losartan-potassium and Autistic-Disorder

losartan-potassium has been researched along with Autistic-Disorder* in 2 studies

Other Studies

2 other study(ies) available for losartan-potassium and Autistic-Disorder

ArticleYear
The effects of postnatal erythropoietin and nano-erythropoietin on behavioral alterations by mediating K-Cl co-transporter 2 in the valproic acid-induced rat model of autism.
    Developmental psychobiology, 2023, Volume: 65, Issue:1

    In this study, based on the excitatory/inhibitory imbalance theory of autism, the time window of GABA switch, the role of K-Cl co-transporter 2 (KCC2) in adjustment GABA switch, and brain permeability to erythropoietin (EPO), the effects of postnatal -EPO and- nano- erythropoietin (NEPO) have been evaluated in the valproic acid (VPA) rat model of autism. The VPA was administered for animal modeling of autism at gestational day (GD) 12.5 (600 mg/kg). Male offsprings were injected with EPO and NEPO in a clinically proper postnatal dosing regimen on postnatal days (PND) 1-5, and autistic-like behaviors were tested at the end of the first month. Then animals were sacrificed, and neuron morphology and KCC2 expression were examined by Nissl staining and Western blot. According to our findings, high-dose NEPO improved autism-associated phenotypes. Neuroprotective effects of EPO and NEPO have been shown in the hippocampus. Postnatal NEPO treatment reversed KCC2 expression abnormalities induced by prenatal VPA. Our results might support the role of KCC2 in ASD and the excitatory/inhibitory imbalance hypothesis. We suggested Nano- erythropoietin and other KCC2 interventions as a new approach to the early treatment and prevention of autism.

    Topics: Animals; Autistic Disorder; Behavior, Animal; Disease Models, Animal; Erythropoietin; Female; gamma-Aminobutyric Acid; Hippocampus; Humans; Male; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Symporters; Valproic Acid

2023
Erythropoietin shows gender dependent positive effects on social deficits, learning/memory impairments, neuronal loss and neuroinflammation in the lipopolysaccharide induced rat model of autism.
    Neuropeptides, 2020, Volume: 83

    We aimed to evaluate the effects of EPO in the lipopolysaccharide (LPS) induced rat model of autism in terms of social deficits, learning and memory impairments, as well as their neurochemical correlates. Sixteen female Sprague Dawley rats randomly distributed into two equel groups, then were caged with fertile males for mating. At the 10th day of pregnancy, 0.5 ml %0,9 NaCl saline was given to first group, 100 μg/kg LPS was given to second group to induce autism. On postnatal 21th day, forty-eight littermates were divided into four groups as; 8 male, 8 female controls, 16 male and 16 female LPS-exposed. Then, LPS groups were also divided in to two groups as saline (1 mg/kg/day) and EPO 600 U/kg/day groups, and animals were treated 45 days. At 50th day, after behavioral evaluations, brain levels of TNF-α, nerve growth factor (NGF) were measured. Histologically, hippocampal neuronal density and GFAP expression were assessed. Three-chamber sociability and social novelty test, passive avoidance learning test were revealed significant differences among the EPO and control groups. Histologically, hippocampal CA1 & CA3 regions displayed significant alterations regarding gliosis (GFAP-positive cells) and regarding frontal cortical thickness in EPO groups compare to controls. Biochemical measurements of the brain levels of TNF-α and NGF levels showed significant differences between controls and EPO groups. According to our findings EPO treatment has beneficial effects on ASD-like symptoms, learning and memory processes, neuronal loss and neuroinflammation in the LPS induced rat model of autism, with some gender differences through inflammatory and neurotrophic pathways.

    Topics: Animals; Autistic Disorder; Avoidance Learning; Behavior, Animal; Disease Models, Animal; Erythropoietin; Female; Hippocampus; Inflammation; Lipopolysaccharides; Male; Memory; Memory Disorders; Neurons; Rats; Rats, Sprague-Dawley; Social Behavior; Tumor Necrosis Factor-alpha

2020