lonaprisan and Disease-Models--Animal

lonaprisan has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for lonaprisan and Disease-Models--Animal

ArticleYear
Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model.
    American journal of human genetics, 2014, Apr-03, Volume: 94, Issue:4

    Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.

    Topics: Animals; Disease Models, Animal; Estrenes; Gene Expression Regulation; Hormone Antagonists; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myelin Proteolipid Protein; Pelizaeus-Merzbacher Disease; Phenotype; Progesterone; RNA, Messenger

2014
Chronic progesterone antagonist-estradiol therapy suppresses breakthrough bleeding and endometrial proliferation in a menopausal macaque model.
    Human reproduction (Oxford, England), 2006, Volume: 21, Issue:12

    Clinicians routinely prescribe progestins along with estrogens during menopausal hormone therapy (HT) to block estrogen-dependent endometrial proliferation. Breakthrough bleeding (BTB) can negate the utility of this treatment. Because progestin antagonists also inhibit estrogen-dependent endometrial proliferation in women and macaques, we used a menopausal macaque model to determine whether a potent progestin antagonist (ZK 230 211, Schering AG; ZK) combined with estrogen would provide a novel mode of HT.. Ovariectomized rhesus macaques were treated for 5 months with either estradiol (E(2)) alone, E(2) + progesterone (two doses) or E(2) + ZK (0.01, 0.05 or 0.25 mg/kg).. In the E(2) + progesterone groups, progesterone suppressed endometrial proliferation and induced a thick decidualized endometrium. In the E(2) + ZK 230 211 groups, all doses of ZK blocked endometrial proliferation and induced endometrial atrophy. In all ZK-treated groups, the atrophied endometrium contained some dilated glands lined by an inactive, flattened, non-mitotic epithelium. BTB was much lower in the E(2) + ZK groups (17 days of spotting, all groups) than in the E(2) and E(2) + progesterone groups (155 bleeding days, all groups). ZK suppressed E(2) effects in the cervix, but not in the vagina, oviduct or mammary glands. All serum chemistry and lipid profiles were normal.. The ability of ZK to block estrogen-dependent endometrial proliferation, induce endometrial atrophy and suppress BTB in a menopausal macaque model indicates that progestin antagonists may provide a novel mode of HT.

    Topics: Animals; Cell Proliferation; Disease Models, Animal; Drug Therapy, Combination; Endometrium; Estradiol; Estrenes; Female; Genitalia, Female; Hormone Antagonists; Macaca mulatta; Mammary Glands, Animal; Menopause; Metrorrhagia; Progesterone

2006