lithium-chloride and Tachycardia--Ventricular

lithium-chloride has been researched along with Tachycardia--Ventricular* in 1 studies

Other Studies

1 other study(ies) available for lithium-chloride and Tachycardia--Ventricular

ArticleYear
Phospholamban knockout breaks arrhythmogenic Ca²⁺ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice.
    Circulation research, 2013, Aug-16, Volume: 113, Issue:5

    Phospholamban (PLN) is an inhibitor of cardiac sarco(endo)plasmic reticulum Ca²⁺ ATPase. PLN knockout (PLN-KO) enhances sarcoplasmic reticulum Ca²⁺ load and Ca²⁺ leak. Conversely, PLN-KO accelerates Ca²⁺ sequestration and aborts arrhythmogenic spontaneous Ca²⁺ waves (SCWs). An important question is whether these seemingly paradoxical effects of PLN-KO exacerbate or protect against Ca²⁺-triggered arrhythmias.. We investigate the impact of PLN-KO on SCWs, triggered activities, and stress-induced ventricular tachyarrhythmias (VTs) in a mouse model of cardiac ryanodine-receptor (RyR2)-linked catecholaminergic polymorphic VT.. We generated a PLN-deficient, RyR2-mutant mouse model (PLN-/-/RyR2-R4496C+/-) by crossbreeding PLN-KO mice with catecholaminergic polymorphic VT-associated RyR2-R4496C mutant mice. Ca²⁺ imaging and patch-clamp recording revealed cell-wide propagating SCWs and triggered activities in RyR2-R4496C+/- ventricular myocytes during sarcoplasmic reticulum Ca²⁺ overload. PLN-KO fragmented these cell-wide SCWs into mini-waves and Ca²⁺ sparks and suppressed the triggered activities evoked by sarcoplasmic reticulum Ca²⁺ overload. Importantly, these effects of PLN-KO were reverted by partially inhibiting sarco(endo)plasmic reticulum Ca²⁺ ATPase with 2,5-di-tert-butylhydroquinone. However, Bay K, caffeine, or Li⁺ failed to convert mini-waves to cell-wide SCWs in PLN-/-/RyR2-R4496C+/- ventricular myocytes. Furthermore, ECG analysis showed that PLN-KO mice are not susceptible to stress-induced VTs. On the contrary, PLN-KO protected RyR2-R4496C mutant mice from stress-induced VTs.. Our results demonstrate that despite severe sarcoplasmic reticulum Ca²⁺ leak, PLN-KO suppresses triggered activities and stress-induced VTs in a mouse model of catecholaminergic polymorphic VT. These data suggest that breaking up cell-wide propagating SCWs by enhancing Ca²⁺ sequestration represents an effective approach for suppressing Ca²⁺-triggered arrhythmias.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Caffeine; Calcium Signaling; Calcium-Binding Proteins; Calcium-Transporting ATPases; Cells, Cultured; Disease Models, Animal; Electrocardiography; Hydroquinones; Isoproterenol; Lithium Chloride; Mice; Mice, Knockout; Mutation, Missense; Myocytes, Cardiac; Patch-Clamp Techniques; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Tachycardia, Ventricular; Ultrasonography

2013