lucifer-yellow has been researched along with Body-Weight* in 2 studies
2 other study(ies) available for lucifer-yellow and Body-Weight
Article | Year |
---|---|
Stress impairs alpha(1A) adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala.
Intense or chronic stress can produce pathophysiological alterations in the systems involved in the stress response. The amygdala is a key component of the brain's neuronal network that processes and assigns emotional value to life's experiences, consolidates the memory of emotionally significant events, and organizes the behavioral response to these events. Clinical evidence indicates that certain stress-related affective disorders are associated with changes in the amygdala's excitability, implicating a possible dysfunction of the GABAergic system. An important modulator of the GABAergic synaptic transmission, and one that is also central to the stress response is norepinephrine (NE). In the present study, we examined the hypothesis that stress impairs the noradrenergic modulation of GABAergic transmission in the basolateral amygdala (BLA). In control rats, NE (10 microM) facilitated spontaneous, evoked, and miniature IPSCs in the presence of beta and alpha(2) adrenoceptor antagonists. The effects of NE were not blocked by alpha(1D) and alpha(1B) adrenoceptor antagonists, and were mimicked by the alpha(1A) agonist, A61603 (1 microM). In restrain/tail-shock stressed rats, NE or A61603 had no significant effects on GABAergic transmission. Thus, in the BLA, NE acting via presynaptic alpha(1A) adrenoceptors facilitates GABAergic inhibition, and this effect is severely impaired by stress. This is the first direct evidence of stress-induced impairment in the modulation of GABAergic synaptic transmission. The present findings provide an insight into possible mechanisms underlying the antiepileptogenic effects of NE in temporal lobe epilepsy, the hyperexcitability and hyper-responsiveness of the amygdala in certain stress-related affective disorders, and the stress-induced exacerbation of seizure activity in epileptic patients. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Aging; Amygdala; Anesthetics, Local; Animals; Animals, Newborn; Bicuculline; Body Weight; Dose-Response Relationship, Drug; Drug Interactions; Estrenes; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Imidazoles; In Vitro Techniques; Isoquinolines; Male; Membrane Potentials; Morpholines; Neural Inhibition; Neurons; Norepinephrine; Patch-Clamp Techniques; Phosphodiesterase Inhibitors; Propranolol; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-1; Restraint, Physical; Stress, Physiological; Tetrahydronaphthalenes; Tetrodotoxin; Time Factors | 2004 |
Application of laser scanning confocal microscopy in the analysis of particle-induced pulmonary fibrosis.
Laser scanning confocal microscopy (LSCM) allows us to simultaneously quantitate the degree of lung fibrosis and distinguish various pathological lesions of intact lung tissue. Lucifer Yellow has been shown an ideal fluorescent stain to examine the connective tissue matrix components of embedded lung tissue with LSCM. We evaluated the use of LSCM in quantitating lung fibrosis and compared this procedure with the more traditional method of assessing fibrosis by measuring hydroxyproline, a biochemical assay of collagen. CD/VAF rats were intratracheally dosed with silica (highly fibrogenic), Fe2O3 (non-fibrogenic), and saline (vehicle control) at a high dose of 10-mg/100 g body weight. At 60 days post-instillation, the left lung was dissolved in 6 M HCl and assayed for hydroxyproline. Silica induced increases of 58% and 94% in hydroxyproline content over the Fe2O3 and control groups, respectively. The right lung lobes were fixed, sectioned into blocks, dehydrated, stained with Lucifer Yellow (0.1 mg/ml), and embedded in Spurr plastic. Using LSCM and ImageSpace software, the tissue areas of ten random scans from ten blocks of tissue for each of the three groups were measured, and three-dimensional reconstructions of random areas of lung were generated. The silica group showed increases of 57% and 60% in the lung areas stained by Lucifer Yellow over the Fe2O3 and control groups, respectively. Regression analysis of hydroxyproline vs. lung tissue area demonstrated a significant positive correlation (p < 0.05) with a correlation coefficient of 0.91. Histological analysis of right lung tissue revealed a marked degree of granulomatous interstitial pneumonitis for the silica group, which was absent in the Fe2O3 and control groups. No significant differences (p < 0.05) in hydroxyproline content and measured tissue area were observed between the Fe2O3 and control groups. LSCM, and its associated advanced image analysis and three-dimensional capabilities, is an alternative method to both quickly quantitate and examine fibrotic lung disease without physical disruption of the tissue specimen. Topics: Animals; Body Weight; Ferric Compounds; Hydroxyproline; Intubation, Intratracheal; Isoquinolines; Lung; Male; Microscopy, Confocal; Organ Size; Particle Size; Plastic Embedding; Pulmonary Fibrosis; Rats; Rats, Inbred Strains; Regression Analysis; Silicon Dioxide; Staining and Labeling | 1999 |