lucitanib has been researched along with Neoplasms* in 3 studies
2 trial(s) available for lucitanib and Neoplasms
Article | Year |
---|---|
Population Pharmacokinetic Modeling of Lucitanib in Patients with Advanced Cancer.
Lucitanib is an oral, potent, selective inhibitor of the tyrosine kinase activity of vascular endothelial growth factor receptors 1‒3, fibroblast growth factor receptors 1‒3, and platelet-derived growth factor receptors alpha/beta.. We aimed to develop a population pharmacokinetics (PopPK) model for lucitanib in patients with advanced cancers.. PopPK analyses were based on intensive and sparse oral pharmacokinetic data from 5 phase 1/2 clinical studies of lucitanib in a total of 403 patients with advanced cancers. Lucitanib was administered at 5‒30 mg daily doses as 1 of 2 immediate-release oral formulations: a film-coated tablet or a hard gelatin capsule.. Lucitanib pharmacokinetics were best described by a 2-compartment model with zero-order release into the dosing compartment, followed by first-order absorption and first-order elimination. Large between-subject pharmacokinetic variability was partially explained by body weight. No effects of demographics or tumor type on lucitanib pharmacokinetics were observed. The model suggested that the formulation impacted release duration (tablet, 0.243 h; capsule, 0.814 h), but the effect was not considered clinically meaningful. No statistically significant effects were detected for concomitant cytochrome P450 (CYP) 3A4 inhibitors or inducers, CYP2C8 or P-glycoprotein inhibitors, serum albumin, mild/moderate renal impairment, or mild hepatic impairment. Concomitant proton pump inhibitors had no clinically significant effect on lucitanib absorption.. The PopPK model adequately described lucitanib pharmacokinetics. High between-subject pharmacokinetic variability supports a safety-based dose-titration strategy currently being used in an ongoing clinical study of lucitanib to optimize drug exposure and clinical benefit.. ClinicalTrials.gov Identifier: NCT01283945, NCT02053636, ISRCTN23201971, NCT02202746, NCT02109016. Topics: Humans; Naphthalenes; Neoplasms; Quinolines; Vascular Endothelial Growth Factor A | 2022 |
Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors.
Lucitanib is a potent, oral inhibitor fibroblast growth factor receptor types 1 and 2 (FGFR), vascular endothelial growth factor receptor types 1, 2, and 3 (VEGFR), platelet-derived growth factor receptor types α and β (PGFRα/β), which are essential kinases for tumor growth, survival, migration, and angiogenesis. Several tumor types, including breast carcinoma, demonstrate amplification of fibroblast growth factor (FGF)-related genes. There are no approved drugs for molecularly defined FGF-aberrant (FGFR1- or FGF3/4/19-amplified) tumors.. This open-label phase I/IIa study involved a dose-escalation phase to determine maximum tolerated dose (MTD), recommended dose (RD), and pharmacokinetics of lucitanib in patients with advanced solid tumors, followed by a dose-expansion phase to obtain preliminary evidence of efficacy in patients who could potentially benefit from treatment (i.e. with tumors harboring FGF-aberrant pathway or considered angiogenesis-sensitive).. Doses from 5 to 30 mg were evaluated with dose-limiting toxic effects dominated by vascular endothelial growth factor (VEGF) inhibition-related toxic effects at the 30 mg dose level (one case of grade 4 depressed level of consciousness and two cases of grade 3 thrombotic microangiopathy). The most common adverse events (all grades, all cohorts) were hypertension (91%), asthenia (42%), and proteinuria (57%). Exposure increased with dose and t½ was 31-40 h, suitable for once daily administration. Seventy-six patients were included. All but one had stage IV; 42% had >3 lines of previous chemotherapy. Sixty-four patients were assessable for response; 58 had measurable disease. Clinical activity was observed at all doses tested with durable Response Evaluation Criteria In Solid Tumors (RECIST) partial responses in a variety of tumor types. In the angiogenesis-sensitive group, objective RECIST response rate (complete response + partial response) was 26% (7 of 27) and progression-free survival (PFS) was 25 weeks. In assessable FGF-aberrant breast cancer patients, 50% (6 of 12) achieved RECIST partial response with a median PFS of 40.4 weeks for all treated patients.. Lucitanib has promising efficacy and a manageable side-effect profile. The spectrum of activity observed demonstrates clinical benefit in both FGF-aberrant and angiogenesis-sensitive populations. A comprehensive phase II program is planned. Topics: Adult; Aged; Disease-Free Survival; Dose-Response Relationship, Drug; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Middle Aged; Naphthalenes; Neoplasms; Neovascularization, Pathologic; Protein Kinase Inhibitors; Quinolines; Receptor, Fibroblast Growth Factor, Type 1; Receptor, Fibroblast Growth Factor, Type 2; Receptors, Platelet-Derived Growth Factor; Vascular Endothelial Growth Factor Receptor-1 | 2014 |
1 other study(ies) available for lucitanib and Neoplasms
Article | Year |
---|---|
The Multi-Kinase Inhibitor Lucitanib Enhances the Antitumor Activity of Coinhibitory and Costimulatory Immune Pathway Modulators in Syngeneic Models.
Lucitanib is a multi-tyrosine kinase inhibitor whose targets are associated with angiogenesis and other key cancer and immune pathways. Its antiangiogenic properties are understood, but lucitanib's immunomodulatory activity is heretofore unknown. Lucitanib exhibited such activity in vivo, increasing CD3 + , CD8 + , and CD4 + T cells and decreasing dendritic cells and monocyte-derived suppressor cells in mouse spleens. Depletion of CD8 + T cells from syngeneic MC38 colon tumor-bearing mice reduced the antitumor efficacy of lucitanib and revealed a CD8 + T-cell-dependent component of lucitanib's activity. The combination of lucitanib and costimulatory immune pathway agonists targeting 4-1BB, glucocorticoid-induced TNFR (GITR), inducible T-cell co-stimulator (ICOS), or OX40 exhibited enhanced antitumor activity compared with each single agent in immunocompetent tumor models. Lucitanib combined with blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein-1 (PD-1) coinhibitory immune pathways also showed enhanced antitumor activity over the single agents in multiple models. In CT26 tumors, lucitanib, alone or combined with anti-PD-1, reduced CD31 + vessels and depleted F4/80 + macrophages. Combination treatment also increased the number of intratumoral T cells. Gene expression in pathways associated with immune activity was upregulated by lucitanib in MC38 tumors and further potentiated by combination with anti-PD-1. Accordingly, lucitanib, alone or combined with anti-PD-1, increased intratumoral CD8 + T-cell abundance. Lucitanib's antitumor and pharmacodynamic activity, alone or combined with anti-PD-1, was not recapitulated by specific vascular endothelial growth factor receptor-2 (VEGFR2) inhibition. These data indicate that lucitanib can modulate vascular and immune components of the tumor microenvironment and cooperate with immunotherapy to enhance antitumor efficacy. They support the clinical development of lucitanib combined with immune pathway modulators to treat cancer. Topics: Animals; Antineoplastic Agents; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Immunologic Factors; Mice; Naphthalenes; Neoplasms; Protein Kinase Inhibitors; Quinolines; Tumor Microenvironment | 2022 |