatology 2018;67:972-988).

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Biliary Tract; Cell Culture Techniques; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Cytokines; Cytoskeleton; Epithelial Cells; Fluorescent Antibody Technique; Humans; Induced Pluripotent Stem Cells; Inflammation; Mice; Microscopy, Confocal; Pyrimidines; Quinolones; Signal Transduction; src-Family Kinases

2018
Cigarette smoke activates CFTR through ROS-stimulated cAMP signaling in human bronchial epithelial cells.
    American journal of physiology. Cell physiology, 2018, 01-01, Volume: 314, Issue:1

    Air pollution stimulates airway epithelial secretion through a cholinergic reflex that is unaffected in cystic fibrosis (CF), yet a strong correlation is observed between passive smoke exposure in the home and impaired lung function in CF children. Our aim was to study the effects of low smoke concentrations on cystic fibrosis transmembrane conductance regulator (CFTR) function in vitro. Cigarette smoke extract stimulated robust anion secretion that was transient, mediated by CFTR, and dependent on cAMP-dependent protein kinase activation. Secretion was initiated by reactive oxygen species (ROS) and mediated by at least two distinct pathways: autocrine activation of EP4 prostanoid receptors and stimulation of Ca

    Topics: Aminophenols; Aminopyridines; Autocrine Communication; Benzodioxoles; Bronchi; Calcium Signaling; Cell Line; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Mutation; Oxidative Stress; Quinolones; Reactive Oxygen Species; Receptors, Prostaglandin E, EP4 Subtype; Second Messenger Systems; Secretory Pathway; Tobacco Smoke Pollution

2018
Lumacaftor (VX-809) restores the ability of CF macrophages to phagocytose and kill Pseudomonas aeruginosa.
    American journal of physiology. Lung cellular and molecular physiology, 2018, 03-01, Volume: 314, Issue:3

    Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by chronic bacterial lung infection and excessive inflammation, which lead to progressive loss of lung function and premature death. Although ivacaftor (VX-770) alone and ivacaftor in combination with lumacaftor (VX-809) improve lung function in CF patients with the Gly551Asp and del508Phe mutations, respectively, the effects of these drugs on the function of human CF macrophages are unknown. Thus studies were conducted to examine the effects of lumacaftor alone and lumacaftor in combination with ivacaftor (i.e., ORKAMBI) on the ability of human CF ( del508Phe/ del508Phe) monocyte-derived macrophages (MDMs) to phagocytose and kill Pseudomonas aeruginosa. Lumacaftor alone restored the ability of CF MDMs to phagocytose and kill P. aeruginosa to levels observed in MDMs obtained from non-CF (WT-CFTR) donors. This effect contrasts with the partial (~15%) correction of del508Phe Cl

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Forced Expiratory Volume; Humans; Macrophages; Mutation; Phagocytosis; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones

2018
Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells.
    American journal of physiology. Lung cellular and molecular physiology, 2018, 04-01, Volume: 314, Issue:4

    Cystic fibrosis patients exhibit chronic Pseudomonas aeruginosa respiratory infections and sustained proinflammatory state favoring lung tissue damage and remodeling, ultimately leading to respiratory failure. Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function is associated with MAPK hyperactivation and increased cytokines expression, such as interleukin-8 [chemoattractant chemokine (C-X-C motif) ligand 8 (CXCL8)]. Recently, new therapeutic strategies directly targeting the basic CFTR defect have been developed, and ORKAMBI (Vx-809/Vx-770 combination) is the only Food and Drug Administration-approved treatment for CF patients homozygous for the F508del mutation. Here we aimed to determine the effect of the Vx-809/Vx-770 combination on the induction of the inflammatory response by fully differentiated primary bronchial epithelial cell cultures from CF patients carrying F508del mutations, following exposure to P. aeruginosa exoproducts. Our data unveiled that CFTR functional rescue with Vx-809/Vx-770 drastically reduces CXCL8 (as well as CXCL1 and CXCL2) transcripts and p38 MAPK phosphorylation in response to P. aeruginosa exposure through a CFTR-dependent mechanism. These results suggest that ORKAMBI has anti-inflammatory properties that could decrease lung inflammation and contribute to the observed beneficial impact of this treatment in CF patients.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Cells, Cultured; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Interleukin-8; Mutation; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones

2018
High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue.
    Molecular pharmaceutics, 2018, 03-05, Volume: 15, Issue:3

    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.

    Topics: Aminopyridines; Benzodioxoles; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Evaluation, Preclinical; Drug Synergism; Drug Therapy, Combination; Flow Cytometry; Fluorescent Dyes; Gene Knockdown Techniques; HEK293 Cells; High-Throughput Screening Assays; Humans; Mutation; Phosphotransferases; Protein Kinase Inhibitors; RNA, Small Interfering; Treatment Outcome

2018
Biomarkers: Their Role in CFTR Modulator Therapies from Early Development to the Clinic.
    American journal of respiratory and critical care medicine, 2018, 06-01, Volume: 197, Issue:11

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biomarkers; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones

2018
Chronic β2AR stimulation limits CFTR activation in human airway epithelia.
    JCI insight, 2018, 02-22, Volume: 3, Issue:4

    Traditional pulmonary therapies for cystic fibrosis (CF) target the downstream effects of CF transmembrane conductance regulator (CFTR) dysfunction (the cause of CF). Use of one such therapy, β-adrenergic bronchodilators (such as albuterol), is nearly universal for airway clearance. Conversely, novel modulator therapies restore function to select mutant CFTR proteins, offering a disease-modifying treatment. Recent trials of modulators targeting F508del-CFTR, the most common CFTR mutation, suggest that chronic β-agonist use may undermine clinical modulator benefits. We therefore sought to understand the impact of chronic or excess β-agonist exposure on CFTR activation in human airway epithelium. The present studies demonstrate a greater than 60% reduction in both wild-type and modulator-corrected F508del-CFTR activation following chronic exposure to short- and long-acting β-agonists. This reduction was due to reduced cellular generation of cAMP downstream of the β-2 adrenergic receptor-G protein complex. Our results point towards a posttranscriptional reduction in adenylyl cyclase function as the mechanism of impaired CFTR activation produced by prolonged β-agonist exposure. β-Agonist-induced CFTR dysfunction was sufficient to abrogate VX809/VX770 modulation of F508del-CFTR in vitro. Understanding the clinical relevance of our observations is critical for CF patients using these drugs, and for investigators to inform future CFTR modulator drug trials.

    Topics: Adrenergic beta-2 Receptor Agonists; Albuterol; Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Cilia; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Interactions; Epithelial Cells; Humans; Mutation; Quinolones; Respiratory Mucosa; Time Factors

2018
Personalised CFTR pharmacotherapeutic response testing and therapy of cystic fibrosis.
    The European respiratory journal, 2018, Volume: 51, Issue:6

    Topics: Adult; Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Male; Mutation; Precision Medicine; Quinolones

2018
Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains.
    Molecular pharmacology, 2018, Volume: 93, Issue:6

    The most common cystic fibrosis causing mutation is deletion of phenylalanine at position 508 (F508del), a mutation that leads to protein misassembly with defective processing. Small molecule corrector compounds: VX-809 or Corr-4a (C4) partially restores processing of the major mutant. These two prototypical corrector compounds cause an additive effect on F508del/cystic fibrosis transmembrane conductance regulator (CFTR) processing, and hence were proposed to act through distinct mechanisms: VX-809 stabilizing the first membrane-spanning domain (MSD) 1, and C4 acting on the second half of the molecule [consisting of MSD2 and/or nucleotide binding domain (NBD) 2]. We confirmed the effect of VX-809 in enhancing the stability of MSD1 and showed that it also allosterically modulates MSD2 when coexpressed with MSD1. We showed for the first time that C4 stabilizes the second half of the CFTR protein through its action on MSD2. Given the allosteric effect of VX-809 on MSD2, we were prompted to test the hypothesis that the two correctors interact in the full-length mutant protein. We did see evidence supporting their interaction in the full-length F508del-CFTR protein bearing secondary mutations targeting domain:domain interfaces. Disruption of the MSD1:F508del-NBD1 interaction (R170G) prevented correction by both compounds, pointing to the importance of this interface in processing. On the other hand, stabilization of the MSD2:F508del-NBD1 interface (by introducing R1070W) led to a synergistic effect of the compound combination on the total abundance of both the immature and mature forms of the protein. Together, these findings suggest that the two correctors interact in stabilizing the complex of MSDs in F508del-CFTR.

    Topics: Aminopyridines; Benzamides; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; HEK293 Cells; Humans; Mutation; Phenylalanine; Protein Structure, Tertiary; Thiazoles

2018
Lipophilicity of the Cystic Fibrosis Drug, Ivacaftor (VX-770), and Its Destabilizing Effect on the Major CF-causing Mutation: F508del.
    Molecular pharmacology, 2018, Volume: 94, Issue:2

    Deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cystic fibrosis (CF)-causing mutation. Recently, ORKAMBI, a combination therapy that includes a corrector of the processing defect of F508del-CFTR (lumacaftor or VX-809) and a potentiator of channel activity (ivacaftor or VX-770), was approved for CF patients homozygous for this mutation. However, clinical studies revealed that the effect of ORKAMBI on lung function is modest and it was proposed that this modest effect relates to a negative impact of VX-770 on the stability of F508del-CFTR. In the current studies, we showed that this negative effect of VX-770 at 10

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Freeze Drying; HEK293 Cells; Humans; Microscopy, Fluorescence; Mutation; Protein Stability; Quinolones; Sulfate Transporters

2018
Rescue of CFTR NBD2 mutants N1303K and S1235R is influenced by the functioning of the autophagosome.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2018, Volume: 17, Issue:5

    The missing phenylalanine at position 508, located in nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane regulator (CFTR), is the most common cystic fibrosis mutation. Severe disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we used a combination of biochemical, cell biological and electrophysiological approaches and newly created cell lines to study two disease-causing NBD2 mutants, N1303K and S1235R. We observed that neither was sensitive to E64, a cysteine protease inhibitor. However, further investigation showed that when treated with a combination of correctors, C4 + C18, both mutants also responded to E64. Further exploration to assess aggresome throughput using the autophagy regulator LC3 as a marker showed that, in the absence of correctors, N1303K showed a stalled throughput of LC3-II to the aggresome. The throughput became active again after treatment with the corrector combination C4 + C18. Confocal microscopic studies showed that the N1303K and S1235R mutant proteins both co-localized with LC3, but this co-localization was abolished by the corrector combination and, to a lesser extent, by VX-809. Both the corrector combination and VX-809 increased the CFTR chloride channel function of both mutants. We conclude that correctors have a dual effect, particularly on N1303K: they improve trafficking and function at the plasma membrane and reduce the association with autophagosomes. After treatment with correctors persistent degradation by the autophagosome may limit restoration of function. Thus, mutations in NBD2 of CFTR, in contrast to ΔF508-CFTR, may require additional personalized strategies to rescue them.

    Topics: Aminopyridines; Animals; Autophagosomes; Autophagy; Benzodioxoles; Biological Transport; Blotting, Western; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Electric Conductivity; Leucine; Mutant Proteins; Mutation; Small Molecule Libraries

2018
Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators.
    JCI insight, 2018, 07-26, Volume: 3, Issue:14

    Treatment of individuals with cystic fibrosis (CF) has been transformed by small molecule therapies that target select pathogenic variants in the CF transmembrane conductance regulator (CFTR). To expand treatment eligibility, we stably expressed 43 rare missense CFTR variants associated with moderate CF from a single site in the genome of human CF bronchial epithelial (CFBE41o-) cells. The magnitude of drug response was highly correlated with residual CFTR function for the potentiator ivacaftor, the corrector lumacaftor, and ivacaftor-lumacaftor combination therapy. Response of a second set of 16 variants expressed stably in Fischer rat thyroid (FRT) cells showed nearly identical correlations. Subsets of variants were identified that demonstrated statistically significantly higher responses to specific treatments. Furthermore, nearly all variants studied in CFBE cells (40 of 43) and FRT cells (13 of 16) demonstrated greater response to ivacaftor-lumacaftor combination therapy than either modulator alone. Together, these variants represent 87% of individuals in the CFTR2 database with at least 1 missense variant. Thus, our results indicate that most individuals with CF carrying missense variants are (a) likely to respond modestly to currently available modulator therapy, while a small fraction will have pronounced responses, and (b) likely to derive the greatest benefit from combination therapy.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Drug Therapy, Combination; HEK293 Cells; Humans; Mutation; Quinolones

2018
Prolonged co-treatment with HGF sustains epithelial integrity and improves pharmacological rescue of Phe508del-CFTR.
    Scientific reports, 2018, 08-29, Volume: 8, Issue:1

    Cystic fibrosis (CF), the most common inherited disease in Caucasians, is caused by mutations in the CFTR chloride channel, the most frequent of which is Phe508del. Phe508del causes not only intracellular retention and premature degradation of the mutant CFTR protein, but also defective channel gating and decreased half-life when experimentally rescued to the plasma membrane (PM). Despite recent successes in the functional rescue of several CFTR mutations with small-molecule drugs, the folding-corrector/gating-potentiator drug combinations approved for Phe508del-CFTR homozygous patients have shown only modest benefit. Several factors have been shown to contribute to this outcome, including an unexpected intensification of corrector-rescued Phe508del-CFTR PM instability after persistent co-treatment with potentiator drugs. We have previously shown that acute co-treatment with hepatocyte growth factor (HGF) can significantly enhance the chemical correction of Phe508del-CFTR. HGF coaxes the anchoring of rescued channels to the actin cytoskeleton via induction of RAC1 GTPase signalling. Here, we demonstrate that a prolonged, 15-day HGF treatment also significantly improves the functional rescue of Phe508del-CFTR by the VX-809 corrector/VX-770 potentiator combination, in polarized bronchial epithelial monolayers. Importantly, we found that HGF treatment also prevented VX-770-mediated destabilization of rescued Phe508del-CFTR and enabled further potentiation of the rescued channels. Most strikingly, prolonged HGF treatment prevented previously unrecognized epithelial dedifferentiation effects of sustained exposure to VX-809. This was observed in epithelium-like monolayers from both lung and intestinal origin, representing the two systems most affected by adverse symptoms in patients treated with VX-809 or the VX-809/VX-770 combination. Taken together, our findings strongly suggest that co-administration of HGF with corrector/potentiator drugs could be beneficial for CF patients.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Hepatocyte Growth Factor; Humans; Models, Biological; Mutant Proteins; Quinolones; Treatment Outcome

2018
Cost-effectiveness analysis of lumacaftor and ivacaftor combination for the treatment of patients with cystic fibrosis in the United States.
    Orphanet journal of rare diseases, 2018, 09-29, Volume: 13, Issue:1

    Lumacaftor/ivacaftor was approved by the Food and Drug Administration (FDA) as a combination treatment for Cystic Fibrosis (CF) patients who are homozygous for the F508del mutation. The objective of this study was to assess the cost-effectiveness of lumacaftor/ivacaftor combination for the treatment of CF homozygous for F508del CF Transmembrane Conductance Regulator (CFTR) mutation.. A Markov-state transition model following a cohort of 12 year-old CF patients homozygous for F508del CFTR mutation in the United States (US) over two, four, six, eight and ten years from a payer's perspective was developed using TreeAge Pro 2016. Markov states included: mild (percentage of predicted forced expiratory volume in 1 s or FEV1 > 70%), moderate (FEV1 40-70%), severe (FEV1 < 40%) disease, post-transplant, and death. Pulmonary exacerbation and lung transplant were included as transition states. All the input parameters were estimated from the literature. A 1-year cycle length and 3% discount rate were applied. To assess uncertainty in long-term treatment effects, several scenarios were modelled: 100% long-term effectiveness (base-case), defined as improvement in FEV1 in the first year followed by no annual FEV1 decline and a constant reduction in pulmonary exacerbations throughout, 75%, 50%, 25% and 0% (worst case) long-term effectiveness, where treatment effects were intermediate from the second year of treatment until the end of the time horizon. Other scenarios included changing the starting age of the cohort to 6 and 25 years. Primary outcome included incremental cost-effectiveness ratio (ICER) in terms of cost per quality adjusted life year (QALY) gained. One-way and probabilistic sensitivity analyses were performed to determine uncertainty.. Under the base-case, Lumacaftor/ivacaftor resulted in higher QALYs (7.29 vs 6.84) but at a very high cost ($1,778,920.88) compared to usual care ($116,155.76) over a 10-year period. The ICER for base-case and worst-case scenarios were $3,655,352 / QALY, and $8,480,265/QALY gained, respectively. In the base-case, lumacaftor/ivacaftor was cost-effective at a threshold of $150,000/QALY-gained when annual drug costs were lower than $4153. The results were not substantially affected by the sensitivity analyses.. The intervention produces large QALY gains but at an extremely high cost, resulting in an ICER that would not typically be covered by any insurer. Lumacaftor/ivacaftor's status as an orphan drug complicates coverage decisions.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Cost-Benefit Analysis; Cystic Fibrosis; Female; Humans; Male; Quality-Adjusted Life Years; Quinolones; United States

2018
The cystic fibrosis airway milieu enhances rescue of F508del in a pre-clinical model.
    The European respiratory journal, 2018, Volume: 52, Issue:6

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Cell Line; Colforsin; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Inflammation; Mutation; Quinolones; Respiratory System

2018
Compassionate Use of Lumacaftor/Ivacaftor in Cystic Fibrosis: Spanish Experience.
    Archivos de bronconeumologia, 2018, Volume: 54, Issue:12

    The most common cystic fibrosis (CF)-causing mutation is deltaF508 (F508del), which is present in 28% of CF Spanish patients. While the literature based on real-life studies on CF patients homozygous F508del treated with lumacaftor/ivacaftor is limited, it demonstrates the need for better strategies to prevent related adverse events (AEs) as well as the development of newer drugs.. We conducted a multicenter, retrospective, observational study to describe the effects of lumacaftor/ivacaftor treatment in real-life in Spain. 20 CF patients were included, all aged 6 and upwards and presented with ppFEV1<40%, chosen from CF units country-wide. For the purposes of the study, they were treated with lumacaftor/ivacaftor 200/125mg two tablets twice a day on a compassionate use programme throughout 2016. The primary endpoint was measured in all of the sample patients. Data were analysed from ppFEV1 at baseline and was measured every 6 months.. While treatment with lumacaftor/ivacaftor resulted in an improvement in the number of pulmonary severe exacerbations, no improvement in ppFEV1 or BMI was found.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Child; Chloride Channel Agonists; Compassionate Use Trials; Cystic Fibrosis; Drug Combinations; Female; Humans; Male; Middle Aged; Quinolones; Retrospective Studies; Spain; Young Adult

2018
Effects of Lumacaftor/Ivacaftor in a Pediatric Cohort Homozygous for F508del-CFTR.
    American journal of respiratory and critical care medicine, 2017, 04-01, Volume: 195, Issue:7

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones

2017
Orkambi in patients with severe disease - Bumps in the road to CFTR modulation.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2017, Volume: 16, Issue:3

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Quinolones

2017
Vertex CF data wow Wall Street.
    Nature biotechnology, 2017, 09-11, Volume: 35, Issue:9

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Drug Combinations; Humans; Quinolones

2017
Optimized LC-MS/MS Method for the High-throughput Analysis of Clinical Samples of Ivacaftor, Its Major Metabolites, and Lumacaftor in Biological Fluids of Cystic Fibrosis Patients.
    Journal of visualized experiments : JoVE, 2017, 10-15, Issue:128

    Defects in the cystic fibrosis trans-membrane conductance regulator (CFTR) are the cause of cystic fibrosis (CF), a disease with life-threatening pulmonary manifestations. Ivacaftor (IVA) and ivacaftor-lumacaftor (LUMA) combination are two new breakthrough CF drugs that directly modulate the activity and trafficking of the defective CFTR-protein. However, there is still a dearth of understanding on pharmacokinetic/pharmacodynamic parameters and the pharmacology of ivacaftor and lumacaftor. The HPLC-MS technique for the simultaneous analysis of the concentrations of ivacaftor, hydroxymethyl-ivacaftor, ivacaftor-carboxylate, and lumacaftor in biological fluids in patients receiving standard ivacaftor or ivacaftor-lumacaftor combination therapy has previously been developed by our group and partially validated to FDA standards. However, to allow the high-throughput analysis of a larger number of patient samples, our group has optimized the reported method through the use of a smaller pore size reverse-phase chromatography column (2.6 µm, C8 100 Å; 50 x 2.1 mm) and a gradient solvent system (0-1 min: 40% B; 1-2 min: 40-70% B; 2-2.7 min: held at 70% B; 2.7-2.8 min: 70-90% B; 2.8-4.0 min: 90% B washing; 4.0-4.1 min: 90-40% B; 4.1-6.0 min: held at 40% B) instead of an isocratic elution. The goal of this study was to reduce the HPLC-MS analysis time per sample dramatically from ~15 min to only 6 min per sample, which is essential for the analysis of a large amount of patient samples. This expedient method will be of considerable utility for studies into the exposure-response relationships of these breakthrough CF drugs.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Case-Control Studies; Chromatography, Liquid; Cystic Fibrosis; High-Throughput Screening Assays; Humans; Quinolones; Tandem Mass Spectrometry

2017
Quorum Sensing Down-Regulation Counteracts the Negative Impact of
    Frontiers in cellular and infection microbiology, 2017, Volume: 7

    The function of cystic fibrosis transmembrane conductance regulator (CFTR) channels is crucial in human airways. However unfortunately, chronic

    Topics: Aminopyridines; Bacterial Proteins; Benzodioxoles; Cell Line; Cells, Cultured; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Down-Regulation; Epithelial Cells; Gene Expression Regulation, Bacterial; Humans; Infant; Mutation; Piperazines; Pseudomonas aeruginosa; Pseudomonas Infections; Quinazolines; Quorum Sensing; Respiratory System; Trans-Activators

2017
Nasospheroids permit measurements of CFTR-dependent fluid transport.
    JCI insight, 2017, 11-16, Volume: 2, Issue:22

    Expansion of novel therapeutics to all patients with cystic fibrosis (CF) requires personalized CFTR modulator therapy. We have developed nasospheroids, a primary cell culture-based model derived from individual CF patients and healthy subjects by a minimally invasive nasal biopsy. Confocal microscopy was utilized to measure CFTR activity by analyzing changes in cross-sectional area over time that resulted from CFTR-mediated ion and fluid movement. Both the rate of change over time and AUC were calculated. Non-CF nasospheroids with active CFTR-mediated ion and fluid movement showed a reduction in cross-sectional area, whereas no changes were observed in CF spheroids. Non-CF spheroids treated with CFTR inhibitor lost responsiveness for CFTR activation. However, nasospheroids from F508del CF homozygotes that were treated with lumacaftor and ivacaftor showed a significant reduction in cross-sectional area, indicating pharmacologic rescue of CFTR function. This model employs a simple measurement of size corresponding to changes in CFTR activity and is applicable for detection of small changes in CFTR activity from individual patients in vitro. Advancements of this technique will provide a robust model for individualized prediction of CFTR modulator efficacy.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biological Transport; Colforsin; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Humans; Mutation; Nasal Mucosa; Particle Size; Precision Medicine; Quinolones; Spheroids, Cellular

2017
Complexity of phenotypes induced by p.Asn1303Lys-CFTR correlates with difficulty to rescue and activate this protein.
    Cellular and molecular biology (Noisy-le-Grand, France), 2017, Nov-30, Volume: 63, Issue:11

    Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasian. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes for a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys) is one of the most common worldwide mutations located in nucleotide binding domain 2. The effect of the p.Asn1303Lys mutation on misprocessing was studied by immunofluorescence and western blotting analysis in presence and absence of treatment. To evaluate the functionality of potentially rescued p.Asn1303Lys-CFTR, we assessed the channel activity by radioactive iodide efflux. No recovery of the activity was observed in transfected cultured cells treated with VX-809. Thus, our results suggest that multiple drugs may be needed for the treatment of c.3909C>G patients in order to correct and activate p.Asn1303Lys-CFTR as it shows folding and functional defects.

    Topics: Aminopyridines; Benzodioxoles; Blotting, Western; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; HeLa Cells; Humans; Leupeptins; Mutation

2017
Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity.
    Immunity, 2017, 12-19, Volume: 47, Issue:6

    The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gene Expression Regulation; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Molecular; Monocytes; Phosphatidylinositol 3-Kinases; Protein Binding; Protein Conformation; Protein Transport; Proto-Oncogene Proteins c-akt; Pseudomonas aeruginosa; Pseudomonas Infections; PTEN Phosphohydrolase; Quinolones; Signal Transduction

2017
Direct Measurement of Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator to the Cell Surface and Binding to a Chemical Chaperone.
    Biochemistry, 2017, Jan-10, Volume: 56, Issue:1

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) result in the disease cystic fibrosis. Deletion of Phe508, the most prevalent mutation associated with this disease, disrupts trafficking of the protein. Small molecule correctors yield moderate improvements in the trafficking of ΔF508-CFTR to the plasma membrane. It is currently not known if correctors increase the level of trafficking through improved cargo loading of transport vesicles or through direct binding to CFTR. Real-time measurements of trafficking were utilized to identify the mechanistic details of chemical, biochemical, and thermal factors that impact CFTR correction, using the corrector molecule VX-809, a secondary mutation (I539T), and low-temperature conditions. Each individually improved trafficking of ΔF508-CFTR to approximately 10% of wild-type levels. The combination of VX-809 with either low temperature or the I539T mutation increased the amount of CFTR on the plasma membrane to nearly 40%, indicating synergistic activity. The number of vesicles reaching the surface was significantly altered; however, the amount of channel in each vesicle remained the same. Direct binding measurements of VX-809 in native membranes using backscattering interferometry indicate tight binding to CFTR, which occurred in a manner independent of mutation. The similar values obtained for all forms of the channel indicate that the binding site is not compromised or enhanced by these mutations.

    Topics: Aminopyridines; Benzodioxoles; Cell Membrane; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; HEK293 Cells; Humans; Hydrogen-Ion Concentration; Interferometry; Microscopy, Fluorescence; Mutation; Protein Binding; Protein Transport; Reproducibility of Results; Single Molecule Imaging; Temperature; Transport Vesicles

2017
Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.
    The Journal of biological chemistry, 2017, 03-03, Volume: 292, Issue:9

    Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Cell Line; Cell Membrane; Cell-Free System; Chromatography; Cricetinae; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Hot Temperature; Humans; Mutation; Patch-Clamp Techniques; Protein Denaturation; Quinolones

2017
Pregnancy among cystic fibrosis women in the era of CFTR modulators.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2017, Volume: 16, Issue:6

    Little is known about how new therapies that partially correct the basic cystic fibrosis (CF) defect (ivacaftor and lumacaftor) might alter hormonal contraceptive effectiveness, impact pregnancy outcomes, or affect pregnancy timing. Examination of pregnancy rates among CF women during periods of CFTR modulator therapy initiation will provide foundation for further research in this area.. The Cystic Fibrosis Foundation Patient Registry was used to examine pregnancy rates and outcomes by genotype class before, during, and after the introduction of CFTR modulator therapies between 2005 and 2014.. Among women with CF, ages 15-44years, there was a slight downward trend in annual pregnancy rates from 2005 to 2014 (2% reduction per year, p=0.041). Among women with G551D, pregnancy rates during phase 3 ivacaftor trial years was 14.4/1000 women-years compared to 34.0/1000 prior to the trial period (relative risk [RR]=0.65; 95% CI=0.43-0.96; p=0.011) and 38.4/1000 after drug approval in June 2012 (RR=1.52 post-approval compared to trial period; 95% CI=1.26, 1.83; p<0.001). Pregnancy outcomes did not significantly change between 2005 and 2014 for any genotype class.. Evidence of significantly increased numbers of pregnancies among women taking approved CFTR modulators is important because of the unknown risk to pregnancy and fetal outcomes. Increases may be temporary following pregnancy prevention during controlled clinical trials, or from altered perceptions about maternal survival with new approved treatments. As more women with CF become eligible to receive modulators, the CF community must study their effect on contraceptive efficacy and safety during pregnancy. With increased health and survival due to modulation, family planning topics will become more common in CF.

    Topics: Adolescent; Adult; Aminophenols; Aminopyridines; Benzodioxoles; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Humans; Pregnancy; Pregnancy Complications; Pregnancy Outcome; Pregnancy Rate; Pregnancy, High-Risk; Quinolones; Risk Adjustment; United States

2017
Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor).
    British journal of pharmacology, 2016, Volume: 173, Issue:3

    The most common cystic fibrosis (CF) mutation F508del inhibits the gating and surface expression of CFTR, a plasma membrane anion channel. Optimal pharmacotherapies will probably require both a 'potentiator' to increase channel open probability and a 'corrector' that improves folding and trafficking of the mutant protein and its stability at the cell surface. Interaction between CF drugs has been reported but remains poorly understood.. CF bronchial epithelial cells were exposed to the corrector VX-809 (lumacaftor) and potentiator VX-770 (ivacaftor) individually or in combination. Functional expression of CFTR was assayed as the forskolin-stimulated short-circuit current (Isc ) across airway epithelial monolayers expressing F508del CFTR.. The potentiated Isc response during forskolin stimulation was increased sixfold after pretreatment with VX-809 alone and reached ~11% that measured across non-CF monolayers. VX-770 (100 nM) and genistein (50 μM) caused similar levels of potentiation, which were not additive and were abolished by the CFTR inhibitor CFTRinh -172. The unbound fraction of VX-770 in plasma was 0.13 ± 0.04%, which together with previous measurements in patients given 250 mg p.o. twice daily, suggests a peak free plasma concentration of 1.5-8.5 nM. Chronic exposure to high VX-770 concentrations (>1 μM) inhibited functional correction by VX-809 but not in the presence of physiological protein levels (20-40 mg·mL(-1) ). Chronic exposure to a low concentration of VX-770 (100 nM) together with VX-809 (1 μM) also did not reduce the forskolin-stimulated Isc , relative to cells chronically exposed to VX-809 alone, provided it was assayed acutely using the same, clinically relevant concentration of potentiator.. Chronic exposure to clinically relevant concentrations of VX-770 did not reduce F508del CFTR function. Therapeutic benefit of VX-770 + VX-809 (Orkambi) is probably limited by the efficacy of VX-809 rather than by inhibition by VX-770.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Cell Line; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Interactions; Epithelial Cells; Humans; Mutation; Quinolones

2016
Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction.
    Expert review of respiratory medicine, 2016, Volume: 10, Issue:1

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), leading to significant morbidity and mortality. CFTR is a chloride and bicarbonate channel at the epithelial cell membrane. The most common CFTR mutation is F508del, resulting in minimal CFTR at the plasma membrane. Current disease management is supportive, whereas an ultimate goal is to develop therapies to restore CFTR activity. We summarize experience with lumacaftor, a small molecule that increases F508del-CFTR levels at the plasma membrane. Lumacaftor in combination with ivacaftor, a modulator of CFTR gating defects, improves clinical outcome measures in patients homozygous for the F508del mutation. Lumacaftor represents a significant advancement in the treatment of biochemical abnormalities in CF. Further development of CFTR modulators will improve upon current therapies, although it remains unclear whether this approach will provide therapies for all CFTR mutations.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones; Randomized Controlled Trials as Topic

2016
Pharmacological rescue of mutant CFTR protein improves the viscoelastic properties of CF mucus.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2016, Volume: 15, Issue:3

    In CF patients, the defective ion transport causes a simultaneous reduction of fluid, Cl(-) and HCO3(-) secretion. We aimed to demonstrate that the resulting altered properties of mucus can be recovered using lumacaftor, a CFTR corrector.. The micro-rheology of non-CF and CF mucus was analysed using Multiple Particle Tracking.. The diffusion coefficient of nano-beads imbedded in mucus from CF human bronchial epithelium was lower than in non-CF mucus, and the elastic and viscous moduli were higher. We found that 25% correction of F508del-CFTR mutation with lumacaftor was enough to improve significantly CF mucus properties. Surprisingly, also incubation with amiloride, a compound that reduces fluid absorption but might not change the secretion of HCO3(-) towards the airway surface fluid, improved CF mucus properties.. CF mucus properties can be recovered by either improving the hydration of the airways or recovering Cl(-) and HCO3(-) secretion across the mutated protein treated with a corrector compound.

    Topics: Amiloride; Aminopyridines; Benzodioxoles; Biological Availability; Cell Culture Techniques; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Sodium Channel Blockers; Humans; Microfluidics; Models, Theoretical; Mucus; Mutant Proteins; Respiratory Mucosa

2016
Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.
    PloS one, 2016, Volume: 11, Issue:2

    The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.

    Topics: Aminopyridines; Animals; Bacterial Proteins; Benzodioxoles; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Proliferation; Chlorides; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Gene Deletion; Genistein; Humans; Luminescent Proteins; Mutation; Nose; Patch-Clamp Techniques; Phenylalanine; Pyrazoles; Rats; Structure-Activity Relationship; Sulfonamides

2016
[Combined administration of lumacaftor and ivacaftor as a causal therapeutic approach].
    Medizinische Monatsschrift fur Pharmazeuten, 2016, Volume: 39, Issue:1

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Drug Combinations; Humans; Quinolones; Randomized Controlled Trials as Topic

2016
Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.
    The European respiratory journal, 2016, Volume: 48, Issue:2

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1-C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu.

    Topics: Aminopyridines; Benzodioxoles; Biopsy; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genotype; Homozygote; Humans; Mutation; Organoids; Protein Folding; Protein Transport; Rectum; Thiazoles; Treatment Outcome

2016
Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.
    Journal of bioenergetics and biomembranes, 2016, Volume: 48, Issue:3

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

    Topics: Aminopyridines; Benzodioxoles; Cells, Cultured; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Energy Metabolism; Furocoumarins; Humans; Mitochondrial Diseases; Mutation; Respiratory System

2016
Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.
    PLoS biology, 2016, Volume: 14, Issue:5

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

    Topics: Aminopyridines; ATP-Binding Cassette Transporters; Benzodioxoles; Bronchi; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Gene Knockdown Techniques; Gene Silencing; High-Throughput Screening Assays; Humans; Peptide Elongation Factor 2; Protein Folding; Protein Stability; Ribosomal Proteins; RNA, Small Interfering; Saccharomyces cerevisiae Proteins; Yeasts

2016
Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis.
    PloS one, 2016, Volume: 11, Issue:5

    The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to deletion of the phenylalanine at position 508 (ΔF508) in the CFTR protein and causes multiple folding and functional defects. Contrary to large-scale efforts by industry and academia, no significant therapeutic benefit has been achieved with a single "corrector". Therefore, investigations concentrate on drug combinations. Orkambi (Vertex Pharmaceuticals), the first FDA-approved drug for treatment of cystic fibrosis (CF) caused by this mutation, is a combination of a corrector (VX-809) that facilitates ΔF508 CFTR biogenesis and a potentiator (VX-770), which improves its function. Yet, clinical trials utilizing this combination showed only modest therapeutic benefit. The low efficacy Orkambi has been attributed to VX-770-mediated destabilization of VX-809-rescued ΔF508 CFTR. Here we report that the negative effects of VX-770 can be reversed by increasing the half-life of the endoplasmic reticulum (ER) form (band B) of ΔF508 CFTR with another corrector (Corr-4a.) Although Corr-4a alone has only minimal effects on ΔF508 CFTR rescue, it increases the half-life of ΔF508 CFTR band B when it is present during half-life measurements. Our data shows that stabilization of band B ΔF508 CFTR with Corr-4a and simultaneous rescue with VX-809, leads to a >2-fold increase in cAMP-activated, CFTRinh-172-inhibited currents compared to VX-809 alone, or VX-809+VX-770. The negative effects of VX-770 and the Corr-4a protection are specific to the native I507-ATT ΔF508 CFTR without affecting the inherently more stable, synonymous variant I507-ATC ΔF508 CFTR. Our studies emphasize that stabilization of ΔF508 CFTR band B in the ER might improve its functional rescue by Orkambi.

    Topics: Aminophenols; Aminopyridines; Benzamides; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Gene Expression Regulation; Half-Life; HEK293 Cells; Humans; Mutation; Quinolones; Thiazoles

2016
Cystic fibrosis drug is not cost effective, says NICE.
    BMJ (Clinical research ed.), 2016, Jun-19, Volume: 353

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cost-Benefit Analysis; Cystic Fibrosis; Humans; Quinolones; Respiratory System Agents

2016
Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis.
    Science translational medicine, 2016, 06-22, Volume: 8, Issue:344

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biological Assay; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genotype; Humans; In Vitro Techniques; Mutation; Organoids; Quinolones

2016
Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770.
    American journal of physiology. Lung cellular and molecular physiology, 2016, 09-01, Volume: 311, Issue:3

    Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients.

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Evaluation, Preclinical; Humans; Mutation, Missense; Protein Folding; Quinolones; Sequence Deletion

2016
The investigational Cystic Fibrosis drug Trimethylangelicin directly modulates CFTR by stabilizing the first membrane-spanning domain.
    Biochemical pharmacology, 2016, Nov-01, Volume: 119

    Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, deletion of phenylalanine 508 (F508del), disrupts tertiary assembly, causing protein misprocessing and loss of CFTR function in epithelial tissues. Lumacaftor (VX-809) is a Class 1 corrector molecule shown to partially rescue misprocessing of F508del and together with the potentiator of channel activity: ivacaftor (VX-770) has been approved for treatment of CF patients homozygous for the F508del mutation. The specificity of these modulators for CFTR is thought to be conferred through direct binding. Trimethylangelicin (TMA) is a distinct small molecule modulator, previously shown to exhibit both corrector and potentiator activities. We were prompted to determine if TMA also mediates these activities by direct binding. Interestingly, we found that like VX-770, TMA was effective in enhancing anion efflux mediated by purified WT-CFTR reconstituted in phospholipid liposomes. Furthermore, like VX-809, TMA was effective in stabilizing the functional expression of CFTR lacking the regulatory "R" domain or second nucleotide-binding domain (NBD2). The smallest domain that was stabilized by TMA binding was the first membrane-spanning domain (MSD1) as previously observed for VX-809. Together, our findings support the claim that TMA binds directly to CFTR, and despite its distinct chemical structure, shares similar mechanisms as VX-770 and VX-809 to potentiate and stabilize CFTR, respectively.

    Topics: Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Furocoumarins; HEK293 Cells; Humans; Molecular Structure; Protein Domains

2016
An "Unlikely" Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI.
    ACS infectious diseases, 2016, 07-08, Volume: 2, Issue:7

    Novel combination therapies are desperately needed for combating lung infections caused by bacterial "superbugs". This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with the cystic fibrosis (CF) drugs KALYDECO (ivacaftor) and ORKAMBI (ivacaftor + lumacaftor) against Gram-negative pathogens that commonly colonize the CF lung, in particular, the problematic Pseudomonas aeruginosa. The in vitro synergistic activity of polymyxin B combined with ivacaftor or lumacaftor was assessed using checkerboard and static time-kill assays against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa isolates from the lungs of CF patients. Polymyxin B, ivacaftor, and lumacaftor were ineffective when used individually against polymyxin-resistant (MIC ≥ 4 mg/L) isolates. However, when used together, the combination of clinically relevant concentrations of polymyxin B (2 mg/L) combined with ivacaftor (8 mg/L) or ivacaftor (8 mg/L) + lumacaftor (8 mg/L) displayed synergistic killing activity against polymyxin-resistant P. aeruginosa isolates as demonstrated by a 100-fold decrease in the bacterial count (CFU/mL) even after 24 h. The combinations also displayed excellent antibacterial activity against P. aeruginosa under CF relevant conditions in a sputum medium assay. The combination of lumacaftor (alone) with polymyxin B showed additivity against P. aeruginosa. The potential antimicrobial mode of action of the combinations against P. aeruginosa was investigated using different methods. Treatment with the combinations induced cytosolic GFP release from P. aeruginosa cells and showed permeabilizing activity in the nitrocefin assay, indicating damage to both the outer and inner Gram-negative cell membranes. Moreover, scanning and transmission electron micrographs revealed that the combinations produce outer membrane damage to P. aeruginosa cells that is distinct from the effect of each compound per se. Ivacaftor was also shown to be a weak inhibitor of the bacterial DNA gyrase and topoisomerase IV with no effect on either human type I or type IIα topoisomerases. Lumacaftor displayed the ability to increase the cellular production of damaging reactive oxygen species. In summary, the combination of polymyxin B with KALYDECO or ORKAMBI exhibited synergistic activity against highly polymyxin-resistant P. aeruginosa CF isolates and can be potentially useful for otherwise untreatable CF lung infections.

    Topics: Aminophenols; Aminopyridines; Anti-Bacterial Agents; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Synergism; Drug Therapy, Combination; Humans; Polymyxin B; Pseudomonas aeruginosa; Quinolones

2016
Development of HPLC and LC-MS/MS methods for the analysis of ivacaftor, its major metabolites and lumacaftor in plasma and sputum of cystic fibrosis patients treated with ORKAMBI or KALYDECO.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2016, Dec-01, Volume: 1038

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Chromatography, High Pressure Liquid; Cystic Fibrosis; Humans; Limit of Detection; Quinolones; Sputum; Tandem Mass Spectrometry

2016
Synthesis and structure-activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis.
    European journal of medicinal chemistry, 2015, Jun-24, Volume: 99

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel present in the membrane of epithelial cells. Mutations affecting the CFTR gene cause cystic fibrosis (CF), a multi-organ severe disease. The most common CF mutation, F508del, impairs the processing and activity (gating) of CFTR protein. Other mutations, like G551D, only cause a gating defect. Processing and gating defects can be targeted by small molecules called generically correctors and potentiators, respectively. Aminoarylthiazoles (AATs) represent an interesting class of compounds that includes molecules with dual activity, as correctors and potentiators. With the aim to improve the activity profile of AATs, we have now designed and synthesized a library of novel compounds in order to establish an initial SAR that may provide indications about the chemical groups that are beneficial or detrimental for rescue activity. The new compounds were tested as correctors and potentiators in CFBE41o-expressing F508del-CFTR using a functional assay. A dual active compound, AAT-4a, characterized by improved efficacy and marked synergy when combined with the corrector VX-809 has been identified. Moreover, by computational methods, a possible binding site for AATs in nucleotide binding domain NBD1 has been detected. These results will direct the synthesis of new analogues with possibly improved activity.

    Topics: Biological Transport; Cell Line; Chemistry Techniques, Synthetic; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Design; Humans; Ion Channel Gating; Models, Molecular; Mutation; Protein Structure, Tertiary; Structure-Activity Relationship; Thiazoles

2015
Novel Hits in the Correction of ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3-d]pyrimidines for the Potential Treatment of Cystic Fibrosis.
    Journal of medicinal chemistry, 2015, Dec-24, Volume: 58, Issue:24

    Cystic fibrosis (CF) is a lethal genetic disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) with a prevalence of the ΔF508 mutation. Whereas the detailed mechanisms underlying disease have yet to be fully elucidated, recent breakthroughs in clinical trials have demonstrated that CFTR dysfunction can be corrected by drug-like molecules. On the basis of this success, a screening campaign was carried out, seeking new drug-like compounds able to rescue ΔF508-CFTR that led to the discovery of a novel series of correctors based on a tetrahydropyrido[4,3-d]pyrimidine core. These molecules proved to be soluble, cell-permeable, and active in a disease relevant functional-assay. The series was then further optimized with emphasis on biological data from multiple cell systems while keeping physicochemical properties under strict control. The pharmacological and ADME profile of this corrector series hold promise for the development of more efficacious compounds to be explored for therapeutic use in CF.

    Topics: Animals; Cell Line; Cell Membrane Permeability; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dogs; Humans; Membranes, Artificial; Microsomes, Liver; Mutation; Pyridines; Pyrimidines; Respiratory Mucosa; Solubility; Structure-Activity Relationship

2015
Function, pharmacological correction and maturation of new Indian CFTR gene mutations.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2015, Volume: 14, Issue:1

    Cystic fibrosis (CF) is rare in India. Most CF mutations identified are not yet functionally characterized. Hence, genetic counseling and adoption of therapeutic approach are particularly difficult. Our aim was to study the function and maturation of a spectrum of eleven Indian CFTR mutations from classical CF and infertile male patients with CBAVD.. We used Western blot, pharmacology and iodide efflux to study CFTR maturation and chloride transport in BHK cells expressing pEGFP-CFTR constructs for L69H, F87I, S118P, G126S, H139Q, F157C, F494L, E543A, S549N, Y852F and D1270E.. Among these CFTR mutants, only L69H is not processed as a c-band and not functional at 37°C. However, the functions of L69H and S549N and the maturation of L69H are corrected at 27°C and by the investigational drug VX809.. These data should help in developing counseling and therapeutic approaches in India. We identified L69H as a novel class II CF mutation.

    Topics: Aminopyridines; Benzodioxoles; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gene Expression Regulation; Humans; India; Infertility, Male; Male; Male Urogenital Diseases; Mutation, Missense; Rare Diseases; Sampling Studies; Sexual Maturation; Vas Deferens

2015
SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells.
    Biochimica et biophysica acta, 2015, Volume: 1853, Issue:5

    Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator). F508 deletion is the most represented mutation, and F508del-CFTR is absent of plasma membrane and accumulates into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA (Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells (VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of F508del-CFTR. Using ER or mitochondria genetics Ca2+ probes, we are showing that ER Ca2+ content, mitochondrial Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.

    Topics: Adenosine Triphosphate; Aminopyridines; Benzodioxoles; Bronchi; Calcium; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Epithelial Cells; Homeostasis; Humans; Mitochondria; Plasma Membrane Calcium-Transporting ATPases; Protein Binding; Sarcoplasmic Reticulum Calcium-Transporting ATPases

2015
Drug combination that corrects deficient protein in cystic fibrosis improves lung function.
    BMJ (Clinical research ed.), 2015, May-19, Volume: 350

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Peptide Fragments; Quinolones; Randomized Controlled Trials as Topic; Respiratory Function Tests

2015
A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.
    Science signaling, 2015, May-19, Volume: 8, Issue:377

    The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.

    Topics: Aminopyridines; Analysis of Variance; Benzodioxoles; Biotinylation; Cell Line; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Cytoskeletal Proteins; Fluorescent Antibody Technique; Humans; Immunoblotting; Immunoprecipitation; Microscopy, Confocal; Phosphoproteins; Protein Conformation; Protein Folding; Protein Transport; rac1 GTP-Binding Protein; Sequence Deletion; Sodium-Hydrogen Exchangers; Temperature; Ubiquitin-Protein Ligases

2015
Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.
    PloS one, 2015, Volume: 10, Issue:5

    P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.. F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR.. The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

    Topics: Aminopyridines; Benzodioxoles; Bronchi; Cell Line; Cell Membrane; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; DNA-Binding Proteins; Epithelial Cells; Humans; Mutation; Nuclear Proteins; Pseudomonas aeruginosa; Pseudomonas Infections; Transcription Factors

2015
Lumacaftor/ivacaftor for patients homozygous for Phe508del-CFTR: should we curb our enthusiasm?
    Thorax, 2015, Volume: 70, Issue:7

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Combinations; Gene Deletion; Homozygote; Humans; Molecular Targeted Therapy; Quinolones

2015
Radical new treatments for cystic fibrosis.
    Archives of disease in childhood, 2015, Volume: 100, Issue:8

    Topics: Adolescent; Aminophenols; Aminopyridines; Benzodioxoles; Child; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Quinolones; Randomized Controlled Trials as Topic

2015
Measurements of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy for Cystic Fibrosis.
    EBioMedicine, 2015, Volume: 2, Issue:2

    The best investigational drug to treat cystic fibrosis (CF) patients with the most common CF-causing mutation (F508del) is VX-809 (lumacaftor) which recently succeeded in Phase III clinical trial in combination with ivacaftor. This corrector rescues F508del-CFTR from its abnormal intracellular localization to the cell surface, a traffic defect shared by all Class II CFTR mutants. Our goal here is to test the efficacy of lumacaftor in other Class II mutants in primary human bronchial epithelial (HBE) cells derived from CF patients.. The effect of lumacaftor was investigated in primary HBE cells from non-CF and CF patients with F508del/F508del, A561E/A561E, N1303K/G542X, F508del/G542X and F508del/Y1092X genotypes by measurements of Forskolin plus Genistein-inducible equivalent short-circuit current (Ieq-SC-Fsk + Gen) in perfused open-circuit Ussing chambers. Efficacy of corrector C18 was also assessed on A561E/A561E and F508del/F508del cells.. Our data indicate that A561E (when present in both alleles) responds positively to lumacaftor treatment at equivalent efficacy of F508del in primary HBE cells. Similarly, lumacaftor has a positive impact on Y1092X, but not on N1303K. Our data also show that cells with only one copy of F508del-CFTR respond less to VX-809. Moreover, there is great variability in lumacaftor responses among F508del-homozygous cells from different donors. Compound C18 failed to rescue A561E-CFTR but not in F508del-CFTR, thus plausibly it has a different mechanism of action distinct from lumacaftor.. CF patients with A561E (and likely also those with Y1029X) can potentially benefit from lumacaftor. Moreover, the methodology used here exemplifies how ex vivo approaches may apply personalized therapies to CF and possibly other respiratory diseases.

    Topics: Amino Acid Substitution; Aminopyridines; Benzodioxoles; Cells, Cultured; Clinical Trials, Phase III as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Humans; Lung; Male; Mutation, Missense; Precision Medicine

2015
[Cystic Fibrosis: toward a genetic treatment; Clostridium difficile versus Clostridium difficile].
    Revue medicale suisse, 2015, May-27, Volume: 11, Issue:476

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biomarkers; Clostridioides difficile; Clostridium Infections; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Therapy, Combination; Humans; Mutation; Quinolones; Spores, Bacterial; Treatment Outcome

2015
Capturing the Direct Binding of CFTR Correctors to CFTR by Using Click Chemistry.
    Chembiochem : a European journal of chemical biology, 2015, Sep-21, Volume: 16, Issue:14

    Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX-809 has been reported to facilitate the folding and trafficking of F508del-CFTR and augment its channel function. The mechanism of action of VX-809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX-809: does it bind CFTR directly in order to exert its action? We synthesized two VX-809 derivatives, ALK-809 and SUL-809, that possess an alkyne group and retain the rescue capacity of VX-809. By using Cu(I) -catalyzed click chemistry, we provide evidence that the VX-809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.

    Topics: Aminopyridines; Benzodioxoles; Click Chemistry; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Discovery; HEK293 Cells; Humans; Mutation; Protein Binding

2015
Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.
    Molecular pharmacology, 2015, Volume: 88, Issue:4

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action.

    Topics: Aminopyridines; Animals; Benzodioxoles; Cell Line; Cell Membrane; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Ion Channel Gating; Rats; Rats, Inbred F344; Structure-Activity Relationship

2015
Breathing easier with combinations.
    Nature biotechnology, 2015, Volume: 33, Issue:11

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Biomedical Research; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Industry; Drug Therapy, Combination; Humans; Mutation; Quinolones

2015
The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Biochemical pharmacology, 2014, Mar-01, Volume: 88, Issue:1

    Processing mutations that inhibit folding and trafficking of CFTR are the main cause of cystic fibrosis. Repair of CFTR mutants requires an understanding of the mechanisms of misfolding caused by processing mutations. Previous studies on helix-loop-helix fragments of the V232D processing mutation suggested that its mechanism was to lock transmembrane (TM) segments 3 and 4 together by a non-native hydrogen bond (Asp232(TM4)/Gln207(TM3)). Here, we performed mutational analysis to test for Asp232/Gln207 interactions in full-length CFTR. The rationale was that a V232N mutation should mimic V232D and a V232D/Q207A mutant should mature if the processing defect was caused by hydrogen bonds. We report that only Val232 mutations to charged amino acids severely blocked CFTR maturation. The V232N mutation did not mimic V232D as V232N showed 40% maturation compared to 2% for V232D. Mutation of Val232 to large nonpolar residues (Leu, Phe) had little effect. The Q207L mutation did not rescue V232D because Q207L showed about 50% maturation in the presence of corrector VX-809 while V232D/Q207A could no longer be rescued. These results suggest that V232D inhibits maturation by disrupting a hydrophobic pocket between TM segments rather than forming a non-native hydrogen bond. Disulfide cross-linking analysis of cysteines W356C(TM6) and W1145C(TM12) suggest that the V232D mutation inhibits maturation by trapping CFTR as a partially folded intermediate. Since correctors can efficiently rescue V232D CFTR, the results suggest that hydrophilic processing mutations facing a hydrophobic pocket are good candidates for rescue with pharmacological chaperones.

    Topics: Amino Acid Substitution; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; HEK293 Cells; Humans; Hydrogen Bonding; Hydrophobic and Hydrophilic Interactions; Mutation; Protein Folding; Protein Modification, Translational; Protein Structure, Secondary

2014
A new era in the treatment of cystic fibrosis.
    Clinical medicine (London, England), 2014, Volume: 14, Issue:1

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genetic Therapy; Humans; Molecular Targeted Therapy; Mutation; Oxadiazoles; Quinolones

2014
Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A>G (p.Ile1234Val) informs strategies for future medical intervention.
    Genetics in medicine : official journal of the American College of Medical Genetics, 2014, Volume: 16, Issue:8

    The purpose of this study was to determine the molecular consequences of the variant c.3700 A>G in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a variant that has been predicted to cause a missense mutation in the CFTR protein (p.Ile1234Val).. Clinical assays of CFTR function were performed, and genomic DNA from patients homozygous for c.3700 A>G and their family members was sequenced. Total RNA was extracted from epithelial cells of the patients, transcribed into complementary DNA, and sequenced. CFTR complementary DNA clones containing the missense mutation p.Ile1234Val or a truncated exon 19 (p.Ile1234_Arg1239del) were constructed and heterologously expressed to test CFTR protein synthesis and processing.. In vivo functional measurements revealed that the individuals homozygous for the variant c.3700 A>G exhibited defective CFTR function. We show that this mutation in exon 19 activates a cryptic donor splice site 18 bp upstream of the original donor splice site, resulting in deletion of six amino acids (r.3700_3717del; p.Ile1234_Arg1239del). This deletion, similar to p.Phe508del, causes a primary defect in folding and processing. Importantly, Lumacaftor (VX-809), currently in clinical trial for cystic fibrosis patients with the major cystic fibrosis-causing mutation, p.Phe508del, partially ameliorated the processing defect caused by p.Ile1234_Arg1239del.. These studies highlight the need to verify molecular and clinical consequences of CFTR variants to define possible therapeutic strategies.

    Topics: Adolescent; Adult; Aminopyridines; Animals; Benzodioxoles; Cell Line; Cricetinae; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Exons; HEK293 Cells; Homozygote; Humans; Isoleucine; Male; Mutation, Missense; Qatar; RNA Splicing; Valine

2014
VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface.
    Chemistry & biology, 2014, May-22, Volume: 21, Issue:5

    The most common mutation causing cystic fibrosis (CF), F508del, impairs conformational maturation of CF transmembrane conductance regulator (CFTR), thereby reducing its functional expression on the surface of epithelia. Corrector compounds including C18 (VRT-534) and VX-809 have been shown to partially rescue misfolding of F508del-CFTR and to enhance its maturation and forward trafficking to the cell surface. Now, we show that there is an additional action conferred by these compounds beyond their role in improving the biosynthetic assembly. In vitro studies show that these compounds bind directly to the metastable, full-length F508del-CFTR channel. Cell culture and patient tissue-based assays confirm that in addition to their cotranslational effect on folding, certain corrector compounds bind to the full-length F508del-CFTR after its partial rescue to the cell surface to enhance its function. These findings may inform the development of alternative compounds with improved therapeutic efficacy.

    Topics: Aminopyridines; Animals; Benzodioxoles; Cell Membrane; Cells, Cultured; Cricetinae; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dose-Response Relationship, Drug; HEK293 Cells; Humans; Protein Stability; Structure-Activity Relationship; Surface Properties

2014
Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.
    Molecular pharmacology, 2014, Volume: 86, Issue:1

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 < 5 µM. Eight chemical scaffolds showed synergy with VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors.

    Topics: Aminopyridines; Animals; Benzodioxoles; Biological Transport; Bronchi; Cell Line; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Dogs; Drug Synergism; Epithelial Cells; Horseradish Peroxidase; Humans; Lung; Madin Darby Canine Kidney Cells; Mutation; Permeability; Protein Folding; Protein Structure, Tertiary; Respiratory Mucosa; Small Molecule Libraries; Structure-Activity Relationship

2014
Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels.
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2014, Volume: 13, Issue:5

    The most common cystic fibrosis-associated mutation, the deletion of phenylalanine 508 (F508del), results in channels with poor membrane expression and impaired function. VX-770, a clinically approved drug for treatment of CF patients carrying the G551D mutation, and VX-809, a corrector shown in vitro to increase membrane expression of mutant channels, are currently undergoing clinical trials, but functional data at the molecular level is still lacking.. The effect of VX-770 and VX-809 on the multiple functional defects of F508del-CFTR was assessed via excised inside-out patch-clamp experiments.. VX-770 completely restores the low opening-rate of F508del-CFTR, with smaller open-time increase, in temperature-corrected and VX-809-treated channels. The shorter locked-open time of hydrolysis-deficient F508del-CFTR is also prolonged by VX-770. VX-809 does not improve channel function by itself as previously reported.. The results from these studies can be interpreted as an equilibrium shift toward the open-channel conformation of F508del-CFTR channels.

    Topics: Adenosine Triphosphate; Aminophenols; Aminopyridines; Benzodioxoles; Carrier Proteins; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; In Vitro Techniques; Intracellular Signaling Peptides and Proteins; Patch-Clamp Techniques; Peptide Fragments; Quinolones

2014
The stony road to phe508del CFTR pharmacotherapy: smoothing the first rock.
    The Lancet. Respiratory medicine, 2014, Volume: 2, Issue:7

    Topics: Aminophenols; Aminopyridines; Base Sequence; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Female; Humans; Male; Quinolones; Sequence Deletion

2014
A cocktail drug therapy for patients with cystic fibrosis?
    Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 2014, Volume: 13, Issue:5

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Quinolones

2014
Remarkable progress toward new treatments for cystic fibrosis.
    The Lancet. Respiratory medicine, 2014, Volume: 2, Issue:12

    Topics: Aminophenols; Aminopyridines; Animals; Benzodioxoles; Clinical Trials, Phase III as Topic; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Disease Models, Animal; Forced Expiratory Volume; Humans; Mutation; Quinolones

2014
Pulmonology: CFTR modulators for cystic fibrosis.
    JAAPA : official journal of the American Academy of Physician Assistants, 2013, Volume: 26, Issue:2

    Topics: Aminophenols; Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Lung; Mutation; Oxadiazoles; Quinolones

2013
Mechanism-based corrector combination restores ΔF508-CFTR folding and function.
    Nature chemical biology, 2013, Volume: 9, Issue:7

    The most common cystic fibrosis mutation, ΔF508 in nucleotide binding domain 1 (NBD1), impairs cystic fibrosis transmembrane conductance regulator (CFTR)-coupled domain folding, plasma membrane expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and an incompletely understood mechanism, hampering drug development. Given the effect of second-site suppressor mutations, robust ΔF508-CFTR correction most likely requires stabilization of NBD1 energetics and the interface between membrane-spanning domains (MSDs) and NBD1, which are both established primary conformational defects. Here we elucidate the molecular targets of available correctors: class I stabilizes the NBD1-MSD1 and NBD1-MSD2 interfaces, and class II targets NBD2. Only chemical chaperones, surrogates of class III correctors, stabilize human ΔF508-NBD1. Although VX-809 can correct missense mutations primarily destabilizing the NBD1-MSD1/2 interface, functional plasma membrane expression of ΔF508-CFTR also requires compounds that counteract the NBD1 and NBD2 stability defects in cystic fibrosis bronchial epithelial cells and intestinal organoids. Thus, the combination of structure-guided correctors represents an effective approach for cystic fibrosis therapy.

    Topics: Aminopyridines; Animals; Benzodioxoles; Binding Sites; Bronchi; Cell Membrane; Cricetinae; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Epithelial Cells; Glycosylation; Humans; Mutation; Nucleotides; Protein Folding; Protein Structure, Tertiary; Recombinant Proteins

2013
VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.
    Molecular biology of the cell, 2013, Volume: 24, Issue:19

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.

    Topics: Aminopyridines; Benzodioxoles; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation, Missense; Protein Conformation; Protein Folding; Protein Structure, Tertiary; Signal Transduction

2013
Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, Volume: 27, Issue:2

    Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (<2-fold), and the mature product remained short-lived (T(1/2)∼4.5 h) and thermally unstable, even though its overall conformational state was similar to wild type, as judged by resistance to proteolysis and interdomain cross-linking. Consistent with its inability to restore thermodynamic stability, VX-809 stimulated maturation 2-5-fold beyond that caused by several different stabilizing modifications of NBD1 and the NBD1/CL4 interface. The compound also promoted maturation of several disease-associated processing mutants on the CL4 side of this interface. Although these effects may reflect an interaction of VX-809 with this interface, an interpretation supported by computational docking, it also rescued maturation of mutants in other cytoplasmic loops, either by allosteric effects or via additional sites of action. In addition to revealing the capabilities and some of the limitations of this important investigational drug, these findings clearly demonstrate that ΔF508 CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.

    Topics: Aminopyridines; Benzodioxoles; Binding Sites; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Models, Molecular; Mutagenesis, Site-Directed; Mutant Proteins; Protein Conformation; Protein Interaction Domains and Motifs; Protein Stability; Recombinant Proteins; Sequence Deletion; Temperature

2013
Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809.
    Proceedings of the National Academy of Sciences of the United States of America, 2011, Nov-15, Volume: 108, Issue:46

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that impair the function of CFTR, an epithelial chloride channel required for proper function of the lung, pancreas, and other organs. Most patients with CF carry the F508del CFTR mutation, which causes defective CFTR protein folding and processing in the endoplasmic reticulum, resulting in minimal amounts of CFTR at the cell surface. One strategy to treat these patients is to correct the processing of F508del-CFTR with small molecules. Here we describe the in vitro pharmacology of VX-809, a CFTR corrector that was advanced into clinical development for the treatment of CF. In cultured human bronchial epithelial cells isolated from patients with CF homozygous for F508del, VX-809 improved F508del-CFTR processing in the endoplasmic reticulum and enhanced chloride secretion to approximately 14% of non-CF human bronchial epithelial cells (EC(50), 81 ± 19 nM), a level associated with mild CF in patients with less disruptive CFTR mutations. F508del-CFTR corrected by VX-809 exhibited biochemical and functional characteristics similar to normal CFTR, including biochemical susceptibility to proteolysis, residence time in the plasma membrane, and single-channel open probability. VX-809 was more efficacious and selective for CFTR than previously reported CFTR correctors. VX-809 represents a class of CFTR corrector that specifically addresses the underlying processing defect in F508del-CFTR.

    Topics: Aminopyridines; Benzodioxoles; Bronchi; Cell Line; Cells, Cultured; Chemistry, Pharmaceutical; Chlorides; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Drug Design; Drug Evaluation, Preclinical; Epithelial Cells; Homozygote; Humans; In Vitro Techniques; Lung; Models, Genetic; Mutation

2011