lomeguatrib and Disease-Models--Animal

lomeguatrib has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for lomeguatrib and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Effect of O6-(4-bromothenyl)guanine on different temozolomide schedules in a human melanoma xenograft model.
    International journal of cancer, 2002, Aug-10, Volume: 100, Issue:5

    The DNA repair protein O(6)-alkylguanine DNA alkyltransferase (ATase) is a major component of resistance to treatment with methylating agents and nitrosoureas. Inactivation of the protein, via the administration of pseudosubstrates, prior to chemotherapy has been shown to improve the latter's therapeutic index in animal models of human tumours. We have also shown that rational scheduling of temozolomide, so that drug is administered at the ATase nadir after the preceding dose, increases tumour growth delay in these models. We now report the results of combining these two approaches. Nude mice bearing A375M human melanoma xenografts were treated with vehicle or 100 mg/kg temozolomide ip for 5 doses spaced 4, 12 or 24 hr apart. Each dose was preceded by the injection of vehicle or 20 mg/kg 4BTG. All treatments resulted in significant delays in tumour quintupling time compared with controls: by 6.2, 5.9 and 16.8 days, respectively, for 24-, 12- and 4-hourly temozolomide alone and by 22.3, 21.3 and 22.1 days, respectively, in combination with 4BTG. Weight loss due to TMZ was unaffected by the presence of 4BTG. This was of the order of 6.2-10.6% with 24- and 12-hourly administration and 17.4-20.1% (p < 0.0001) with 4-hourly treatment. In our model, combining daily temozolomide with 4-BTG confers increased antitumour activity equivalent to that achieved by compressing the temozolomide schedule but with less toxicity. Using temozolomide schedule compression with 4-BTG does not improve on this result, suggesting that ATase inactivation with pseudosubstrates is a more promising means of enhancing the activity of temozolomide than compressed scheduling.

    Topics: Adenosine Triphosphatases; Animals; Cell Division; Dacarbazine; Disease Models, Animal; Guanine; Humans; Male; Melanoma; Mice; Mice, Nude; Neoplasm Transplantation; Temozolomide; Time Factors

2002