lucitanib and Disease-Models--Animal

lucitanib has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for lucitanib and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
In Vitro and In Vivo Activity of Lucitanib in FGFR1/2 Amplified or Mutated Cancer Models.
    Neoplasia (New York, N.Y.), 2017, Volume: 19, Issue:1

    The fibroblast growth factor receptor (FGFR) pathway has been implicated both as an escape mechanism from anti-angiogenic therapy and as a driver oncogene in different tumor types. Lucitanib is a small molecule inhibitor of vascular endothelial growth factor (VEGF) receptors 1 to 3 (VEGFR1 to 3), platelet derived growth factor α/β (PDGFRα/β) and FGFR1-3 tyrosine kinases and has demonstrated activity in a phase I/II clinical study, with objective RECIST responses in breast cancer patients with FGFR1 or FGF3/4/19 gene amplification, as well as in patients anticipated to benefit from anti-angiogenic agents. We report here the in vitro and in vivo antitumor activity of lucitanib in experimental models with or without FGFR1/2 amplification or mutations. In cell assays, lucitanib potently inhibited the growth of tumor cell lines with amplified FGFR1 or mutated/amplified FGFR2. In all xenograft models studied, lucitanib demonstrated marked tumor growth inhibition due to potent inhibition of angiogenesis. Notably, in two lung cancer models with FGFR1 amplification, the antitumor efficacy was higher, suggesting that the simultaneous inhibition of VEGF and FGF receptors in FGFR1 dependent tumors can be therapeutically advantageous. Similar antitumor activity was observed in FGFR2 wild-type and amplified or mutated xenograft models. Pharmacokinetic studies showed lucitanib plasma concentrations in the micro/sub-micromolar range demonstrated drug accumulation following repeated lucitanib administration.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Disease Models, Animal; Drug Resistance, Neoplasm; Female; Gene Amplification; Gene Dosage; Humans; Inhibitory Concentration 50; Mice; Mutation; Naphthalenes; Protein Kinase Inhibitors; Quinolines; Receptor, Fibroblast Growth Factor, Type 1; Receptor, Fibroblast Growth Factor, Type 2; Tumor Burden; Xenograft Model Antitumor Assays

2017
AL3810, a multi-tyrosine kinase inhibitor, exhibits potent anti-angiogenic and anti-tumour activity via targeting VEGFR, FGFR and PDGFR.
    Journal of cellular and molecular medicine, 2012, Volume: 16, Issue:10

    Angiogenesis plays an important role in neoplastic transformation and progression as well as in the metastasis process of most human cancers. Herein, we identified AL3810 as a novel and orally bioavailable small molecular inhibitor with potent inhibitory activity against multiple tyrosine kinases involved in the process of angiogenesis. We found that AL3810 substantially inhibited the autophosphorylation of VEGFR2, PDGFRβ and FGFR1 in endothelial cells. Moreover, AL3810 exhibited potent anti-angiogenesis activity, manifested by significant inhibition of microvessel outgrowth of rat arterial ring and chickallantochorion membrane (CAM) in ex vivo angiogenesis models. Daily dosing of AL3810 has shown broad-spectrum anti-tumour activity in human kidney, pancreas, liver cancer xenograft models. Importantly, immunohistochemistry results demonstrated that the anti-tumour activity of AL3810 was closely correlated with its anti-angiogenesis activity, as demonstrated by a decreased microvessel area and reduced microvessel numbers in tumour tissues. The overall pharmacological profiles of AL3810 are superior to sorafenib. The clinical trials of AL3810 will soon be launched in China.

    Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Cell Line, Tumor; Disease Models, Animal; Endothelial Cells; Human Umbilical Vein Endothelial Cells; Humans; Mice; Mice, Nude; Naphthalenes; Phosphorylation; Protein Kinase Inhibitors; Quinolines; Rabeprazole; Rats; Rats, Sprague-Dawley; Receptor, Fibroblast Growth Factor, Type 1; Receptor, Platelet-Derived Growth Factor beta; Vascular Endothelial Growth Factor Receptor-2

2012